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Abstract

As an important fine-grained sentiment anal-
ysis task, aspect sentiment triplet extraction
(ASTE) aims to identify three elements, i.e., as-
pect, opinion and sentiment polarity as a triplet.
Advanced ASTE researches have mostly ex-
plored triplet-wise ability to achieve superior
improvement. However, existing models with
strong in-house performances may struggle to
generalize to the challenging cases with the di-
verse expression of inter-triplet and intra-triplet
elements. To this end, we propose a Model-
Agnostic Training Optimization (MATO) to
improve ASTE model inference consistent with
expected results facing triplet element diversity.
Specifically, to indicate the capacity to accom-
modate the diverse elements, we design inter-
triplet and intra-triplet metamorphic relations
(MRs), and calculate the violation rate (VR) on
each element of one triplet through metamor-
phic testing (MT). Moreover, we propose an
element-wise diversity-aware loss based on the
VRs of aspect, opinion and sentiment, which
can be jointly trained with existed ASTE mod-
els via uncertainty weighing. Conducted on
four benchmark datasets and seven ASTE mod-
els, experimental results show that our MATO
can enhance their diversity capacity, decreas-
ing the average element-wise VRs by 3.28% to
15.36%. Meanwhile, our MATO is comparable
to or better than those in terms of F1-score.

1 Introduction

Aspect sentiment triplet extraction (ASTE) aims to
identify three elements, i.e., aspect term, opinion
term and sentiment polarity as a triplet. As in the
example "The sound is nice and loud; I do n’t have
any problems with hearing anything." in Fig. 1
(c), its goal is to extract two triplets "(sound, nice,
POS)" and "(sound, loud, POS)".

Many approaches to ASTE have been proposed
successively. Peng et al. (2020) introduced the
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Input Output

Works well, and I am extremely happy 
to be back to an apple OS.

(Works, well, POS)

(OS, happy, POS)

Works badly, and I am extremely happy 
to be back to an apple OS.

(Works, badly, NEG)

(OS, happy, NEU)

The sound is nice and loud; I do n’t have any 
problems with hearing anything.

(sound, nice, POS)

(sound, loud, POS)

(sound, scrummy, NEG)

(sound, loud, NEG)

The sound is scrummy and loud; I do n’t have 
any problems with hearing anything.

(a)

(b)

(c)

(d)

Figure 1: Two sets of examples for some ASTE mod-
els. (a) and (c) are from LAP14 while inter-triplet and
intra-triplet diverse expressions appear in (b) and (d),
respectively. The underlined indicates the distinctions.

ASTE task at the first time and provided a two-
stage framework in a pipeline approach to accom-
plish the extraction of aspect term and opinion term
successively as well as the classification of senti-
ment. To overcome the error propagation problem,
subsequent works adopted table filling represen-
tation to jointly model the ASTE task (Wu et al.,
2020b; Chen et al., 2022b; Zhang et al., 2022; Sun
et al., 2024). Some works used sequence tagging
to enrich label representation to enhance represen-
tation learning (Xu et al., 2020, 2021; Liang et al.,
2023; Li et al., 2023). Besides, there were some
studies that tried to convert the ASTE task into a
machine reading comprehension (MRC ) task (Mao
et al., 2021; Chen et al., 2021a; Zhai et al., 2022).
Recently, generative model has gained significant
results on many tasks, and equally some works
have addressed the ASTE task with generative man-
ner (Zhang et al., 2021a; Zhou and Qian, 2023).

The above methods explored the ability to im-
prove the model’s feature representation, feature
learning and the ability to inference etc., and have
obtained superior performance. However, they may
struggle to generalize to the challenging cases with
the diverse expression of inter-triplet and intra-
triplet elements. As shown in Fig. 1 (a) and (b),
the extraction of the triplet "(OS, happy, POS)" is
affected just by changing the other triplet’s opinion,
which indicates that the resistance of ASTE models
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to inter-triplet diverse expression is not powerful
enough. Similarly, as shown in Figs. 1 (c) and (d),
simply making a synonym transformation 1 for the
opinion of the triplet "(sound, nice, POS)" leads
to an inversion of the output sentiment, which sug-
gests that the perceptual ability of ASTE models to
intra-triplet diverse expression is also insufficient.

To address the aforementioned problem, we
propose a Model-Agnostic Training Optimization
(MATO) to improve an ASTE model inference
consistent with expected results facing diversity.
Specifically, we firstly design inter-triplet and
intra-triplet metamorphic relations (MRs) from
the perspective of potential causes affecting the ex-
traction result of one triplet. Based on these MRs,
we introduce a metric for assessing the diversity
and use it for training optimization. The violation
rate (VR) conducted with metamorphic testing
(MT), can be calculated by comparing the target
triplets between their originals and metamorphosis
to check whether it follows the MR. For example,
we can establish an inter-triplet MR based on (a)
and (b) in Fig. 1. Return to MRs, we can analyze
the element (i.e., aspect, opinion, and sentiment) of
the diverse expression. And thus statistically obtain
the VR on each element, indicating the capacity
to diversity of triplet elements. And the paired
Wilcoxon signed rank tests (Corder and Foreman,
2014) are performed on the MT results to ensure
that the MRs are highly qualified.

Secondly, in order to make an ASTE model more
focused on the triplet itself and shield from other
triplets when generating triplets, we introduce three
discerners to identify aspect, opinion, and sen-
timent, and propose an element-wise diversity-
aware loss based on VRs. In particular, we
sum three losses from the three discerners with
the weights from the element-wise VRs. Finally,
to better simultaneously learn ASTE triplet ex-
traction and element-wise diversity awareness, an
uncertainty-based weighting is applied to jointly
train diversity-aware loss and ASTE loss, that is,
MATO can work with most ASTE models.

Extensive experiments are conducted with seven
ASTE SOTA models on four benchmark datasets.
Our finding is that the capacity of the seven mod-
els facing inter-triplet and intra-triplet diverse ex-
pression remains significantly weak. The addi-

1According to the Oxford English Dictionary
(https://www.oed.com), scrummy means excellent, marvel-
lous, enjoyable and delicious etc., representing nonstandard
London speech.

tion of our MATO to those ASTE SOTA models
can enhance their capacity, decreasing the average
element-wise VRs by 3.28% to 15.36%. Mean-
while, our MATO is comparable to or better than
those in terms of F1-score.

2 Related Work

2.1 ASTE Models

Aspect Sentiment Triplet Extraction (ASTE) is a
typical task in current research of aspect-based sen-
timent analysis (ABSA), proposed by Peng et al.
(2020). ABSA is a traditional fine-grained senti-
ment analysis (Pontiki et al., 2014; Schouten and
Frasincar, 2016; Xue and Li, 2018; Liu et al., 2020;
Chen et al., 2022a; Liu et al., 2023; Li et al., 2024).
The early work of ABSA involved three basic tasks,
including aspect term extraction (Yin et al., 2016;
Xu et al., 2018; Dai and Song, 2019; Chen and
Qian, 2020; Li et al., 2020), opinion term extrac-
tion (Wan et al., 2020; Wu et al., 2020a) and aspect-
level sentiment classification (Wang et al., 2016;
Tang et al., 2016; Li et al., 2021; Brauwers and
Frasincar, 2023).

Recent ASTE studies consider the integrity
among the three elements and can be classified into
five streams, that is, pipeline (Peng et al., 2020),
table filling (Wu et al., 2020b; Chen et al., 2022b;
Zhang et al., 2022; Sun et al., 2024), sequence
tagging (Xu et al., 2020; Liang et al., 2023; Li
et al., 2023), MRC-based (Mao et al., 2021; Chen
et al., 2021a; Zhai et al., 2022) and generative man-
ner (Yan et al., 2021; Zhang et al., 2021a,b; Zhou
and Qian, 2023). These methods explored the abil-
ity to improve the model’s feature representation,
feature learning and the ability to inference etc.,
and have obtained superior performance. But few
focuses enough on the element-wise diversity ca-
pacity.

2.2 Metamorphic Testing in NLP

In software engineering, metamorphic testing (MT)
is the process of testing a program by examining the
metamorphic relation (MR) between the results of
multiple executions of the program to find and cor-
rect defects and errors in the software (Chen et al.,
2018). MR is task-specific, and many works de-
signed specific MRs for different tasks. Jiang et al.
(2021) identified six types of MRs for the machine
translation task, covering a wide range of proper-
ties that most NLI tasks are expected to have. The
experimental results could explain the capabilities
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Figure 2: The overview of our MATO, a model-agnostic working with ASTE models

of the NLI model in different dimensions. Manino
et al. (2022) proposed three MRs, which addressed
the properties of systematicity, compositionality
and transitivity. Manino et al. (2022) tested the in-
ternal consistency of state-of-the-art NLP models,
and they did not always behave according to their
expected linguistic properties. Hyun et al. (2024)
proposed a framework with MT for analyzing large
language model to address the limited coverage
of quality attributes. Pu et al. (2023) adopted MT
to evaluate the robustness of hand pose estimation
models and provided suggestions on the choice of
HPE models for different applications. Recent stud-
ies have found that the property-based validation
method (such as violation rate based on MT) is
more flexible than the traditional reference-based
validation method (precision, recall and F1-score
etc.) in revealing the actual language understanding
capability of the NLP models (Chen et al., 2021b;
Aleti, 2023; Wang et al., 2024).

To our literature review, our work is the first to
consider ASTE models enhanced with MT. The
major challenge is to design suitable MRs to re-
flect inter-triplet and intra-triplet diverse expres-
sions and the violation rate based on MT can be
used for training optimization.

3 Proposed Method

In this section, we present our MATO in details
as shown in Fig. 2. ASTE model can generate the
hidden representations for aspect, opinion and sen-
timent through feature representation, feature learn-
ing and inference stages. ASTE model computes
ASTE loss by comparing the labels. We use MT to
indicate the capacity to diversity of ASTE model
and introduce diversity-aware loss to enhance the
perception ability. Finally, an uncertainty weighing
is applied to jointly train diversity-aware loss and
ASTE loss. This process does not depend on the
specific ASTE model (i.e., model-agnostic).

3.1 Task Description

Given a sentence X = {w1, w2, . . . , wn} with n
words, the goal of the ASTE model is to output all
triplets T = {(a, o, s)i}mi=1 in the sentence, where
a and o denote aspect term and opinion term re-
spectively, and they both come from the sentence
X . The sentiment polarity s belongs to the label set
S = {POS,NEU,NEG}, and m is the number
of triplets in the sentence.
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3.2 Metamorphic Relations Design

The current mainstream ASTE models suffer from
the problem of weak capacity when facing element-
wise diverse expression, while MT based on task-
specific MRs are able to cover such linguistic prop-
erty. Therefore, we regard to design appropriate
MRs to alleviate this diversity problem. As shown
in the example in Table 1, we design inter-triplet
and intra-triplet MRs from the viewpoint of possi-
bly causing an unexpected change in the output for
one triplet (denoted as target triplet).

3.2.1 Inter-triplet MRs
The expression of triplets aside from the target
triplet is individual to individual, i.e. there is inter-
triplet diverse expression. The output result of
target triplet may be affected by external diversity,
and an ASTE model with diversity capacity should
avoid such cases. We principally consider the in-
fluence of other triplets on target triplet and design
inter-triplet MRs, and then determine if there is a
violation against one MR by comparing the consis-
tency of the real output with the expected output.

MR1-1: According to the relative independence
among triplets, the synonym transformation 2 to
the opinion of other triplets in the sentence should
not affect the output of the target triplet, i.e., its
expected output is consistent to its original output.

Example for MR1-1:
Source Input: The screen is bright and the keyboard is nice.

Follow-up Input: The screen is bright and the keyboard is good.

MR1-2: When the sentiment of other triplets
in the sentence is inverted (i.e., the opinion under-
goes an antonym transformation), the extraction
of the target triplet should not be affected, i.e., its
expected output is consistent to its original output.

Example for MR1-2:
Source Input: The screen is bright and the keyboard is nice.

Follow-up Input: The screen is bright and the keyboard is bad.

MR1-3: In order to bring in more factors that
may affect the target triplet extraction results, we
add to the sentences some phrases 3 consisting of
the triplet with the opposite sentiment of the target

2The synonyms and antonyms in this work are derived
from NLTK (https://www.nltk.org) and an online dictionary
(https://github.com/meetDeveloper/freeDictionaryAPI).

3The generation of phrases from triplets in the
datasets are automatically implemented with Parrot
(https://github.com/PrithivirajDamodaran/Parrot_Paraphraser).

triplet. This should not affect the extraction of the
target triplet, i.e., its expected output is consistent
to its original output.

Example for MR1-3:
Source Input: The screen is bright and the keyboard is nice.

Follow-up Input: The screen is bright and the keyboard is nice. 

  windows 7 is slow.

MR1-4: For a further analysis of the impact
of other triplets on target triplet extraction in a
sentence, we substitute aspect term and opinion
term involved in other triplets with "[UNK]" to
mask the semantic information brought by the other
triplets. The expected output of the target triplet
should be consistent to its original output without
this part of the semantic information.

Example for MR1-4:
Source Input: The screen is bright and the keyboard is nice.

Follow-up Input: The screen is bright and the [UNK] is [UNK].

3.2.2 Intra-triplet MRs
ASTE models with diversity capacity should not
only be able to extract target triplet easing the influ-
ence of other triplets, but more importantly focus
on target triplet own diverse information. For such
considerations, we check whether the ASTE model
is able to respond correctly to its own changes by
introducing diversity to the target triplet.

MR2-1: The sentiment is dependent, so we first
consider making some changes to the holder of
the sentiment, i.e., making a synonym/hypernym
transformation 4 to aspect. The aspect in the target
triplet output should change accordingly, the rest
should be consistent.

Example for MR2-1:
Source Input: The screen is bright and the keyboard is nice.

Follow-up Input: The monitor is bright and the keyboard is nice.

MR2-2: In natural language, there are a vari-
ety of expressions that convey the approximate
meaning. The model needs to be able to main-
tain a diversity-aware performance facing different
opinon expressions, and understand the semantic
information in the text. We apply a synonym trans-
formation to the opinion of the target triplet. The
opinion in the target triplet output should change
accordingly, the rest should be consistent.

4The hypernyms in this work are also derived from NLTK
(https://www.nltk.org).
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Inter/Intra MR type Follow-up Input Expected Output

Inter-triplet

MR1-1 The screen is bright and the keyboard is good.

(screen, bright, POS)
MR1-2 The screen is bright and the keyboard is bad.

MR1-3 The screen is bright and the keyboard is nice. windows 7 is slow.

MR1-4 The screen is bright and the [UNK] is [UNK].

Intra-triplet

MR2-1 The monitor is bright and the keyboard is nice. (monitor, bright, POS)

MR2-2 The screen is clear and the keyboard is nice. (screen, clear, POS)

MR2-3 The monitor is clear and the keyboard is nice. (monitor, clear, POS)

MR2-4 The screen is unclear and the keyboard is nice. (screen, unclear, NEG)

Table 1: For the target triplet "(screen, bright,POS)" in the original outputs of the source input "The screen is bright
and the keyboard is nice.", the follow-up inputs and the expected outputs corresponding to target triplet following
the inter-triplet and intra-triplet MRs. The underlined parts indicate the distinctions.

Example for MR2-2:
Source Input: The screen is bright and the keyboard is nice.

Follow-up Input: The screen is clear and the keyboard is nice.

MR2-3: It is not sufficient to transform ei-
ther aspect or opinion alone, so we consider syn-
onym/hypernym transformations for both at the
same time. The aspect and opinion in the target
triplet output should change accordingly, the senti-
ment should be consistent.

Example for MR2-3:
Source Input: The screen is bright and the keyboard is nice.

Follow-up Input: The monitor is clear and the keyboard is nice.

MR2-4: Antonym transformation leads to
changes in the meaning of the source input, and
the model needs to understand the new semantics
and accurately capture the sentiment polarity corre-
sponding to the opinion. The opinion in the target
triplet output should change accordingly, the aspect
should be consistent. Moreover, The sentiment
should be reversed.

Example for MR2-4:
Source Input: The screen is bright and the keyboard is nice.

Follow-up Input: The screen is unclear and the keyboard is nice.

We can generate a large amount of data to test the
model based on the above MRs. According to the
comparison of the output of the target triplet and the
expected output, we can calculate the correspond-
ing VRs: {V R1, V R2, . . . , V R8}, indicating the
capacity of the ASTE model facing inter-triplet and
intra-triplet diverse expression.

3.3 Diversity Awareness
Given an input sentence X = {w1, w2, . . . , wn}
with n tokens and the triplets T = {(a, o, s)i}mi=1.

The last hidden layer representation sequence for
aspect, opinion and sentiment in the ASTE model
are denoted separately as:

Hli = {h1, h2, . . . , hli}, i ∈ {1, 2, 3} (1)

where l1, l2 and l3 denote the length of the last
hidden layer representation sequence for aspect,
opinion and sentiment, respectively.

We acquire the hidden representations of which
represent aspect, opinion and sentiment:

He = {he1 , he2 , . . . , hem}, e ∈ {a, o, s} (2)

To make the ASTE model more focus on the above
representations, we introduce three discerners (i.e.,
three linear layers) and sigmoid activation function
to identify aspect, opinion and sentiment:

ŷe = Sigmoid(discernere(He)),

e ∈ {a, o, s} (3)

From these, three identification binary cross-
entropy (BCE) losses can be obtained:

Losse = BCE(ye, ŷe), e ∈ {a, o, s} (4)

where the shape of ye is the same with ŷe and its
values are fully 1.

We can summarize to derive VRs on aspect, opin-
ion and sentiment:

V Re =
1

|mape|
∑

i∈mape

V Ri, e ∈ {a, o, s} (5)

where |mape| denotes the length of mape. mapa is
{3, 4, 5, 7}, mapo is {1, 2, 3, 4, 6, 7, 8} and maps
is {2, 3, 4, 8} based on the type of the diverse ele-
ment in the above MRs.
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Dataset
Train Dev Test

#S #T #S #T #S #T

LAP14 906 1460 219 346 328 543
RES14 1266 2338 310 577 492 994
RES15 605 1013 148 249 322 485
RES16 857 1394 210 339 326 514

Table 2: Statistics of four ASTE datasets (Xu et al.,
2020). #S and #T represent the number of sentences
and triplets, respectively.

So far, we can obtain the diversity-aware loss:

Lossaware =
∑

e∈{a,o,s}
V ReLosse (6)

Diversity-aware loss makes the ASTE model per-
cieve element-wise diverse expression.

3.4 Model-Agnostic Autoweighted Training
Let fW (X) be the output of the ASTE model with
weights W on input X . The loss of the ASTE
model can be uniformly formulated as Lossaste.

Diversity-aware loss is model-agnostic and can
be jointly trained with Lossaste. Kendall et al.
(2018) proposed to use uncertainty to weigh multi-
ple losses to achieve multi-task learning for scene
geometry and semantics. According to the proof
of Kendall et al. (2018). we can approximate the
overall loss for ASTE task:

Lossoverall ≈
1

σ2
1

Lossaste +
1

σ2
2

Lossaware

+ logσ1 + logσ2 (7)

where the positive scalars σ1 and σ2 can be learnt
from triplet extraction output and diversity-aware
output distributions, respectively, where the param-
eter determines how "uniform" (flat) the discrete
distribution is. This relates to its uncertainty, as
measured in entropy (Kendall et al., 2018).

Later, Liebel and Körner (2018) have improved
to avoid the loss value becoming negative during
training. In practical, the unified training of ASTE
triplet extraction and triplet focusing for multiple
objectives is based on AutomaticWeightedLoss 5.

4 Experiments

This paper aims to address three research questions.
RQ1: Is the traditional reference-based valida-

tion method (i.g., F1-score) effective enough in re-
vealing the diversity capacity of the ASTE model?

5https://github.com/Mikoto10032/AutomaticWeightedLoss

RQ2: Is the property-based validation method
(i.e., VR) effective?

RQ3: Does our MATO significantly improve
the capacity of the ASTE model when facing inter-
triplet and intra-triplet diverse expression?

We conduct a thorough assessment of the quality
of our designed MRs following Chen et al. (2021b),
the results of which are shown in Appendix A.3.

4.1 Datasets and Baselines
We conducted extensive experiments on four ASTE
benchmark datasets refined by (Xu et al., 2020).
All datasets are sourced from SemEval Chal-
lenges (Pontiki et al., 2014, 2015, 2016), including
reviews in the laptop and restaurant domains. The
statistics of the four datasets are shown in Table 2.

For analyzing the capacity of various types of
models in solving ASTE task as well as validating
the effectiveness of our MATO, we select seven
SOTA models as our baselines. (1) Table filling:
EMCGCN (Chen et al., 2022b), BDTF (Zhang
et al., 2022), MiniConGTS (Sun et al., 2024). (2)
Sequence tagging: STAGE (Liang et al., 2023),
SimSTAR (Li et al., 2023). (3) MRC-based:
COM-MRC (Zhai et al., 2022). (4) Generative
manner: SLGM (Zhou and Qian, 2023). Detailed
descriptions for these baselines can be found in the
Appendix A.1.

4.2 Experimental Settings
We run the above seven models corresponding to
the parameter settings in their papers. For each
synonym/antonym/hypernym transformation, we
obtain at most 10 synonyms/antonyms/hypernyms
from NLTK or the online dictionary. To mini-
mize the influence of randomness, we ran run each
model 5 times with different random initializations
and then report the average results. All experiments
are conducted on an NVIDIA TITAN XP GPU.

4.3 RQ1: Overall Performance with F1-score
Table 3 lists the experimental comparisons of the
seven models before and after the introduction of
MATO. MATO can improve the F1-score (green
background) of the six models on the four datasets,
and slightly reduce the F1-score (red background)
of the COM-MRC, which suggests that our MATO
can improve the traditional performance of most
of ASTE models. Another interesting finding is
that the addition of MATO is able to reduce the
gap between precision and recall while keeping the
performance of the F1-score stable.
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Model
LAP14 RES14 RES15 RES16

P R F1 ∆F1 P R F1 ∆F1 P R F1 ∆F1 P R F1 ∆F1

EMCGCN (ACL, 2022b) 61.70 56.26 58.81
+0.89

71.21 72.39 71.78
+0.78

61.54 62.47 61.93
+0.15

65.62 71.30 68.33
+0.09

+ MATO 60.26 59.15 59.70 71.70 73.45 72.56 61.89 62.27 62.08 65.88 71.15 68.42

COM-MRC (EMNLP, 2022) 62.35 58.16 60.17
-0.27

75.46 68.91 72.01
-0.34

68.35 61.24 64.53
-0.41

71.55 71.59 71.57
-0.59

+ MATO 59.58 60.23 59.90 73.65 69.80 71.67 65.99 62.38 64.12 68.90 73.21 70.98

BDTF (EMNLP, 2022) 68.94 55.97 61.74
+0.96

75.53 73.24 74.35
+0.19

68.76 63.71 66.12
+1.33

71.44 73.13 72.27
+0.65

+ MATO 66.46 59.33 62.70 75.15 73.94 74.54 69.67 65.36 67.45 71.75 74.12 72.92

SimSTAR (SIGIR, 2023) 66.46 58.23 62.07
+0.68

76.23 71.63 73.86
+0.30

71.71 59.59 65.09
+0.18

72.02 74.12 73.06
+0.64

+ MATO 65.64 60.08 62.75 75.20 73.14 74.16 70.14 61.03 65.27 71.55 75.98 73.70

STAGE (AAAI, 2023) 71.98 53.86 61.58
+1.31

78.58 69.58 73.76
+0.93

73.63 57.90 64.79
+0.22

76.67 70.12 73.24
+0.65

+ MATO 68.99 57.79 62.89 78.95 70.91 74.69 71.35 59.73 65.01 75.70 72.16 73.89

SLGM (ACL, 2023) 70.54 60.74 65.27
+0.15

78.84 72.70 75.64
+0.70

69.75 66.85 68.27
+0.70

75.86 75.76 75.80
+0.94

+ MATO 70.11 61.33 65.42 79.01 73.84 76.34 71.21 66.80 68.97 76.45 77.04 76.74

MiniConGTS (EMNLP, 2024) 66.82 60.68 63.61
+1.10

76.10 75.08 75.59
+0.64

66.50 63.86 65.15
+0.70

75.52 74.14 74.83
+0.38

+ MATO 66.00 63.46 64.71 74.38 78.20 76.23 65.37 66.34 65.85 74.83 75.61 75.21

Table 3: Experimental results(%). The score marked as bold means the better performance in pairwise comparison.

Figure 3: The relation of average VR and F1-score of
each model without MATO on LAP14

Figure 4: Statistics of the paired Wilcoxon signed-rank
test results on SLGM (Here red color is few and more
results of other six models are at Appendix A.3).

In order to analyze whether it is appropriate to
use the traditional reference-based metric (e.g., F1-
score) directly to evaluate the diversity capacity
of the model, we discuss the relation between VR
and F1-score. Fig. 3 shows the average VR and
F1-score of each model on LAP14, and it is not
difficult to find out that the VR does not always de-
crease with the growth of F1-score, which suggests
that it is inappropriate to use F1-score directly to
assess the capacity of the ASTE model.

4.4 RQ2: Diversity Capacity Comparison
between F1-score and VR

To ensure the effectiveness of our designed MRs,
evaluation for MRs is essential. Chen et al. (2021b)
introduced multiple mutants to MRC models to
evaluate MRs. They compared whether there was
a significant difference (i.e., better, similar, or
worse) between two VRs with the paired Wilcoxon
signed-rank test. One VR was calculated from the
output of the samples which the ASTE model with-
out any mutants can pass under F1-score before and
after the introduction of mutants. The other VR
was calculated from the output of the metamorpho-
sis data generated following the MRs before and
after the introduction of mutants. Inspired by this,
and considering that our baselines are transformer-
based models, we adopt the four mutants: Gaussian
Fuzzing (GF), Weight Shuffling (WS), Neuron Ef-
fect Blocking (NEB) and Neuron Switch (NS), and
details are in Appendix A.2.

We execute the evaluation experiments following
the methodology of Chen et al. (2021b) in both
2-tailed and 1-tailed manners to calculate p values,
at the σ level of 0.05. Thus, we have:

• In the 2-tailed test, VR calculated by a partic-
ular MR is similar (denoted as ←→) to F1-
score in revealing the mutants when p ≥ σ.

• In the 1-tailed test, VR calculated by a particu-
lar MR is better (denoted as ↑) than F1-score
in revealing the mutants when p < σ.

• Otherwise, VR calculated by a particular MR
is worse (denoted as ↓) than F1-score in re-
vealing the mutants.
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Dataset Model MR1-1 MR1-2 MR1-3 MR1-4 MR2-1 MR2-2 MR2-3 MR2-4 Aspect Opinion Sentiment

LAP14
SLGM 0.2503 0.1549 0.2866 0.4110 0.3273 0.3371 0.2548 0.6186 0.3199 0.3305 0.3678

+MATO 0.2029 0.1240 0.2242 0.3821 0.2832 0.2657 0.1843 0.6244 0.2685 0.2868 0.3387

RES14
SLGM 0.1807 0.1318 0.2838 0.2798 0.2423 0.2216 0.1855 0.5392 0.2479 0.2603 0.3087

+MATO 0.1384 0.0973 0.1922 0.2413 0.1804 0.1618 0.1241 0.5581 0.1845 0.2162 0.2722

RES15
SLGM 0.2274 0.1125 0.3148 0.3943 0.3435 0.2356 0.2247 0.4214 0.3193 0.2758 0.3108

+MATO 0.1906 0.0650 0.2740 0.3549 0.3056 0.1933 0.1661 0.4201 0.2752 0.2377 0.2785

RES16
SLGM 0.1632 0.1004 0.2526 0.3075 0.2604 0.1903 0.1739 0.5988 0.2486 0.2552 0.3148

+MATO 0.1236 0.0838 0.1787 0.2332 0.1896 0.1503 0.1326 0.6029 0.1835 0.2150 0.2747

Table 4: The MT results (i.e., VRs) on SLGM (other six models see Appendix A.4). The value of VR ranges from 0
to 1, with smaller values indicating a greater capacity facing the inter-triplet and intra-triplet diverse expression.
The score marked as bold means the better performance in pairwise comparison.

No. Input SLGM Output Violate ? SLGM+MATO Output Violate ?

(1) Works well, and I am extremely happy to be back to an apple OS. (OS, happy, POS)
Yes

(OS, happy, POS)
No

(2) Works badly, and I am extremely happy to be back to an apple OS. (OS, happy, NEU) (OS, happy, POS)

(3) The sound is nice and loud; I do n’t have any problems with hearing anything. (sound, nice, POS)
Yes

(sound, nice, POS)
No

(4) The sound is scrummy and loud; I do n’t have any problems with hearing anything. (sound, scrummy, NEG) (sound, scrummy, POS)

Table 5: Case study for the target triplets "(OS, happy, POS)" and "(sound, nice, POS)" when SLGM faces
inter-triplet and intra-triplet diverse expression, respectively. The underlined parts indicate the distinctions.

Figure 5: MATO reduces the VR magnitudes of all MRs
on LAP for SLGM

The paired Wilcoxon signed-rank test results are
in the Appendix A.3. Taking the test on SLGM
as an example, as shown in Fig. 4, the VRs calcu-
lated by MRs are better or similar in revealing the
mutants, indicating that the property-based valida-
tion method VR based the inter-triplet and intra-
triplet MRs are more effective than the traditional
reference-based validation method F1-score.

4.5 RQ3: Diversity Capacity Gain from
MATO

The MT results on SLGM are in Table 4 and the
MT results on the others are in the appendix A.4.

To start with, we can find that SLGM’s VRs of
for four datasets on MRs except MR1-2 is higher
than 0.2, which indicates that there is still much
room for improvement in the capacity of SLGM.

We can find that the performance of these models
varies in facing inter-triplet and intra-triplet diverse
expression. For example, the VRs of SLGM in
MR1-2 are all below 0.2 while the VRs of SLGM in
MR2-4 are all above 0.4 in Table 4. This suggests
that there is capacity difference on SLGM when
facing inter-triplet and intra-triplet diversity.

Next, we can enhance the capacity of different
dimensions of the ASTE model significantly by
introducing diversity-aware loss. Take SLGM as
an example on LAP14, as shown in Fig. 5, we can
find that MATO significantly reduces the VR of
MR1-1, MR1-2, MR1-3, MR2-1, MR2-2 and MR2-
3 (all reduced by more than 10%). This suggests
that MATO is able to keep the extraction process
more capacity by having the ASTE model focus
more on triplet representations. The introduction
of MATO slightly increases the VR of MR2-4 on
LAP14 (from 0.6186 to 0.6244, VR% below 1%),
which does not affect the capacity of SLGM.

4.6 Case Study

We perform a case study on the response of SLGM
when facing inter-triplet and intra-triplet diverse
expression for the target triplet. From the results
of (1) and (2) in Table 5, SLGM suffers from im-
pacts outside the target triplet when solving the
ASTE task, whereas our MATO enables the model
to be shielded from the impacts when extracting
the target triplet. From the results of (3) and (4) in
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No. Input GPT-4o Violate ? Qwen2.5 Violate ? SLGM+MATO Violate ?

(1)
The sound is nice and loud; I do n’t have any

problems with hearing anything.
(sound, nice, POS)

No

(sound, nice, POS)

No

(sound, nice, POS)

No

(2)
The sound is scrummy and loud; I do n’t have

any problems with hearing anything.
(sound, scrummy, POS) (sound, scrummy, POS) (sound, scrummy, POS)

(3) It ’s fast, light, and simple to use. (use, fast, POS)
Yes

(use, fast, POS)
Yes

(use, fast, POS)
No

(4) It ’s fast, light, and [UNK] to use. (It, fast, POS) (It, fast, POS) (use, fast, POS)

Table 6: Case study for the target triplets "(sound, nice, POS)" and "(use, light, POS)" when GPT-4o and Qwen2.5
face inter-triplet and intra-triplet diverse expression, respectively. The underlined parts indicate the distinctions.

Table 5, SLGM is not able to perceive the change
of the target triplet and reacts incorrectly, while our
MATO is able to enhance the model’s ability to
perceive the target triplet.

As shown in Table 6, we perform a case study on
two representative large language models (LLMs).
From the results of (1) and (2) in Table 6, the two
LLMs can easily determine the sentiment polarity
of "scrummy" based on its rich knowledge stor-
age. However, from the results of (3) and (4) in
Table 6, after masking some semantic information
with "[UNK]", the two LLMs both fail to identify
the aspect "use", and mistakes "It " as aspect, while
SLGM+MATO can still identify aspect correctly.

5 Conclusions

In this paper, we design metamorphic relations to
evaluate the capacity of seven SOTA ASTE models
by metamorphic testing and find that most of the
models have weak capacity in dealing with diverse
expression in sentiment analysis. Meanwhile, we
propose a model-agnostic diversity-aware method
to improve ASTE model inference consistent with
expected results facing triplet diversity. Experi-
ments show that our MATO can significantly en-
hance the diversity capacity of ASTE models.

Limitations

Although the MRs we design are able to expose
problems regarding the diversity capacity of the
ASTE model and MATO can improve the capac-
ity, there are some limitations. On the one hand,
the MRs we design only introduce diversity into
triplets, while there are much diversity in the real
world, such as changes in sentence structure and
typos etc., and we will follow up with deeper work
in this problem. On the other hand, from the re-
sults of MT, we can find that MATO does not bring
considerable enhancement on MR2-4, and our sub-
sequent work will explore how to make the model

able to capture such intra-triplet sentiment inver-
sion changes.
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A Appendix

A.1 The baselines
The seven baselines are described as follows.

MiniConGTS: It improves and utilizes pre-
trained representations by integrating a minimalist
tagging scheme and a novel token-level contrastive
learning strategy (Sun et al., 2024).

SLGM: It proposes a sequence labeling en-
hanced generative model to enhance the mutual
informative clues between aspect and opinion
terms (Zhou and Qian, 2023).

STAGE: It proposes span tagging and greedy
inference to extract sentiment triplets in span-level,
where each span might consist of multiple words
and play different roles simultaneously (Liang
et al., 2023).

SimSTAR: It proposes a span-based solution
with segment tagging and dual extractors to ad-
dress inadequate representation of the information
through previous tagging schemes and insufficient
usage of all available sentiment data (Li et al.,
2023).

BDTF: It proposes boundary-driven table-filling,
which represents each triplet as a relation region in
the 2D table and transforms the ASTE task into de-
tection and classification of relation regions (Zhang
et al., 2022).

COM-MRC: It proposes a novel context-
masked MRC framework to address the failure
of the MRC-based methods when facing multiple
aspect terms, due to the interference from other
aspect terms (Zhai et al., 2022).

EMCGCN: It proposes an enhanced multi-
channel graph convolutional network model to fully
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utilize the relations between words (Chen et al.,
2022b).

A.2 The mutants

The four mutants are described as follows.
Gaussian Fuzzing: Weights of the neurons act

as the key to control the decision logic of the neu-
ral networks. This mutant fuzzes the values of the
weights for all the target neurons to change the con-
nection importance they represent through adding
Gaussian noise.

Weight Shuffling: The output of a neuron is
usually determined by the neurons in the previous
layer through the connections with weights. This
mutant shuffles the weights of randomly picked
target neurons to disturb their connections with
their previous layers.

Neuron Effect Blocking: Every neuron in a neu-
ral network contributes to its final decision to some
extent. This operator removes the influence of ran-
domly picked target neurons to the final decision
by resetting their connection weights of the next
layers to zeros to block the propagation of their
effects.

Neuron Switch: Different neurons in one neural
network layer usually play different roles on the
connected neurons in the next layer. This operator
switches the weights of two neurons in the same
layer to exchange their effects for next layer.

A.3 The statistics of the paired Wilcoxon
signed-rank test results for the other six
models

On the whole, the data generated by the inter-
triplet and intra-triplet MRs we design are better
than the original data in revealing the mutants (i.e.,
Gaussian Fuzzing, Weight Shuffling, Neuron Effect
Blocking and Neuron Switch) as shown in Fig. 6.
GF, WS, NEB and NS denote Gaussian Fuzzing,
Weight Shuffling, Neuron Effect Blocking and Neu-
ron Switch respectively. Better conclusion shows
that the data generated by the corresponding MR is
better than the original data in detecting the corre-
sponding mutant, which indicates that the designed
MR is effective in analyzing the model diversity
capacity.

There are two significant findings. To begin with,
most of the 2-tailed p values in the "better" test are
0.0020, and most of the 1-tailed p values are 0.0010
(both extreme borderline values), indicating that
the generated data are significantly better than the

original data in revealing the mutants (Corder and
Foreman, 2014).

Furthermore, we find that almost all of the
"worse" test results occur in Weight Shuffling and
Neuron Effect Blocking, which may be due to the
fact that these seven transformer-based models are
the deep neural network.

A.4 The MT results for the other six models
The MT results for the other six models are in Ta-
ble 7. It can be observed that the introduction of
our MATO is able to significantly reduce the VRs
of the six models on all except MR2-4, as well as
significantly reduce the VRs on aspect term, opin-
ion term and sentiment polarity, which suggests
that our MATO is able to enhance their capacity.

1660



Figure 6: Statistics of the paired Wilcoxon signed-rank test results on other six models
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No. Dataset Model MR1-1 MR1-2 MR1-3 MR1-4 MR2-1 MR2-2 MR2-3 MR2-4 Aspect Opinion Sentiment

1

LAP14
MiniConGTS 0.3782 0.2519 0.5505 0.6525 0.5123 0.4854 0.3734 0.6263 0.5222 0.4740 0.5203

+MATO 0.3161 0.1865 0.5284 0.6173 0.5039 0.4528 0.3510 0.5667 0.5002 0.4313 0.4747

RES14
MiniConGTS 0.3764 0.1963 0.5944 0.6539 0.5889 0.4261 0.4012 0.5593 0.5596 0.4582 0.5010

+MATO 0.3494 0.2066 0.5561 0.6304 0.5650 0.4037 0.3792 0.5267 0.5327 0.4360 0.4800

RES15
MiniConGTS 0.3656 0.1958 0.6828 0.7345 0.6061 0.4223 0.3558 0.4299 0.5948 0.4552 0.5108

+MATO 0.3449 0.1966 0.6509 0.6982 0.5496 0.3781 0.3193 0.4148 0.5545 0.4290 0.4901

RES16
MiniConGTS 0.3634 0.2104 0.6046 0.6536 0.5542 0.4282 0.3884 0.5988 0.5502 0.4639 0.5169

+MATO 0.3372 0.1842 0.5792 0.6207 0.5182 0.4040 0.3626 0.5829 0.5202 0.4387 0.4918

2

LAP14
STAGE 0.2772 0.1606 0.3476 0.5341 0.3943 0.3819 0.2652 0.6006 0.3853 0.3667 0.4107

+MATO 0.2446 0.1396 0.3397 0.4668 0.3264 0.3433 0.2356 0.6224 0.3421 0.3417 0.3921

RES14
STAGE 0.2087 0.1456 0.2899 0.3573 0.2849 0.2365 0.1944 0.5465 0.2816 0.2827 0.3348

+MATO 0.1754 0.1256 0.2569 0.3146 0.2542 0.2081 0.1726 0.5501 0.2496 0.2576 0.3118

RES15
STAGE 0.2445 0.1073 0.4204 0.5330 0.4548 0.3260 0.2822 0.4332 0.4226 0.3352 0.3735

+MATO 0.2286 0.0936 0.3766 0.4784 0.3966 0.3026 0.2541 0.4283 0.3764 0.3089 0.3442

RES16
STAGE 0.1744 0.1066 0.2946 0.3586 0.2701 0.2172 0.1848 0.5865 0.2770 0.2747 0.3366

+MATO 0.1644 0.0991 0.2766 0.3284 0.2542 0.2113 0.1891 0.5906 0.2621 0.2656 0.3237

3

LAP14
SimSTAR 0.3090 0.1878 0.3650 0.5565 0.4043 0.4116 0.2756 0.6282 0.4004 0.3905 0.4344

+MATO 0.2575 0.1485 0.3156 0.4786 0.3380 0.3693 0.2572 0.6128 0.3474 0.3485 0.3889

RES14
SimSTAR 0.1847 0.1325 0.2618 0.3227 0.2527 0.2064 0.1678 0.5538 0.2513 0.2614 0.3177

+MATO 0.1745 0.1281 0.2467 0.3016 0.2367 0.1943 0.1603 0.5511 0.2363 0.2509 0.3069

RES15
SimSTAR 0.2460 0.1318 0.4068 0.5037 0.3833 0.3008 0.2213 0.4136 0.3788 0.3177 0.3640

+MATO 0.2415 0.1170 0.3579 0.4638 0.3859 0.2738 0.2232 0.4283 0.3577 0.3008 0.3418

RES16
SimSTAR 0.1626 0.1066 0.2616 0.3167 0.2521 0.1896 0.1688 0.5988 0.2498 0.2578 0.3209

+MATO 0.1570 0.0960 0.2699 0.2872 0.2250 0.1723 0.1420 0.6070 0.2310 0.2473 0.3150

4

LAP14
BDTF 0.3690 0.1807 0.4913 0.6497 0.4776 0.4848 0.3502 0.6263 0.4922 0.4503 0.4870

+MATO 0.3549 0.1759 0.4800 0.6368 0.4831 0.4694 0.3474 0.6224 0.4868 0.4410 0.4788

RES14
BDTF 0.3934 0.2621 0.5737 0.6749 0.6066 0.4406 0.4134 0.5593 0.5672 0.4739 0.5175

+MATO 0.3762 0.2483 0.5478 0.6541 0.5831 0.4223 0.3925 0.5599 0.5444 0.4573 0.5025

RES15
BDTF 0.3704 0.1805 0.5597 0.7244 0.5818 0.4039 0.3290 0.4185 0.5487 0.4266 0.4708

+MATO 0.3574 0.1716 0.5517 0.6936 0.5531 0.3705 0.2909 0.4085 0.5223 0.4063 0.4564

RES16
BDTF 0.3896 0.2142 0.5685 0.6891 0.5854 0.4757 0.4283 0.5988 0.5678 0.4806 0.5177

+MATO 0.3646 0.1992 0.5554 0.6567 0.5574 0.4560 0.3994 0.5988 0.5422 0.4614 0.5025

5

LAP14
COM-MRC 0.2986 0.1647 0.4284 0.5874 0.5139 0.4245 0.3702 0.6013 0.4750 0.4107 0.4455

+MATO 0.2795 0.1520 0.3834 0.5289 0.4059 0.3771 0.2716 0.6032 0.3975 0.3708 0.4169

RES14
COM-MRC 0.1919 0.1425 0.3004 0.3453 0.2939 0.2231 0.2016 0.5508 0.2853 0.2794 0.3348

+MATO 0.1728 0.1168 0.2749 0.3159 0.2538 0.2020 0.1697 0.5520 0.2536 0.2577 0.3149

RES15
COM-MRC 0.2388 0.1080 0.4700 0.5067 0.4148 0.2883 0.2283 0.4348 0.4050 0.3250 0.3799

+MATO 0.2152 0.1030 0.3698 0.4543 0.3920 0.2561 0.2182 0.4103 0.3586 0.2896 0.3344

RES16
COM-MRC 0.1483 0.0892 0.2719 0.3369 0.2778 0.2045 0.1862 0.5865 0.2682 0.2605 0.3211

+MATO 0.1433 0.0780 0.2366 0.2919 0.2361 0.1791 0.1551 0.5865 0.2299 0.2386 0.2983

6

LAP14
EMCGCN 0.2396 0.1300 0.3054 0.4627 0.3356 0.3421 0.2380 0.5949 0.3354 0.3304 0.3733

+MATO 0.2249 0.1263 0.3025 0.4315 0.3256 0.3073 0.2163 0.6083 0.3190 0.3167 0.3672

RES14
EMCGCN 0.1493 0.1117 0.2286 0.2683 0.2158 0.1610 0.1381 0.5511 0.2127 0.2297 0.2899

+MATO 0.1577 0.1160 0.2195 0.2666 0.2079 0.1567 0.1298 0.5474 0.2060 0.2277 0.2874

RES15
EMCGCN 0.2222 0.1051 0.3546 0.4382 0.3672 0.2447 0.1951 0.4332 0.3388 0.2847 0.3328

+MATO 0.1914 0.0981 0.3598 0.4042 0.3490 0.2195 0.1895 0.4234 0.3256 0.2694 0.3214

RES16
EMCGCN 0.2167 0.1284 0.3103 0.3868 0.3292 0.2303 0.2217 0.5865 0.3120 0.2972 0.3530

+MATO 0.1572 0.0963 0.2395 0.2966 0.2396 0.1713 0.1514 0.5906 0.2318 0.2433 0.3058

Table 7: The MT results of other six models
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