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Abstract

Vowels are primarily characterized by tongue
position. Humans have discovered these fea-
tures of vowel articulation through their own
experience and explicit objective observation
such as using MRI. With this knowledge and
our experience, we can explain and understand
the relationship between tongue positions and
vowels, and this knowledge is helpful for lan-
guage learners to learn pronunciation. Since
language models (LMs) are trained on a large
amount of data that includes linguistic and
medical fields, our preliminary studies indicate
that an LM is able to explain the pronuncia-
tion mechanisms of vowels. However, it is
unclear whether multi-modal LMs, such as vi-
sion LMs, align textual information with visual
information. One question arises: do LMs as-
sociate real tongue positions with vowel artic-
ulation? In this study, we created video and
image datasets from the existing real-time MRI
dataset and investigated whether LMs can un-
derstand vowel articulation based on tongue
positions using vision-based information. Our
findings suggest that LMs exhibit potential
for understanding vowels and tongue positions
when reference examples are provided while
they have difficulties without them. Our code
for dataset building is available on GitHub 1.

1 Introduction

In phonetics, vowels are distinguished and de-
scribed by focusing on tongue positions and lip
shape. Beginning with Jones (1917), humans have
explained vowels based on tongue positions during
articulation. Human speakers are aware of speech
mechanisms with training through introspection of
experience and observations of visual information
(e.g., MRI). For example, when pronouncing the
English word “image,” speakers can perceive and
explain that the initial sound is produced by posi-
tioning the tongue forward and high in the mouth.

1https://github.com/sj-h4/tonguescape-builder

When pronouncing /i/, 
I place my tongue as 
shown in the image

When pronouncing /i/, 
I place my tongue as 
shown in the image ?

Figure 1: An illustration of our research question.

Moreover, speakers can relatively recognize vow-
els, using a certain vowel as a reference point. This
is the method Jones (1917) employed to introduce
the cardinal vowels, demonstrating their grasp of
tongue positions through introspection and objec-
tive observations, and to link this understanding
to the concept of vowel articulation. This knowl-
edge helps explain to language learners how to
pronounce and describe linguistic phenomena.

Language Models (LMs) are trained on a large
amount of data that includes linguistic and med-
ical fields. Our preliminary studies showed that
LMs know vowel pronunciation and the correla-
tion between vowels and tongue positions as tex-
tual knowledge (see Section 2). To determine if
LMs comprehend articulation relative to the articu-
latory organs, multi-modal information is essential.
Multi-modal LMs capture not only textual infor-
mation, but also images, videos, and audio (Zhou
et al., 2023; Li et al., 2024; Gemini Team, 2024).
Moreover, their application is expanding to more
specialized fields, such as clinical tasks involv-
ing the detection and explanation of diseases from
clinical images such as CT and MRI (Yan et al.,
2024; Pal and Sankarasubbu, 2024). However, it is
known that the alignment among modalities, such
as images and text, is often weak in multi-modal
LMs, and it remains unclear whether these models
truly understand such interactions (Cao et al., 2022;
Kawaharazuka et al., 2024; Hayashi et al., 2024).
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Figure 2: Examples of our dataset and what human speakers do when predicting vowels from real-time MRI
and what we did when we constructed our dataset to replicate it. VowelVideo simulates the process of humans
predicting vowels from entire pronunciation. VowelImage simulates the observation of a moment of articulation.
VowelImageWithGuide simulates the examination of tongue positions within the oral cavity.

Do LMs understand tongue positions through
knowledge and objective observation and asso-
ciate them with the concept of vowel articulation?
We ask this research question as illustrated in Fig-
ure 1. If LMs can align the visual information of
articulatory processes with textual descriptions of
phonetics, they could contribute to further anal-
ysis of linguistic phenomena, such as vowel har-
mony, and assist in pronunciation education. They
could also aid in making speech understanding
more grounded in human physiology, contributing
to a more embodied multi-modal understanding.

In this study, we curated and annotated videos
and images of tongue positions from real-time MRI
of articulatory movements as illustrated in Figure 2.
We examined whether LMs can truly understand
vowel articulation based on tongue positions in a
visual/video question-answering format. We found
that some models seem to have some ability to pre-
dict tongue positions and vowels when provided
with images of each vowel in a few-shot setting,
while the other models have difficulties in recog-
nizing them either in zero-shot, few-shot, and fine-
tuning settings.

2 Backgound and Related Works

2.1 Tongue and Vowels in Linguistics

In phonetics, vowels are described by the height
and blackness of the body of the tongue in the oral
cavity. The tongue positions are measured by us-
ing relative positions in the vowel categories rather
than absolute positions (Jones, 1917; Knight and
Setter, 2021). These characteristics describe sev-
eral linguistic phenomena (Knight and Setter, 2021)
and are also adopted in the International Phonetic
Alphabet (IPA) (International PhoneticAssociation,
1999). For example, when pronouncing the vowel
/i/ in Figure 1, the tongue is moved forward and

raised higher, creating a narrow space in the ante-
rior region of the oral cavity.

The five-vowel system (/a/, /i/, /u/, /e/, /o/) is one
of the most common vowel inventories in world
languages (Kubozono, 2015), and this size of a
vowel inventory accounts for more than half of
languages (Maddieson, 2013). These vowels are
characterized by tongue height and backness: high-
mid-low and front-back 2. The tongue positions
of each vowel are /a/ (low-back), /i/ (high-front),
/u/ (high-back), /e/ (mid-front), and /o/ (mid-back),
as shown in Figure 3. The tongue position for the
vowel /o/ is intermediate between /a/ and /u/.

Speakers perceive and understand tongue posi-
tions during speech, allowing them to pronounce a
vowel when instructed to say it between /a/ and /e/
with training. This also enables us to explain lin-
guistic phenomena related to tongue positions, such
as vowel harmony (Bybee, 2015). However, study-
ing these phenomena sometimes requires introduc-
ing new but consistent principles, as introduced by
Ko (2012), Joseph (2018), and Wang (2020). If
LMs can understand the articulation, they can pro-
vide researchers with valuable insights into these
underlying principles.

2.2 Tongue and Vowels in Language Models
Some studies focus on vowels and tongue-related
information. Steuer et al. (2023) found that
phoneme-level LMs capture vowel harmony, a lin-
guistic phenomenon related to tongue position. Cot-
terell and Eisner (2017) predicted vowel inventories
by introducing models based on stochastic point
processes. They used formant information to iden-
tify vowels influenced by tongue position. Cotterell
and Eisner (2018) also used formant information to

2Vowel height can be explained as closeness. In this study,
we use high-mid-low because preliminary studies show that
LMs explain vowels using height.
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Query There are five vowels: /a/ /i/ /u/ /e/ /o/. Please explain briefly how to pronounce the given vowel. : i

Answer The vowel /i/ is pronounced as a high front unrounded vowel. To produce this sound, follow these steps:

1. Position your tongue high in your mouth, close to the roof but not touching it.
2. Move your tongue towards the front of your mouth.
3. Keep your lips unrounded and slightly spread, as if you are smiling.
4. Allow your vocal cords to vibrate as you produce the sound.

This vowel sound is similar to the “ee” in the English word “see.”

Table 1: An example of an explanation of a vowel /i/ by GPT-4o. LMs are able to explain how to pronounce a
vowel, focusing on tongue positions and lip shape. The explanation is correct linguistically, and speakers are able to
pronounce the vowel by following this instruction.

Query There are five vowels: /a/ /i/ /u/ /e/ /o/. You can predict which vowel is pronounced by reading the position of the
tongue. First, read the tongue height and backness. Use this information to predict which vowel is pronounced in
the given information. Respond with either a, i, u, e, or o as your answer. : high, front

Answer i

Table 2: An example of a prediction of a vowel from the given tongue position by GPT-4o. LMs appear to have the
capability of predicting vowels from textual information by using their textual knowledge.

/i/

/a/

/o//e/

/u/High

Low

Front Back

Figure 3: An example of vowel chart in five-vowel
system.

describe phonetic-related linguistic typology by a
generative probability model. However, since these
studies focus on textual information, it remains un-
clear whether multi-modal LMs can achieve an em-
bodied understanding of the relationship between
tongue positions and vowels with aligned textual
and visual information.

2.3 Application of Understanding Tongue
Positions

Tongue positions are also used to improve speech
synthesis systems. Abeysinghe et al. (2022) found
that the vowel space of a speech synthesis model
changes during fine-tuning and that it can be vi-
sualized. Wu et al. (2023) introduced a speech
synthesis method that uses MRI-based features and
demonstrates that MRI provides useful features for
synthesizing speech. If LMs possess the capabil-
ity to comprehend the relationship between tongue
position and articulation, it could further advance

these studies, contributing to the synthesis of fluent
or intentionally disfluent speech as human speech.

2.4 Preliminary Studies

We investigated whether LMs know the relation-
ship between vowels and tongue positions using
GPT-4o (OpenAI, 2024). Table 1 demonstrates
that they should be able to coherently explain the
relationship between tongue position and vowel
articulation like human speakers. Furthermore, Ta-
ble 2 shows that they are also capable of predicting
a vowel from the given tongue position. We used
each tongue position of the five vowels as a query,
and GPT-4o answered the correct vowel. Therefore,
these preliminary studies show that LMs know how
to pronounce vowels.

3 Dataset: Tonguescape

When predicting vowels from a real-time MRI,
speakers will (1) detect the moment of vowel ar-
ticulation in the video, (2) observe the tongue and
determine its position, and then (3) select a vowel.
We propose a QA dataset for vowel prediction from
real-time MRI recordings of tongue movements
during vowel articulation comprising three steps,
with each step corresponding to these stages of
human perception as shown in Figure 2. We cu-
rated and annotated videos and images of tongue
positions from the Real-time MRI Articulatory
Movement Database (rtMRIDB) (Maekawa, 2022),
which comprises real-time MRI recordings of ar-
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ticulatory movements of Japanese phonemes. In
this study, we focused on the Japanese five-vowel
system (/a/, /i/, /u/, /e/, /o/) where each vowel has
distinct articulatory features. Details of our dataset
are described in Appendix A.

3.1 Real-time MRI Articulatory Movement
Datasets

The Real-time MRI Articulatory Movement
Database (rtMRIDB) (Maekawa, 2022) is the
dataset that contains videos recording the articula-
tions of Japanese phonemes. The dataset consists
of utterances by 22 Japanese speakers with physio-
logical variation. It captures the lateral view of the
speech production process including tongue and
pharyngeal movements. Each video consists of se-
quential MRIs and aligned audio files. The data
were recorded with 14 frame-per-second (FPS) or
27 FPS. Each video starts with the resting position,
which is in non-speaking states, and ends with the
resting position.

Japanese dataset is suitable for our study because
it is distinguished primarily based on tongue posi-
tion and one of the most common vowel invento-
ries (Kubozono, 2015).

3.2 Tonguescape

VowelVideo We extracted 120 silent real-time
MRI videos from the rtMRIDB where the five ba-
sic isolated vowels (/a/, /i/, /u/, /e/, /o/) were pro-
nounced. We split 5 samples (one for each vowel)
as training data, another 5 samples as validation
data, and the remaining 110 samples as test data.
Since the tongue position during vowel articulation
is not significantly affected by the pronunciation
of preceding consonants, we also curated 1,653
videos where a vowel follows a consonant, such as
in /ka/ and /na/, as additional training data, totaling
1,658 videos. The test and validation data consist
of videos for isolated vowel pronunciations. The
videos capture the entire articulation process, start-
ing from a non-speaking state, progressing through
the articulation, and returning to a non-speaking
state. Each video is around 1 or 2 seconds long and
consists of about 14 or 27 frames per second.

VowelImage As shown in Figure 2, we manually
selected one of the most characteristic and repre-
sentative frames from the video of the five basic
isolated vowels in the VowelVideo dataset. This
allows us to separate the process of selecting repre-
sentative moments from the video and estimating

There are five vowels: /a/ /i/ /u/ 
/e/ /o/. You can predict which 

vowel is pronounced by reading 
the position of the tongue. First, 

read the tongue height and

i

backness. Use this information to predict which 
vowel is pronounced in the given image. Respond 
with either a, i, u, e, or o as your answer.

Question

Answer

Figure 4: Example of the Instruction. We instruct LMs
to predict the vowels from an inputted video/image.
We evaluate whether the predicted vowels matched the
vowels corresponding to the data used for an input. We
specify the vowels (/a/, /i/, /u/, /e/, and /o/). Our prompt
is designed as Hu and Levy’s (2023).

vowels from the characteristics of vowel images.

VowelImageWithGuide Some studies show that
adding markers as guides in images improves the
performance for some tasks (Shtedritski et al.,
2023). Inspired by this, we added guide markers
to all images in the VowelImage dataset to facili-
tate the identification of tongue position within the
oral cavity, similar to human perception, as shown
in Figure 2. We drew ellipses as simple guides
within the oral cavity in the images to encompass
the palate, the body of the tongue during low vowel
articulation, the tip of the tongue during front vowel
articulation, and the root of the tongue during back
vowel articulation. These guides were automati-
cally drawn at similar coordinates across all images
in the dataset and were manually checked.

3.3 Dataset Difficulty

Comparing the difficulty levels of VowelVideo and
VowelImage is challenging. While VowelImage
allows for vowel prediction by observing and inter-
preting tongue position at a moment of articulation,
it lacks the relative tongue movement information
available in VowelVideo.

4 Experiment

4.1 Experimental Settings

We investigate the ability of LMs to predict vowels
from input video/images using our dataset. Fig-
ure 4 shows the prompt and example of our experi-

12608



The tongue is 
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mouth.
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u

e

a i u

oThe tongue is at 
the same height as 
/u/, but positioned 

more anterior to /u/.

When pronouncing 
/i/, I place my tongue 

as shown in the 
image

i
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ii

(a) (b) (c)

Figure 5: An overview of our methods. The “Absolute Position” (a) is an actual tongue position in an oral cavity.
The “Relative Position” (b, c) is a tongue position at the moment of pronouncing a vowel regarding the position of
other vowels.

ments3. As baselines, we employed CLIP (Radford
et al., 2021) and fine-tuned CLIP (FT) with the
VowelImage training set. CLIP is an image en-
coder model, and we used it to encode MRI images
and classify them into five vowels. The human
baselines were created by a linguist for all datasets.
We use accuracy as an evaluation metric.

VowelVideo We used Gemini 1.5 Pro (Gemini
Team, 2024), GPT-4o (OpenAI, 2024), LLaVA-
NeXT-Interleave (Li et al., 2024), Phi-3.5-vision-
instruct, Qwen2-VL-Instruct (Wang et al., 2024),
and VideoLLaMA2 (Cheng et al., 2024). We also
fine-tuned VideoLLaMA2 (FT) using the Vow-
elVideo training set. For detailed experimental
settings, please refer to Appendix B.1.

VowelImage and VowelImageWithGuide We
used Gemini 1.5 Pro (Gemini Team, 2024), GPT-
4o (OpenAI, 2024), LLaVA-NeXT-Interleave (Li
et al., 2024), Phi-3.5-vision-instruct, VideoL-
LaMA2 (Cheng et al., 2024), LLaVA-Med (Li
et al., 2023), Qwen-VL-Chat (Bai et al., 2023),
and Qwen2-VL-Instruct (Wang et al., 2024). We
also fine-tuned Qwen-VL-Chat (FT) using the Vow-
elImage training set. We conducted evaluations
in 0-shot, 1-shot, and 5-shot settings. Note that
we did not apply the 1-shot and 5-shot settings to
VieoLLaMA2 and LLaVA-Med because they are
not suitable for providing a question-answer ex-

3We used one or two NVIDIA RTX A6000 or NVIDIA
A100 or four NVIDIA GeForce RTX 3090.

ample with an image. For detailed experimental
settings, please refer to Appendix B.2.

4.2 Few-shot Examples as Relative Positions
of the Tongue: Bridging Linguistics

We divide our research question into those concern-
ing absolute position and those concerning relative
position. The differences between these two posi-
tions are shown in Figure 5. This is based on the
fact that vowels can be distinguished by consider-
ing the relative position of the tongue (Jones, 1917;
Knight and Setter, 2021). “Absolute position” of
Figure 5(a) means an actual tongue position in an
oral cavity when pronouncing a vowel. “Relative
position” of Figure 5(b, c) is a tongue position in
an oral cavity when pronouncing a vowel regard-
ing a position when pronouncing another vowel.
There are two types of “relative position” in this
context: relative position in terms of comparison
with another vowel and relative position arising
from physiological variations between speakers.
Dividing it in such a way allows us to gain a more
detailed understanding of the capabilities of LMs.
Understanding absolute positions means they know
the relationship between tongue positions and vow-
els and can read tongue positions in an image and
associate that with a specific vowel. Understand-
ing relative positions means they understand the
relationship between each vowel and can apply the
knowledge of phonetics to predict vowels. We can
evaluate the capability of recognizing relative posi-
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aAnswer iAnswer uAnswer eAnswer oAnswer

Figure 6: Five-shot examples of VowelImage.

tions by using few-shot examples.

Relative Position in One-shot Example An un-
derstanding of the relationship between relative
tongue position and vowels is evaluated by exam-
ining the one-shot performance of LMs. Speakers
can specify vowels from an MRI by referencing
their own pronunciation experience and knowledge
of tongue positions during speech, including infor-
mation learned from MRIs and illustrations. How-
ever, LMs appear to have little experience and in-
formation about tongue positions in the oral cavity.
Providing reference information about the tongue
position of a vowel through a one-shot example is
one of the approaches to bridge this gap, as shown
in Figure 5(b). If there is an image that indicates a
vowel, the LMs can determine the tongue position
from the given image using it.

Relative Position in Five-shot Examples The
capability of understanding the relationship be-
tween tongue positions and vowels is evaluated
by examining the few-shot performance of LMs or
the performance of fine-tuned models. The five-
shot examples are shown in Figure 6. The number
of examples is the same number of types of vow-
els used in this study. If there are more than five
images that contain each of the five vowels, they
can determine which vowel the given image is clos-
est to as in Figure 5(c). This approach enables us
to simulate the process by which human speakers
predict vowels.

Relative Positions in Video We can observe rel-
ative positions in VowelVideo by looking at the
tongue movements as mentioned in Section 3. LMs
handle a video as sequences of frames in the video.
In contrast to a few-shot example, this allows us
to determine tongue positions relatively at the mo-
ment of articulation within an utterance.

4.3 Results

VowelVideo Table 3 shows that the models strug-
gle to predict vowels from videos correctly. Vide-
oLLaMA2 (FT) performs better than the original
model, but the accuracy is still close to the chance
rate. This suggests that they are not well aligned for
vowel information with video or sequential frames.

VowelImage As shown in Table 3, the accuracy
of each model is approximately 20% in the zero-
shot setting. The accuracy improves in the one-shot
and five-shot settings, particularly with Qwen2-VL-
72B-Instruct. This suggests that while some LMs
can infer vowels by considering tongue positions
relatively, they lack an understanding of absolute
positions similar to that of linguists.

VowelImageWithGuide Table 3 shows that GPT-
4o and Qwen2-VL-72B-Instruct performed much
better in five-shot settings compared to VowelIm-
age datasets. However, other LMs still face chal-
lenges in predicting vowels from images with
guides. This suggests that LMs struggle to infer
vowels when grounding in vision information.

5 Discussions and Analysis

We will focus on important aspects in the following
sections and defer more discussions to Appendix C.

5.1 Comparison of each Dataset

VowelVideo and VowelImage Table 3 shows
that it is easier for some models and a human to
predict vowels from videos than from images in the
zero-shot setting. The video data contains not only
the moment of articulation but also states before
and after the articulation. For example, we can look
at relative positions during pronunciations. This is
a similar situation when using VowelImage in one-
shot or five-shot settings. Considering that some
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VowelVideo VowelImage VowelImageWithGuide

zero-shot one-shot five-shot zero-shot one-shot five-shot

Random Choice 20.00 20.00 20.00 20.00 20.00 20.00 20.00
CLIP – 20.91 – – 24.55 – –
CLIP (FT) – 24.55 – – 29.09 – –
Human 71.55 61.82 – – 62.73 – –

GPT-4o 24.55 20.91 24.27 37.27 12.73 20.18 40.00
Gemini 1.5 Pro 18.18 16.36 21.27 34.55 20.00 22.73 34.55
LLaVA-NeXT-Interleave 21.82 20.00 20.00 22.73 20.00 20.36 21.82
Phi-3.5-vision-instruct 20.91 20.00 20.18 18.18 19.09 20.18 20.00
VideoLLaMA2 16.36 20.00 – – 17.28 – –
VideoLLaMA2 (FT) 25.45 20.00 – – 20.00 – –
LLaVA-Med – 11.82 – – 8.18 – –
Qwen-VL-Chat – 20.00 20.00 21.82 20.00 20.00 20.00
Qwen-VL-Chat (FT) – 20.00 20.00 21.82 20.00 20.00 19.09
Qwen2-VL-7B-Instruct 22.73 20.00 20.55 33.64 18.19 20.91 30.91
Qwen2-VL-72B-Instruct 20.91 13.63 21.45 35.45 17.27 22.00 40.00

Table 3: Vowel prediction accuracy (%) of different models in three settings. The accuracy is calculated by using
the number of correct predictions and the number of test data.
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Figure 7: Confusion matrices of results using VowelImage and GPT-4o in the one-shot setting. Each matrix
represents a confusion matrix obtained when the vowel images at the top of the figures are given as one-shot
examples.

models have similar accuracies for VowelVideo
and VowelImage in one-shot or five-shot settings,
this information helps to predict vowels, although
it could be noise. The fact that some models and
a human predict vowels better from videos than
from images means that they use such information
effectively. Furthermore, these results demonstrate
that these models can consider relative positions.

VowelImage and VowelImageWithGuide In Ta-
ble 3, the guideline results in poor performance
in both zero-shot and one-shot settings when us-
ing GPT-4o, VideoLLaMA2, LLaVA-Med, and
Qwen2-VL-7B-Instruct while the performances im-
prove or remain unchanged when using the other
models. In the five-shot setting, it also has the
same effect when using LLaVA-NeXT-Interleave,
Qwen-VL-Chat, Qwen-VL-Chat (FT), and Qwen2-
VL-7B-Instruct. This suggests that the guideline
is probably noise for some models and is a helpful
guide for others.

5.2 CLIP, LM and Tongue Positions

VowelImage and VowelImageWithGuide in Table 3,
it is evident that most models in the zero-shot set-
ting perform worse than CLIP. However, in the
five-shot setting, some models outperform the fine-
tuned CLIP. The underperformance of LMs com-
pared to CLIP in the zero-shot setting suggests that
LMs have difficulty predicting vowels based on
absolute positions and understanding the associa-
tion between vowels and tongue positioning in their
training techniques. In contrast, the five-shot en-
hancement implies that they can consider relative
positions. An analysis of the performance relative
to CLIP reveals the ability of LMs to understand
absolute positions and relative positions.

5.3 Case Study: Analysis of the Results

We have analyzed the results of all LMs and high-
lighted two: a proprietary LM (GPT-4o) and an
open LM (Qwen2-VL-72B-Instruct). The results
of the other models can be found in Appendix C.
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Figure 8: Confusion matrices of results of VowelImage
and VowelImageWithGuide in GPT-4o in the five-shot
setting.

5.3.1 Results of GPT-4o
Zero-shot Setting The zero-shot setting results
suggest that it is challenging for the model to read
absolute tongue positions and predict vowels.

One-shot Setting As shown in Figure 7, the one-
shot setting results show that the given vowel was
not reproduced in the output regardless of which
vowel (/a/, /i/, /u/, /e/, or /o/) was provided as an
example. This suggests two key points: understand-
ing of tongue position variability and interpretation
of one-shot setting accuracy. The model does not
seem to comprehend that there is some degree of
freedom in tongue positioning during articulation.
If it did, it would likely estimate the one-shot vowel
to be the one with a tongue position closest to the
provided image. This effectively reduces the task
from a five-choice problem to a four-choice prob-
lem. Thus, the improvement in accuracy can be
attributed to the reduction in choices rather than the
model’s understanding of relative tongue positions.
This result suggests that it struggles to recognize
relative tongue positions given only one image.

Five-shot Setting Figure 8 illustrates that the
five-shot setting results show that the output is
mainly /a / or /i /. The model tended to output
the high vowel /i/ when input images that indicate
higher vowels (/i/, /u/) were provided, while it fre-
quently outputs the low vowel /a/ for others. The
model seems to be able to recognize tongue height.

5.3.2 Results of Qwen2-VL-72B-Instruct
Zero-shot Setting Table 3 indicates that this
model performs worse than the baseline and ran-
dom choice. One of the reasons is that it did not
predict any vowel for some images. Although this
leads to poor performance, it means that the model
predicted vowels considering the given informa-
tion. However, even given these facts, the model

struggles to predict vowels.

One-shot Setting In contrast to the results of
GPT-4o shown in Figure 7, in most cases, this
model predicted the vowel given as a one-shot ex-
ample as shown in Figure 9. However, the model
provided a vowel that has the same backness prop-
erty when given /e/ and /o/ as a one-shot example.
This reveals that the model considers the positions
of the tongue.

Five-shot Setting Figure 10 illustrates that most
of the predictions are vowels /a/, /i/, and /u/. In
numerous instances, the model identified the vowel
as /e/ and /o/ as /a/. This misclassification could be
attributed to the fact that both /e/ and /o/, like /a/,
are categorized as non-high vowels.

5.4 Analysis of Fine-tuning Failuer
We have fine-tuned VideoLLaMA2 and Qwen-VL-
Chat, but they show limited improvement or de-
creased performance. The limited improvement
is caused because the training dataset is small, al-
though the loss decreased for each model. The
decreased performance could be caused because
this model outputs one of two vowels after fine-
tuning while outputting the same vowel before fine-
tuning. The fine-tuning adds variation to the output
of this model, which may have resulted in lower
performance for VowelImageWithGuide.

5.5 Do LMs Consider Tongue Position?
In the one-shot setting, GPT-4o tended to infer
mid or low vowels for most images of mid vowels
while Qwen2-VL-72b-Instruct inferred high vow-
els as illustrated in Figures 7 and 9. Figures 8
and 10 illustrate that, in the five-shot setting, both
GPT-4o and Qwen2-VL-72b-Instruct inferred /a/
for most images of mid vowels. These findings
clearly demonstrate that the models consistently
predict vowels when analyzing images of mid vow-
els /e/ and /o/ in each setting.

5.6 Do LMs Detect Tongue Positions?
Table 4 shows the results of predicting tongue
height and backness both directly from images and
by converting the estimated vowels to tongue posi-
tions, using GPT-4o and Qwen2-VL-72B-Instruct
in the five-shot setting. These results show that
while the model is capable of predicting vowels
from some images, it still struggles to predict
tongue positions accurately. These results indicate
that LMs can consider tongue positions relatively.
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Figure 9: Confusion matrices of results using VowelImage and Qwen2-VL-72B-Instruct in the one-shot setting.

VowelImage VowelImageWithGuide

Height and Backness Height Backness Height and Backness Height Backness

Random Choice 16.67 33.33 50.00 16.67 33.33 50.00

GPT-4o (directly) 12.73 30.00 52.73 24.55 43.64 66.36
GPT-4o (vowel) 37.27 46.36 50.90 40.00 42.73 47.27
Qwen2-VL-72B-Instruct (directly) 20.91 46.36 43.64 21.82 46.36 44.55
Qwen2-VL-72B-Instruct (vowel) 35.45 40.00 67.27 40.00 46.36 65.45

Table 4: Tongue height and backness prediction accuracies (%) of GPT-4o and Qwen2-VL-72B-Instruct in a
five-shot setting. The column named “Height and Backness” shows the accuracy that both “Height” and “Backness”
are predicted correctly. GPT-4o (vowel) and Qwen2-VL-72B-Instruct (vowel) mean height and backness converted
from predicted vowels in the five-shot setting. For example, they are “high” and “front” if /i/ is predicted. The
definitions of the tongue position for each vowel are in Section 2.
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Figure 10: Confusion matrices of results of VowelImage
and VowelImageWithGuide in Qwen2-VL-72b-Instruct
in the five-shot setting.

6 Conclusion: Do LMs Associate Tongue
Positions with Vowel Articulation?

We investigated the capability of LMs to under-
stand the relationship between tongue positions
and vowels to address our research question.

As shown in Table 2, LMs appear to understand
the relationship between the positions of the tongue
and the vowels. However, the results of the zero-
shot setting reveal that they have difficulty deter-
mining the tongue positions from a given image, as
mentioned in Section 5.2. The results of fine-tuned
models also demonstrate the challenge of learning
the relationship through objective observation. It
can be posited that LMs appear to lack comprehen-
sion of tongue positions, as can be deduced from

empirical knowledge and objective observation.
We have also discussed in Sections 5.1, 5.2,

and 5.5 that some LMs can consider relative posi-
tions to predict vowels. These findings reveal that
the LMs predict vowels with respect to other pairs
of tongue positions and vowels while it is challeng-
ing to predict unseen vowels as shown in the results
of the one-shot setting. We can conclude that LMs,
to a certain extent, associate tongue positions with
the concept of vowel articulation.

In conclusion, our findings indicate whether
LMs can comprehend the vowel articulation that
linguists have long sought to decode. While LMs
faced challenges in our experiments, the perfor-
mance of LMs can be improved like that of lin-
guists when given examples. We not only hope
these findings will apply to large-scale linguistic
analysis, speech synthesis, and educational fields
but also wish for further research of languages.

7 Limitations

Multi-modal Language Models While our ex-
periments were conducted using a limited set of
LMs, there are few models capable of processing
videos or multiple images simultaneously. Given
this context, our research can be considered com-
prehensive and a reasonable selection within the
current state.

12613



Generality of Dataset We investigated the per-
formance of LMs using the Japanese five-vowel
system, which is relatively easy to predict due to
their distinct features. As humans universally pos-
sess the same speech organs and share the capac-
ity for pronunciation, we can generalize findings
from Japanese data to human pronunciation more
broadly. Although there are many languages that
have more or fewer than five vowel phonemes, we
chose the five-vowel system for the following rea-
sons: (1) a system with a small number of vowels
would be easier to predict correctly, (2) classifica-
tion of vowels in a larger vowel inventory solely
based on MRI images could be partly an ambigu-
ous task even for humans, and (3) the five-vowel
system is one of the most common vowel inven-
tories, and this size of a vowel inventory accounts
for more than half of languages (Maddieson, 2013).
Although there are languages with a more complex
vowel inventory than Japanese, the fact that models
struggle even with relatively simple Japanese vow-
els suggests that using Japanese data as a first step
is also a reasonable approach. We intend to address
languages with more complex vowel systems once
the current challenges have been resolved.

Dataset Publicity The source dataset “Real-time
MRI Articulatory Movement Database - Version
1 (rtMRIDB)” is licensed for research purposes
only and does not allow sharing of derivatives or
adaptations.

Performance improving We evaluated the per-
formance of LMs using prompts. There is room
for improving the performance by some methods,
e.g., chain-of-thought. However, we aim to intro-
duce a novel task and the baselines. Consequently,
incorporating strategies to enhance the efficacy of
this task lies outside the boundaries of our study.
On the other hand, our findings that suggest one
method, specifically few-shot prompting, outper-
formed others, indicate its potential effectiveness
for this task.

8 Ethical Considerations

License of Source Dataset In this study, we have
used the Real-time MRI Articulatory Movement
Database (rtMRIDB) (Maekawa, 2022) to create
our dataset. This dataset is licensed only for re-
search purposes. Since we have been permitted to
use this dataset by the providing institution, there
are no licensing issues.

Identifying Infomation and Offensive Content
Our datasets are created from the Real-time MRI
Articulatory Movement Database. We have con-
firmed that the original dataset does not contain
any personally identifying information or offensive
content, thus our dataset also does not contain them.
We have also confirmed that no inappropriate con-
tent is included in our dataset.

Use of AI Assistants In this study, we have used
GitHub Copilot as an AI assistant for coding sup-
port.
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A Dataset Details

Dataset Statictics Tabale 5 shows the dataset
statics. Each of the datasets, VowelImage and Vow-
elImageWithGuide, consists of 120 videos or im-
ages. From these, we selected 5 samples (one for
each vowel) as training data, another 5 samples
as development data, and the remaining 110 sam-
ples as test data. The training and development
data are from a single participant each, and these
participants’ data are not included in the test data.
VowelVideo consists of 1773 videos. The devel-
opment and test data are equivalent to those used
in VowelImage and VowelImageWithGuide. The
other videos are the test dataset. Each test data
contains five vowels equally.

B Details of the Experimental Settings

B.1 Prediction from Real-time MRI (video)

We used GPT-4o, Gemini 1.5 Pro (Gemini Team,
2024), LLaVA-NeXT-Interleave (Li et al., 2024),
Phi-3.5-vision-instruct, VideoLLaMA2 (Cheng
et al., 2024), and Qwen2-VL-Instruct (Wang et al.,
2024). We also fine-tuned VideoLLaMA2 (FT)
using VowelVideo training data with LoRA (Hu
et al., 2022). Hyperparameters of fine-tuning are in
Table 7. The details of these models are in Table 6.

train dev test total

VowelVideo 1,658 5 110 1,773
VowelImage 5 5 110 120
VowelImagewithGuide 5 5 110 120

Table 5: Dataset statics. In VowelVideo, a vowel of the
answer is considered to calculate.

We make both videos that are recorded at 14
frame-per-second (FPS) and videos recorded at
27 FPS 14 times slower to input to Gemini 1.5
Pro because a video is sampled at 1 FPS (Gem-
ini Team, 2024). Only 16 frames are used in each
video in VideoLLaMA2 due to its limitation, while
all are used in GPT-4o, LLaVA-NeXT-Interleave,
and Phi-3.5-vision-instruct. When using Qwen2-
VL-Instruct, we handle the input video in 14 FPS
regardless of its FPS.

We use only a vowel in the output as a predicted
vowel for evaluations when we use fine-tuned Vide-
oLLaMA2 if the output is a consonant-vowel pair.

B.2 Prediction from one MRI (image)

We used GPT-4o, Gemini 1.5 Pro (Gemini Team,
2024), LLaVA-NeXT-Interleave (Li et al., 2024),
Phi-3.5-vision-instruct, VideoLLaMA2 (Cheng
et al., 2024), LLaVA-Med (Li et al., 2023), Qwen-
VL-Chat (Bai et al., 2023), and Qwen2-VL-
Instruct (Wang et al., 2024). We used CLIP (Rad-
ford et al., 2021) for the baseline. We also
fine-tuned Qwen-VL-Chat (FT) using VowelIm-
age training data with LoRA (Hu et al., 2022) and
CLIP (FT) using VowelIamge training data. The
hyperparameters of fine-tuning are in Table 7. The
details of the models are in Table 6. Especially,
GPT-4o is one of the most suitable models for our
experiments because it performs well in clinical
tasks overall although it struggles in several tasks,
e.g., position description. We converted images
into videos when using VideoLLaMA2 because
it accepts only video files. We conducted exper-
iments in three settings, zero-shot, one-shot, and
five-shot, to see the capability of handling abso-
lute positions and relative positions. The reasons
why we use few-shot examples to explore relative
positions are explained in Section 4.2.

Zero-shot Setting Each image in the dataset is
used as an input to LMs. When we use GPT-4o and
Gemini 1.5 Pro, we specify a JSON schema, such
as {"vowel": str} , to output only the predicted
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Model Model ID

CLIP openai/clip-vit-large-patch14
GPT-4o gpt-4o-2024-05-13
Gemini 1.5 Pro models/gemini-1.5-pro-001
LLaVA-NeXT-Interleave lmms-lab/llava-next-interleave-qwen-7b-dpo
Phi-3.5-vision-instruct microsoft/Phi-3.5-vision-instruct
VideoLLaMA2 DAMO-NLP-SG/VideoLLaMA2-7B
Qwen-VL-Chat Qwen/Qwen-VL-Chat
Qwen-VL-7B-Instruct Qwen/Qwen2-VL-7B-Instruct
Qwen-VL-72B-Instruct Qwen/Qwen2-VL-72B-Instruct-GPTQ-Int4

Table 6: The model details. Model ID is a Huggingface Repository ID or a code defined in OpenAI API and Gemini
API.

Hyperparameter CLIP VideoLLaMA2 Qwen-VL-Chat

batch size 5 4 1
epoch 40 1 40
learning rate 1e-4 2e-5 1e-5
seed 42 42 42
warmup ratio 0.0 0.03 0.1

Table 7: Hyperparameters to fine-tune CLIP, VideoLLaMA2 and Qwen-VL-Chat

vowel. If the output is not only vowels, we extract
the first vowel surrounded by “ ” or / / and consider
it the predicted vowel. We treat the model as having
refused to answer the question if there is no vowel
surrounded by them.

One-shot Setting One of the training data is se-
lected as a one-shot example. For each training
data, we use all test data and evaluate the accuracy.
We give the models the one-shot example using
a conversation template. We use the conversation
template defined in each model except Gemini 1.5
Pro. In Gemini 1.5 Pro, we add an example in
the prompt. We do not apply this setting to Vide-
oLLaMA2 and LLaVA-Med because they are not
suitable for providing a question-answer example
with an image.

Five-shot Setting All of the training data are
used as five-shot examples such as in Figure 6.
This means an image corresponding to each of the
five vowels is used. We give the models the five-
shot examples using a conversation template. We
also use the conversation template defined in each
model except Gemini 1.5 Pro. In Gemini 1.5 Pro,
we add examples in the prompt. The order of the
five-shot examples is the same in all models: /a/
image, /i/ image, /u/ image, /e/ image, and /o/ im-
age. We do not apply this setting to VideoLLaMA2
and LLaVA-Med because they are not suitable for
providing question-answer examples with images.

C Additional Discussions

C.1 Analysis of the Results of GPT-4o (Detail)

Tabel 8 and Table 9 show the proportions of in-
ferred vowels for each expected vowel when using
GPT-4o. The results demonstrate that the model
infrequently classified the image as the vowel pro-
vided as a one-shot example, suggesting that the
model considers the position similarity strictly.

C.2 Analysis of the Results of Gemini 1.5 Pro

As shown in Table 3, this model and Figure 11,
this model predicts vowels more correctly in the
five-shot setting than in the zero-shot setting. In
the one-shot setting, the performance of VowelIm-
age demonstrates an improvement compared to the
zero-shot setting, with this model achieving the
highest accuracy for VowelImageWithGuide. Nev-
ertheless, the extent of this improvement is limited,
and the overall performance remains comparable
to that of random choice.

C.3 Analysis of the Results of
LLaVA-NeXT-Interleave

Table 3 shows that the accuracy of this model is im-
proved by providing five-shot examples. However,
Fiugure 12 shows that it gave the same output for
almost all inputs, and struggles to predict vowels
even when provided several examples.
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One-shot Expected Predicted Vowel
exemple Vowel /a/ /i/ /u/ /e/ /o/

/a/

/a/ 0.00 0.50 0.00 0.45 0.05
/i/ 0.00 0.55 0.00 0.36 0.09
/u/ 0.00 0.45 0.00 0.27 0.27
/e/ 0.00 0.50 0.00 0.27 0.23
/o/ 0.00 0.45 0.00 0.45 0.09

/i/

/a/ 0.45 0.00 0.50 0.05 0.00
/i/ 0.14 0.00 0.68 0.18 0.00
/u/ 0.09 0.00 0.82 0.05 0.05
/e/ 0.05 0.00 0.86 0.09 0.00
/o/ 0.09 0.00 0.73 0.09 0.09

/u/

/a/ 0.41 0.23 0.00 0.00 0.36
/i/ 0.32 0.14 0.00 0.00 0.55
/u/ 0.05 0.23 0.00 0.00 0.73
/e/ 0.05 0.14 0.00 0.00 0.82
/o/ 0.14 0.05 0.00 0.00 0.82

/e/

/a/ 0.59 0.09 0.05 0.00 0.27
/i/ 0.45 0.09 0.09 0.00 0.36
/u/ 0.45 0.23 0.09 0.00 0.23
/e/ 0.50 0.09 0.00 0.00 0.41
/o/ 0.27 0.05 0.05 0.00 0.64

/o/

/a/ 0.95 0.05 0.00 0.00 0.00
/i/ 0.86 0.09 0.05 0.00 0.00
/u/ 0.82 0.18 0.00 0.00 0.00
/e/ 1.00 0.00 0.00 0.00 0.00
/o/ 0.95 0.05 0.00 0.00 0.00

Table 8: The proportions of vowels output for each
expected vowel using VowelImage and GPT-4o with
the one-shot setting. Each table shows the results of
each one-shot example. The bold numbers indicate the
percentage of the vowel used as a one-shot example.
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Figure 11: Confusion matrices of results using Vowe-
lImage in Gemini 1.5 Pro in the zero-shot and five-shot
settings.

C.4 Analysis of Results of
Phi-3.5-vision-instruct

Table 3 shows that only this model performed
worse when using VowelImageWithGuide than
when using VowelImage. Figure 13 illustrates that
the two matrices show similar distributions and
that the reason for the difference in performance
is likely attributable to an error. The performance
in the five-shot setting for VowelImage is also de-
creased. This indicates that this model struggles to

One-shot Expected Predicted Vowel
exemple Vowel /a/ /i/ /u/ /e/ /o/

/a/

/a/ 0.00 0.00 0.00 0.91 0.09
/i/ 0.00 0.00 0.00 0.59 0.41
/u/ 0.00 0.09 0.00 0.55 0.36
/e/ 0.00 0.05 0.00 0.64 0.32
/o/ 0.00 0.14 0.00 0.55 0.32

/i/

/a/ 0.00 0.00 0.14 0.86 0.00
/i/ 0.00 0.00 0.00 1.00 0.00
/u/ 0.00 0.00 0.05 0.95 0.05
/e/ 0.00 0.00 0.05 0.95 0.00
/o/ 0.05 0.00 0.23 0.68 0.05

/u/

/a/ 0.00 0.00 0.00 0.05 0.95
/i/ 0.00 0.05 0.00 0.00 0.95
/u/ 0.00 0.09 0.00 0.09 0.82
/e/ 0.00 0.00 0.00 0.00 1.00
/o/ 0.00 0.00 0.00 0.05 0.95

/e/

/a/ 0.05 0.27 0.00 0.00 0.68
/i/ 0.00 0.18 0.00 0.00 0.82
/u/ 0.00 0.23 0.09 0.00 0.77
/e/ 0.09 0.18 0.00 0.05 0.68
/o/ 0.00 0.14 0.00 0.00 0.86

/o/

/a/ 0.32 0.00 0.05 0.64 0.00
/i/ 0.64 0.00 0.05 0.32 0.00
/u/ 0.45 0.00 0.00 0.55 0.00
/e/ 0.59 0.00 0.05 0.36 0.00
/o/ 0.36 0.00 0.05 0.59 0.00

Table 9: The propositions of predicted vowels for each
expected vowel using VowelImageGuide and GPT-4o
with the one-shot setting. Each table shows the results
of each one-shot example. The bold numbers indicate
the percentage of the vowel used as a one-shot example.
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Figure 12: Confusion matrices of results using Vowe-
lImage and LLaVA-NeXT-Interleave in the zero-shot
and five-shot settings.

compare multiple images.

C.5 Analysis of the Results of VideoLLaMA2

Table 3 and Figure 14 show that the performance
using VowelVideo was improved by fine-tuning.
However, this model still struggles to predict vow-
els from images. The reason for this suggests that
either the model was fine-tuned by a video record-
ing of the entire utterance, or that this model may
not be good at handling videos with only one frame.
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Figure 13: Confusion matrices of results of VowelImage
and VowelImageWithGuide in Phi-3.5-vision-instruct
in the five-shot setting.
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Figure 14: A Confusion matrix of results using Vow-
elVideo and VideoLLaMA2 (FT).
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Figure 15: Confusion matrices of results using VowelIm-
age and VowelImageWithGuide in LLaVA-Med in the
zero-shot setting. The rejected outputs were removed
from this heatmap.

C.6 Analysis of the Results of LLaVA-Med

LLaVA-Med is trained with clinical data but strug-
gles to predict vowels, as shown in Table 3 and
Figure 15. One of the reasons for this low accuracy
is that it rejected to answer. For example, it rejected
to answer for 48 samples when using VowelImage.
This means they tried to predict vowels for 62 sam-
ples and The percentage of correct answers to the
number of attempted answers is 20.97 %. When
using VowelImageWithGuide in the zero-shot set-
ting, the predicted vowels are distributed compared
with that in other models in the zero-shot setting.
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Figure 16: Confusion matrices of results using VowelIm-
age and Qwen-VL-Chat in the zero-shot and five-shot
settings.
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Figure 17: Confusion matrices of results of VowelImage
and VowelImageWithGuide in Qwen2-VL-7B-Instruct
in the five-shot setting.

C.7 Analysis of the Results of Qwen-VL-Chat
Table 3 shows that the accuracies of Qwen-VL-
Chat when using VowelImage and VowelImage-
WithGuide in both the zero-shot and one-shot set-
tings are the same as the chance rate. This is be-
cause they output the same vowel in those settings
(see Figure 16). The fine-tuned model, Qwen-VL-
Chat (FT), also performed with similar accuracies
while the loss decreased from 0.2144 to 0.1545.
One of the reasons why the performance of the
fine-tuned model remained could be the small num-
ber of training data.

C.8 Analysis of Results of
Qwen2-VL-7B-Instruct

Table 3 shows that the accuracy when using Vowe-
lImageWithGuide is worse than when using Vowe-
lImage. When using VowelImageWithGuide, this
model inferred the vowel as the low-back vowel
/a/ l for images that represent the non-high vowel
/e/ or /o/ in some instances, as shown in Figure 17,
causing the accuracy to decline. For the high vow-
els /i/ and /u/, the model predicted /i/. The results
demonstrate that this model can determine whether
the provided image represents a high vowel or not
both for VowelImage and VowelImageWithGuide.
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