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Abstract

Vision-Language Models (VLMs) have gained
prominence due to their success in solving com-
plex cross-modal tasks. However, the internal
mechanisms of VLMs, particularly the roles
of cross-attention and self-attention in multi-
modal integration, are not fully understood.
To address this gap, we introduce NOTICE,
a Gaussian-NOise-free Text-Image Corruption
and Evaluation pipeline for mechanistic inter-
pretability in VLMs. NOTICE introduces Se-
mantic Image Pairs (SIP) corruption, the first vi-
sual counterpart to Symmetric Token Replace-
ment (STR) for text. Through NOTICE, we
uncover a set of “universal attention heads” in
BLIP and LLaVA that consistently contribute
across different tasks and modalities. In BLIP,
cross-attention heads implement object detec-
tion, object suppression, and outlier suppres-
sion, whereas important self-attention heads in
LLaVA only perform outlier suppression. No-
tably, our findings reveal that cross-attention
heads perform image-grounding, while self-
attention in LLaVA heads do not, highlighting
key differences in how VLM architectures han-
dle multimodal learning*.

1 Introduction

Vision-Language Models (VLMs) have become
central to both computer vision and natural lan-
guage processing (NLP) due to their ability to
complete complex multimodal tasks like visual
recognition (Han et al., 2023; Menon and Vondrick,
2022), visual question answering (Liu et al., 2024;
Bai et al., 2023; Li et al., 2022, 2020), and im-
age captioning (Lu et al., 2019; Yang et al., 2023;
Zhang et al., 2021). Many foundational VLMs,
such as BLIP (Bootstrapping Language-Image Pre-
training) (Li et al., 2022), use cross-attention to

*Authorship order determined by coin flip.
*Code: https://github.com/wrudman/NOTICE/

capture interactions between modalities (Tan and
Bansal, 2019; Lu et al., 2019; Li et al., 2022),
while others, like LLaVA (Liu et al., 2024), suc-
cessfully use self-attention for multimodal integra-
tion. Despite recent works investigating the differ-
ences in cross-attention and self-attention in VLMs
(Ilinykh and Dobnik, 2022a; Parcalabescu et al.,
2020; Djamila-Romaissa et al., 2022), the specific
role of different attention heads in vision-language
is not fully understood, particularly in large VLMs
such as LLaVA (Yuksekgonul et al., 2022).

In NLP, mechanistic interpretability (MI) has
proven effective for unraveling the complex struc-
ture of LLMs by identifying pathways, or circuits,
that enable behaviors like logical reasoning and
indirect object identification (Hanna et al., 2023;
Wang et al., 2022). A core method in MI is causal
mediation analysis (CMA), which measures out-
put changes by intervening on inputs and tracking
effects. To apply CMA in Transformers, Meng
et al. (2023) use activation patching, which iden-
tifies key model components for a given task by
replacing the hidden states of a corrupt run with
those from a clean run. A “clean run” refers to
a standard forward pass on an input. A “corrupt”
run either alters the input by swapping input tokens
with semantically related tokens or applies Gaus-
sian noise to token embeddings so that the model
can no longer produce the correct answer from the
clean pass. While successful in NLP, mechanistic
interpretability methods are understudied in VLMs
due to the need for an effective semantic-based
corruption scheme for images.

Previous works applying activation patching to
VLMs only study BLIP, focus on Multi-Layer Per-
ceptron (MLP) layers in BLIP’s decoder, and apply
Gaussian noise to image embeddings to create cor-
rupt runs (Palit et al., 2023). However, multimodal
interaction occurs in BLIP’s image-grounded text
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Figure 1: NOTICE applied to SVO-Probes, MIT-States, and Facial Expression Recognition. NOTICE involves
creating Semantic Image Pairs for image corruption and Symmetric Token Replacement for text corruption.

encoder through the cross-attention layers, mean-
ing findings from Palit et al. (2023) do not provide
insights on how VLMs integrate modalities. Fur-
ther, recent works have shown that creating cor-
rupt runs by applying Gaussian noise to token em-
beddings can produce illusory results (Zhang and
Nanda, 2024). Zhang and Nanda (2024) advocate
for symmetric token replacement (STR) that swaps
tokens in a clean prompt with semantically related
tokens to create a corrupt run as it keeps the cor-
rupted run within distribution and provides more
reliable insights. Current approaches to image cor-
ruption lack an equivalent method to STR that does
not use Gaussian noise for image corruption, leav-
ing a gap in reliable multimodal analysis.

We propose Semantic Image Pairs (SIP) corrup-
tion, which leverages existing datasets to create
clean and corrupt images that vary by one seman-
tic property (Figure 1). For instance, in the SVO-
Probes dataset (Hendricks and Nematzadeh, 2021),
subject-verb-object triplets are already curated to
vary by just one element (e.g., ’puppy, lying, grass’
vs. ’goat, lying, grass’), allowing us to create
“clean” and “corrupt” image pairs from the existing
image labels (Figure 1 panel 1). SIP is not limited
to curated datasets and can be extended to any im-
age dataset with easily interchangeable attributes,
such as cars, shapes, animals, etc. Further, we show
in Section 4.1 that SIP corruption can be performed
using generative models to create corrupt images.

Our framework, NOTICE (Gaussian-NOise-free
Text-Image Corruption and Evaluation), is a mech-
anistic interpretability pipeline for VLMs. NO-
TICE uses our novel SIP method to corrupt images
and STR to corrupt text. Using NOTICE, we un-
cover “universal cross-attention heads” in BLIP
and “universal self-attention heads” in LLaVA that

consistently produce large patching effects across
all tasks. We show that universal cross-attention
heads implement human-interpretable functions
categorized into three classes: object detection, ob-
ject suppression, and outlier suppression. We find
that both self-attention and cross-attention heads
implement outlier suppression. However, only
cross-attention heads in BLIP perform the image-
grounding functions of object detection and object
suppression, highlighting key differences in how
VLM architectures handle multimodal learning.

2 Related Work

Multimodal Interpretability. Despite the suc-
cesses of VLMs, the role of attention in multimodal
integration remains under-studied (Xu et al., 2023).
Most works either design probing tasks to identify
what vision-language concepts models struggle to
capture (Shekhar et al., 2017a; Hendricks and Ne-
matzadeh, 2021; Lu et al., 2023) or assess whether
models rely more on one modality over the other
(Cao et al., 2020; Salin et al., 2022; Hessel and Lee,
2020). Probing tasks evaluate whether a model en-
codes a concept by training a linear classifier on its
hidden states. Salin et al. (2022) create visual, text,
and multimodal probing tasks to show that models
heavily rely on text priors and struggle with object,
size, and counting. Gradient-based methods ana-
lyze gradients to understand how changes in input
features influence outputs, assigning importance
scores to features and providing insights into the
decision-making process. Liang et al. (2023) use
second-order gradients, building on LIME (Ribeiro
et al., 2016) and Shapley values (Merrick and Taly,
2020), to disentangle cross-modal interactions and
determine how much each modality contributes
to decisions. While these works have provided
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insights into multimodal models, recent research
shows that 1) probing methods can produce mis-
leading results (Belinkov, 2022) and 2) gradient-
based methods for feature attributions can fail to
predict behavior (Bilodeau et al., 2024). Instead,
Giulianelli et al. (2021); Conneau et al. (2018)
demonstrate that causal approaches are more in-
formative than probing representations.

Multimodal models typically integrate their in-
puts through one of two main approaches: (1) early
fusion (Liu et al., 2024; Li et al., 2019), where
self-attention processes combined image patches
and text representations, or (2) cross-attention fu-
sion (Tan and Bansal, 2019; Lu et al., 2019), where
queries from one modality interact with represen-
tations from the other. (Frank et al., 2021) investi-
gate cross-modal integration using input ablation
techniques and conclude that self-attention mod-
els, such as VisualBERT, show less sensitivity to
missing visual input compared to cross-attention
models like ViLBERT, which exhibit more signifi-
cant reliance on cross-modal interactions.(Ilinykh
and Dobnik, 2022b) finds that vision-text cross-
attention learns visual grounding of noun phrases
into objects, while text-to-text attention captures
low-level syntactic word relations.(Parcalabescu
et al., 2020) probes dual-stream VLMs through
tasks like image-sentence alignment and counting,
revealing strong alignment performance but lim-
ited grounding of visual symbols, resulting in poor
counting capabilities. However, there has yet to
be a comprehensive study applying mechanistic in-
terpretability techniques to investigate how recent
architectures like BLIP and LLaVA 1) use attention
mechanisms to integrate multimodal information
and 2) determine the specific functions that atten-
tion heads in these models learn to perform.

Causal Mediation Analysis and Mechanis-
tic Interpretability. Causal mediation analysis
(CMA) uncovers how interventions in one part of
a system cause changes in another. Recent works
have adapted CMA to study language models by us-
ing activation patching (Meng et al., 2023) to iden-
tify causal pathways, or circuits, responsible for
certain behaviors in the model. Activation patch-
ing shows the indirect effect of a component on a
model’s output by corrupting key input tokens and
then restoring outputs by patching the internal mod-
ules from the clean run to the corrupted run. This
approach has revealed that attention heads in trans-
formers implement human-interpretable algorithms
for “greater than” tasks (Hanna et al., 2023), indi-

rect object identification (Wang et al., 2022), and
learning mathematical group operations (Chugh-
tai et al., 2023). Evidence suggests that models
implement similar circuits across various tasks, in-
dicating that studying a small set of computational
units may provide insights into model behavior
(Gould et al., 2023; Merullo et al., 2024). Although
works in mechanistic interpretability have provided
critical insights into LLMs, works applying acti-
vation patching to multimodal models have been
limited due to the absence of an effective semantic-
based method for image corruption. Given that
Zhang and Nanda (2024) demonstrate Gaussian
noise corruption can lead to “illusory” patching
results, a semantic-based corruption scheme for im-
ages is needed to apply causal mediation analysis
to VLMs. In this work, we introduce a semantic-
based image corruption method (SIP) and token
replacement (STR) for text, enabling meaningful
causal mediation analysis to reveal distinct roles
of self-attention and cross-attention in multimodal
models like BLIP and LLAVA, advancing our un-
derstanding of vision-language integration.

3 Methods

NOTICE: Overview The first step in activation
patching is developing a method to corrupt the in-
put, preventing the model from predicting the cor-
rect answer without causing representations to be
out-of-distribution. We propose the first semantic-
based dual corruption scheme for VLMs to enhance
understanding of each modality’s contribution to
VQA tasks. We assess the impact of corrupting in-
put text with symmetric token replacement (Wang
et al., 2022) and images using our novel Semantic
Image Pairs (SIP) framework.

Model Selection For our model selection, we
use LLaVA-1.5-7B (Vicuna base) (Liu et al., 2024)
and BLIP-VQA-Base (Li et al., 2022), chosen for
their relevance and alignment with recent inter-
pretability research. BLIP-VQA was included to
enable direct comparison with prior work apply-
ing activation patching to vision-language models
(Palit et al., 2023), facilitating a meaningful evalua-
tion of our corruption scheme (NOTICE) against
Gaussian-noise patching. In addition, we also fo-
cus on LLaVA-1.5 to align with more recent in-
terpretability studies, including (Luo et al., 2024),
(Neo et al., 2024), and (Jiang et al., 2024).

Text Corruption: Symmetric Token Replace-
ment. Corrupting text inputs with symmetric token
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Figure 2: Activation Patching using SIP corruption. The image of the puppy is the clean image, I , and the goat is
the corrupt image, I∗. Patching the correct answer token “puppy” at Ml(I, T ), from the clean image to the “puppy”
token at M(I∗, T ) creates the patched states M

′
(I∗, T ) shown as orange diamonds.

replacement (STR) swaps out the correct answer
token of a prompt with another similar token that
has the same length (Wang et al., 2022). For indi-
rect object identification, Wang et al. (2022) swap
the names of the indirect and direct objects with
randomly sampled names. The goal of STR is to
corrupt inputs so the language model cannot com-
plete the task correctly while avoiding Gaussian
noise corruption that pushes token embeddings off-
distribution. For our VQA tasks, we swap both
multiple-choice options in the input prompt with
two randomly sampled incorrect multiple-choice
options with the same tokenized length from a dif-
ferent sample in the dataset. Figure 1 illustrates
how STR alters the input text for a prompt.

Image Corruption: Semantic Image Pairs.
While STR is a widely used text corruption method,
extending semantic corruption to the vision domain
presents significant challenges as it requires a se-
mantically aligned image pair. To address this, we
propose SIP corruption, a visual corollary to STR,
which modifies only one semantic concept in an
image (see Figure 1). We implement SIP in three
diverse image-classification datasets: SVO-Probes
(Hendricks and Nematzadeh, 2021) (an extension
to FOIL it! (Shekhar et al., 2017b)), MIT States
(Isola et al., 2015), and Facial Expressions (Good-
fellow et al., 2013). While natural variation in back-
grounds can happen between semantic image pairs,
we select datasets where nouns, subjects, verbs, and
objects are known and can be controlled. The Fa-
cial Expressions dataset was curated to include only
black-and-white photos of faces expressing differ-
ent emotions. In MIT-States, object-state pairs are
known and can be used to maintain objects (e.g.,
“building”) while varying their states (e.g., “mod-
ern”). The SVO-Probes dataset is designed to vary
only one element (subject, verb, or object) at a
time (e.g., only varying “puppy” and “goat”, while
maintaining “grass” and “lying” constant, as seen
in Figure 1 panel 1). Thus, for each dataset, we col-

lect the known elements (emotions, objects/states,
subjects/verbs/objects) and create image pairs that
differ on that element. Our framework can be ex-
tended to any image dataset with clearly defined
attributes, such as cars, shapes, animals, etc., using
the class labels to find clean and corrupt pairs.

Previous works have shown vision transformers
can correctly identify objects in various contexts
regardless of the foreground or background (Vilas
et al., 2024). Since image encoders in multimodal
models, such as BLIP and LLaVA, are robust to
minor variations to the context of an object, only
the semantic contents of the image need to be con-
trolled to obtain reliable patching results (Vilas
et al., 2024). In contrast, masking pixels, adding
Gaussian noise to image patches, or replacing pix-
els would create unnatural images, leading to un-
reliable results. In Section 4.1, we demonstrate
the effectiveness of SIP corruption over Gaussian-
noise image corruption and experiment with using
generative models to create SIP.

NOTICE VQA Task Design. We adapt the
SVO-Probes, MIT States, and Facial Expressions
image-classification datasets into VQA tasks. We
prompt models to choose between a correct answer
that matches the image and an incorrect, seman-
tically different alternative, as seen in Figure 1.
For example, using the image-class labels “happy”
and “angry,” we create a VQA prompt: “Is this
person feeling happy or angry?”. For LLaVA, we
adapt the standard prompting format to ensure the
model selects one of the multiple choice options:
“USER: <image> [Prompt]. Answer with one word.
Assistant:”. While in SVO-Probes, each subject,
verb, or object comes with its own semantically
different counterpart, we constructed such pairs for
MIT-States and Facial Expression. In MIT-States,
we separated states into color, shape, and texture
and selected counterparts from the respective cate-
gories for each question. We grouped similar states
(e.g., “huge”, “large”) together and ensured that the
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Figure 3: Module-wise activation patching results for BLIP and LLaVA on “objects” from SVO-Probes. We visualize
the restoration probability after patching for MLP, self-attention, and cross-attention layers in the image-grounded
text-encoder. The y-axis denotes which token we patch, and the x-axis denotes which layer we patch.

selected counterpart would not be similar in mean-
ing to the correct answer (using cosine similarity
and word2vec word embeddings (Mikolov et al.,
2013)). Similarly, in the Facial Expressions dataset,
we grouped the seven emotions into positive, neg-
ative, and neutral and selected counterparts from
opposing emotions. We include more details on the
VQA design and the datasets in Appendix A and
Appendix B, respectively.

Activation Patching. Let M be a vision-
language model and Ml its hidden states at layer
l ∈ {0, 1, ..., n}. The forward pass on an im-
age (I) and text (T ) pair at layer l is denoted as
Ml(I, T ). We define I∗ as a corrupted image and
T ∗ as a corrupted text input. Note that we only
corrupt one modality at a time. In a forward pass
with I∗ and T , activation patching replaces the
hidden states of the corrupted run Ml(I

∗, T ) with
the clean run Ml(I, T ) to determine which com-
ponents have the most significant indirect effect
on the output. The hidden states at all subsequent
layers, M

′
j(I

∗, T ) for j ∈ {l+ 1, ..., n}, are called
patched states. In Figure 2, we provide an exam-
ple illustrating patching using SIP image corrup-
tion. The image of the puppy is the clean image, I ,
and the goat is I∗. Patching the correct answer to-
ken “puppy” at Ml(I, T ), from the clean image to
the “puppy” token at M(I∗, T ) creates the patched
states M

′
(I∗, T ) shown as orange diamonds in Fig-

ure 2.
Measuring Patching Effects. The most com-

mon ways of measuring patching effect are restora-
tion probability and logit difference. Let L∗ and L

′

denote the logits from the corrupted and patched
runs, and let τ, τ inc denote the correct/incorrect
multiple-choice answer. Logit difference measures
the indirect impact patching has on the model’s
logits. Let L(τ, τ inc) = Logit(τ)-Logit(τ inc). The
logit difference is defined as L

′
(τ, τ inc)-L∗(τ, τ inc).

Restoration probability measures the impact of
patching clean states into a corrupt run on predict-
ing the correct answer token: P ’(τ)-P ∗(τ).

4 Results

We begin our investigation by conducting module-
wise activation patching to understand the global
patterns of self-attention, cross-attention, and MLP
modules under both image and text corruption. We
demonstrate that SIP image corruption produces
results closely aligned with STR text corruption
and effectively highlights the role of middle-layer
MLPs, which have repeatedly proven crucial in a
wide range of tasks (Meng et al., 2023). In contrast,
Gaussian Noise image corruption only identifies
the final MLP layers as producing a significant
patching effect. Building on this, we use SIP to
perform a fine-grained analysis of cross-attention
heads in BLIP and self-attention heads in LLaVA,
the critical point of multimodal integration for each
model. As we identify the most significant cross-
attention heads in BLIP and most significant self-
attention heads in LLaVA, we categorize them into
three distinct functional roles, offering deeper in-
sights into their contributions and behaviors.

4.1 Module-wise Activation Patching
Module-wise activation patching reveals how dif-
ferent model components (i.e., attention blocks and
MLPs) of VLMs respond to image and text cor-
ruption, highlighting which layers and modules
(MLPs, self-attention, cross-attention) are most in-
fluential for successfully completing VQA tasks.
First, we compare the effects of STR and SIP on
BLIP and LLaVA, as shown in Figure 3 and Ap-
pendix F.2. Across all tasks, we observe: (1) MLP
patching reveals that image corruption emphasizes
the importance of middle layers, while text cor-
ruption primarily affects earlier to middle layers;
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Figure 4: Module-wise activation patching results for SIP, and Gaussian-Noise corruption on SVO-Probes on BLIP.
SIP corruption produces activation patterns that align with Stable Diffusion results and highlight the importance of
middle layers, while Gaussian noise fails to reveal meaningful attention layers, emphasizing the effectiveness of SIP
for probing vision-language models.

(2) Under text corruption, LLaVA’s self-attention
demonstrates strong localization, on the correct
object token in layer 0 and layer 21, similar to
the cross-attention localization on the correct an-
swer seen in BLIP at layer 3; (3) Under image
corruption, LLaVA’s self-attention attends away
from the correct answer token in layers 16-25; and
(4) LLaVA’s earlier layers identify the correct an-
swer token while in the later layers the emphasis
shift to the instruction token “Assistant:”.

We evaluate the effectiveness of SIP corruption
by comparing it with Gaussian-noise, the image
corruption technique used in previous work (Palit
et al., 2023). In addition, we explore semantic
image corruption using generative models, which
shows the NOTICE framework is generalizable
beyond curated datasets like SVO-Probes. Specif-
ically, we use in-painting Stable Diffusion (Rom-
bach et al., 2022) to perform semantic image cor-
ruption by generating “corrupted” versions of clean
images that only vary on one key semantic prop-
erty. For instance, generating an image of a man
sitting on a chair from an image of a man sitting
on sand. Figure 4 demonstrates the promise of
using generative models to implement SIP corrup-
tion since stable-diffusion module-wise patching
results are highly similar to SVO-Probes. Note
that generative models may occasionally introduce
undesirable image artifacts (e.g., adding extra fin-
gers to a hand) that we cannot control. We further
analyze this in Appendix D. While using Stable
Diffusion to create SIP shows promise for future

CMA applications, Gaussian noise proves unreli-
able. In both LLaVA and BLIP, MLP modules
highlight the importance of early and middle lay-
ers, while Gaussian noise only highlights the last
layer (see Figure 4 and Appendix F.1). Several
studies highlight the importance of middle layers
in transformers (Durrani et al., 2020; Meng et al.,
2023), and show that MLPs store syntactic infor-
mation and task-specific representations often peak
in middle layer MLPs (Durrani et al., 2020; He-
witt and Manning, 2019; Goldberg, 2019; Jawahar
et al., 2019). Additionally, self-attention patching
in SIP assigns the highest probability to the cor-
rect token, unlike Gaussian noise. SIP and STR
also display consistent activation patterns —long
horizontal regions in MLPs (aligning with (Meng
et al., 2023)) and vertical regions in self-attention
—whereas Gaussian Noise shows clear differences.
These findings suggest that SIP is a more effec-
tive tool for probing VLMs and identifying key
components and interactions.

4.2 Universal Attention Heads Exist Across
Corruption Schemes and Tasks

Following the module-wise analysis, we focus on
the attention heads, investigating their role in fa-
cilitating vision-language integration. We calcu-
late the logit difference for each cross-attention
head in BLIP and self-attention head in LLaVA
by analyzing the impact of patching the correct
answer across the SVO-Probes, MIT States, and
Facial Expressions datasets in BLIP and the “As-
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Figure 5: Logit difference demonstrating the impact of patching the correct answer for each LLaVA self-attention
head and BLIP cross-attention head on the SVO-Probes, MIT States, and the Facial Expressions datasets. Many key
attention heads overlap in importance across both modalities.

Model Vision Heads Multimodal Heads Text Heads
LLaVA L15.H5, L16.H18 L28.H7, L31.H27 L22.H16, L29.H19

L14.H4, L15.H8 L16.H24, L16.H24
L18.H26, L17.H0 L19.H15, L18.H30

L17.H22, L14.H28 L18.10, L21.H30
L19.H4, L15.H14

L17.H13, L20.H28
BLIP L5.H3 L3.H0 L0.H11

Table 1: Universal attention heads in LLaVA and BLIP,
identified as having consistently high logit differences
across tasks and modality corruptions. In LLaVA, most
critical self-attention heads serve multimodal or vision-
specific roles. In contrast, BLIP’s dual-stream design
results in distinct vision, text, and multimodal heads,
supporting more modular cross-modal integration.

sistant:” token in LLaVA . We perform activation
patching on the “Assistant:” token since Figure 3
demonstrates that patching the “Assistant:” cre-
ates the largest module-wise patching effect. See
Appendix G for more details, as well as for the
patching of the correct answer token in each self-
attention head in LLaVA. Figure 5 demonstrates
that, in BLIP, image corruption has a greater impact
on logit difference compared to text corruption in
SVO-Probes and MIT-States. Specifically, image
corruption results in up to 20% logit difference,
while text corruption causes a difference of 6%,
suggesting BLIP relies more on visual input than
text for predicting the correct answer. In LLaVA,
Figure 5 shows the logit difference is consistent
for both modalities. These results contrast with
previous findings that VLMs are more influenced
by textual priors (Salin et al., 2022). Despite the
difference in scale in BLIP, many critical attention
heads identified under text corruption are also cru-
cial when images are corrupted, with this overlap

persisting across tasks. To quantify the overlap be-
tween the two modalities’ corruptions and across
tasks, we identify three universal cross-attention
heads in BLIP (L0.H11, L3.H0, and L5.H3) and
seven universal multimodal self-attention heads in
LLaVA (L28.H2, L31.H27, L18.H10, L16.H24,
L21.H30, L19.H15, and L18.H30) where Lx.Hy
denotes layer x, head y.

Table 1 shows “universal attention heads”, which
we defined as consistently having a logit differ-
ence two standard deviations above the average
regardless of the task or the modality corruption.
In LLaVA, we find only find two“text only” heads;
a majority of important self-attention heads either
overlap with multimodal heads that are important
for both modalities or emerge under image corrup-
tion (“vision only” heads). This suggests visual
inputs still influence the prompt, even under text
corruption. We hypothesize this is due to LLaVA’s
early fusion, where image tokens are embedded
into the textual prompt. In contrast, BLIP has
exactly one vision, one text, and one multimodal
head, likely because its dual-stream cross-attention
design allows the model to fuse visual and tex-
tual information more effectively without requiring
multiple specialized heads for different modalities.
These findings highlight key differences in cross-
modal integration between the two models.

The presence of overlapping attention heads
when patching different modalities and tasks is
a novel discovery. Since cross-attention heads
in BLIP and self-attention heads in LLaVA inte-
grate vision and language, overlapping heads sug-
gest that vision and language convey similar infor-
mation to the VLM despite being distinct feature
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Figure 6: Universal cross-attention heads in BLIP implement object detection and object suppression. We visualize
the average of all attention heads compared to the universal heads performing each function.

spaces. This challenges the longstanding notion
that text is the dominant modality for VLMs. Addi-
tionally, the reuse of these components across tasks
offers insights into model behavior and model edit-
ing, enabling targeted improvements that enhance
performance, address bias, and better adapt the
model to new tasks.

4.3 Universal Attention Heads Perform
Distinct Functions

To better understand the role of universal attention
heads in multimodal integration, we visualize the
cross-attention patterns between the “correct an-
swer” text token and image patches in BLIP. For
LLaVA, we visualize self-attention patterns of uni-
versal multimodal self-attention heads from the
“Assistant:” token to image patches. We find that
universal cross-attention heads in BLIP fall into
three function classes: object detection, object sup-
pression, and outlier suppression, seen in Figure 6
whereas universal multimodal self-attention heads
in LLaVA primarily implement outlier suppression
seen in Figure 7.

Outliers in Attention Patterns. Similar to
Darcet et al. (2024), we find that cross-attention
patterns in BLIP and text-to-image self-attention
patterns in LLaVA are dominated by “outlier
features” with extremely high average attention
scores. These outliers appear in Figure 6 as non-
informative image patches with dark red scores.
Unlike in ViTs, where outliers are thought to ob-
scure interpretable features in vision attention, we

find attention functions reduce attention to these
outliers. In BLIP, this enables object detection by
linking text tokens to the relevant image patches.
Our finding that outliers play an important role
in VLM representations is similar to recent works
showing outliers in LLMs store task-specific infor-
mation (Rudman et al., 2023).

Object Detection. In BLIP, cross-attention layer
3, head 0 (L3.H0) implements object detection by
linking a text token with relevant image patches.
These heads associate physical objects in images
with the nouns in SVO-Probes and MIT States.
Notably, L3.H0 can segment images even when
the word does not explicitly appear in the image.
For example, in the Facial Expressions dataset,
L3.H0 implicitly associates the correct emotion
(e.g., “anger”) with the mouth region. L3.H0 is
the only universal cross-attention head identified
as “multimodal,” consistently demonstrating its im-
portance across all tasks, regardless of modality
corruption. Its ability to map text tokens to im-
age patches highlights its critical role in fusing
vision-language information and demonstrates its
true multimodal capabilities.

Object Suppression. Cross-attention head
L5.H3 in BLIP explicitly attends away from the im-
age patches associated with an input token and at-
tends strongly to the outlier cross-attention patches.
Object suppression cross-attention heads perform
the inverse of object detectors, as they explicitly
reduce attention to specific objects in an image.
In SVO-Probes, this amounts to attending away
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from subjects or objects, and in MIT-States, L5.H3
attends away from relevant portions of the image
that form the noun that is changing states. How-
ever, L5.H3 does not perform object suppression
in Facial Expressions. Instead, L5.H3 performs
the closely related function of outlier suppression.
L5.H3 in BLIP provides a rare example of an in-
terpretably polysemantic attention head that imple-
ments different interpretable functions depending
on the input (Gould et al., 2023).

Figure 7: Universal heads in BLIP and LLaVA perform
outlier suppression. We visualize the average of all
attention heads compared to the universal heads per-
forming outlier suppression.

Outlier Suppression. Outlier suppression heads
reduce attention to high-probability image patches
and distribute attention uniformly across remaining
patches. All universal multimodal attention heads
in LLaVA implement outlier suppression. In BLIP,
L0.H11 implements outlier suppression across all
tasks in this paper. For BLIP, L0.H11 is a text-only
universal cross-attention head, meaning it does not
produce a significant patching effect when images
are corrupted. Due to its specialization, L0.H11
does not contribute to the semantic association be-
tween text tokens and image patches. Instead, it
plays a crucial role in filtering out irrelevant visual
information, enhancing the model’s robustness.

5 Conclusion

In this work, we study the roles of cross-attention
and self-attention in multimodal integration. To ac-
complish this, we introduce NOTICE, a Gaussian-
Noise-free Text-Image Corruption and Evaluation
pipeline for mechanistic interpretability in VLMs.
Using our SIP image corruption framework and
STR text corruption, NOTICE enables causal me-

diation analysis across both modalities. Experi-
ments across three tasks reveal “universal atten-
tion heads” with consistent patching effects across
BLIP and LLaVA. We show that cross-attention
supports three functions: object detection, object
suppression, and outlier suppression. However,
self-attention primarily handles outlier suppression,
indicating cross-attention’s unique role in image
grounding. While attention presents a plausible,
but not necessarily faithful rationale for model pre-
diction (Wiegreffe and Pinter, 2019), our findings
show patterns of attention heads that consistently,
and causally, influence model logits. With the sup-
port NOTICE, applications using VLMs can benefit
from more transparent and adaptable models, facil-
itating deeper insights and enhanced performance.

6 Limitations

The NOTICE framework, combined with SIP cor-
ruption, offers valuable insights into the inter-
pretability of vision-language models. In this pa-
per, we applied our dual corruption scheme to three
diverse datasets and experimented with generative
models for image corruption. However, many more
datasets remain unexplored. For instance, shape-
based datasets like ShapeWorld (Kuhnle and Copes-
take, 2017) and CLEVR (Johnson et al., 2017) al-
low variations in color and shape for corruption.
Similarly, icon datasets like IconQA (Lu et al.,
2021) and Emojis (Kralj Novak et al., 2015), as
well as specialized datasets such as DeepFashion
(Liu et al., 2016), Caltech-UCSD Birds-200-2011
(Wah et al., 2011), and the Stanford Cars dataset
(Kramberger and Potočnik, 2020), can be turned
into “clean” and “corrupt” pairs. In future work,
we will expand our experiments to include a wider
range of datasets and models, further enhancing the
robustness and generalizability of our findings.
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A VQA-Prompts

For each task, we create a VQA prompt that asks
the model to choose between a correct answer,
which corresponds to the image, and an incorrect
answer that corresponds to a semantically minimal
pair. While in SVO-Probes, each subject, verb, or
object, came with it’s own semantically different
counterpart, in MIT-States dataset and Facial Ex-
pression dataset, we constructed such counterparts
manually. In MIT-States, we separated states into
color, shape, and texture, and selected counterparts
for each question from the respective categories.
We grouped similar states (e.g., “huge”, “large”)
together, and ensure that the selected counterpart
would not be similar in meaning to the correct an-
swer. Similarly, in the Facial Expressions dataset,
we grouped the seven emotions into positive, neg-
ative, and neutral, and selected counterparts from
opposing emotions, to ensure the model can cor-
rectly chose one answer. Recall that the SVO-
Probes dataset consists of subject, verb, and object
triplets. Each triplet is presented in singular form
and non-conjugated. We use GPT-3.5 Turbo to
perform grammatical error correction on all input
prompts in SVO-Probes while minimally perturb-
ing the template structure. We evaluate BLIP using
exact match accuracy, which requires the generated
answer to match the correct answer exactly, includ-
ing capitalization and conjugation. BLIP achieves
66.1% accuracy on the facial expressions dataset,
44.6% on MIT States, and 16.1% on SVO-Probes
(see Table 2 for category-wise accuracy). In our
experiments, we use samples that BLIP accurately
predicted. For each task, we select 500 samples
across all categories: subjects, verbs, and objects
for SVO-probes; colors, shapes, and textures for
MIT-States; and one of the five emotions BLIP
correctly identified for the facial expression iden-
tification task. To mitigate model bias toward the
position of the correct answer in multiple-choice
prompts, we equally distribute 250 samples where
the correct option precedes and 250 where it fol-
lows the “or” token.

B Datasets

SVO-Probes. The Subject-Verb-Object (SVO)
Probes dataset (Hendricks and Nematzadeh, 2021)
consists of over 48,000 image-language pairs that
vary on exactly one of the subject, verb, and object
tuples that describe an image. For example, Fig-
ure 1 depicts image-text pairs with the captions “A

child crossing the street” (child, crossing, street)
and “A lady crossing the street” (lady, crossing,
street). In this instance, the two image pairs only
vary on the subject of the image, but the verb (cross-
ing) and the object (street) are identical. SVO-
Probes tests if multimodal models can capture fine-
grained linguistic information about the content of
an image.

MIT-States. The MIT States dataset (Isola et al.,
2015) is a collection of 245 object classes, 115
attribute classes, and over 53,000 images. The
dataset is used to study how models can generalize
state transformations across different object classes.
For instance, learning what “melted” looks like on
butter can help recognize “melted” in chocolate.

Facial Expressions. The Facial Expression
Recognition 2013 (FER-2013) (Goodfellow et al.,
2013) dataset includes 35,887 grayscale images of
faces resized to 48x48 pixels. The images are cate-
gorized into seven emotion classes: anger, disgust,
fear, happiness, sadness, surprise, and neutral. The
FER-2013 dataset is valuable for comparing feature
learning methods with hand-engineered features in
emotion recognition tasks.

C BLIP and LLaVA Performance

Dataset BLIP Accuracy (%) LLaVA Accuracy (%)
SVO 16.10 40.89
Probes
MIT 44.60 67.81
States
Facial 66.10 79.31
Expressions

Table 2: Comparison of BLIP and LLaVA overall accu-
racy by dataset, expressed as percentages.

In evaluating the BLIP and LLaVA, we focused
on exact match accuracy, which necessitates that
the model’s generated answer must exactly match
the correct answer in terms of both content and
form, including specifics like capitalization and
conjugation. This stringent criterion ensures that
the model’s understanding and response generation
align closely with the intended semantics of the
test prompts. Table 2 shows the performance of
BLIP and LLaVA (zero-shot) on each task, and
each category within the task.

D SIP with Stable Diffusion

With the primary goal of establishing a more con-
trolled environment conducive to the generation
of semantically similar corrupt (negative) images
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from clean(positive) images, we also explore the
use of stable diffusion to produce images that
are similar to clean images from the SVO-Probes
dataset, with the sole variation being in only one
among the subject, verb, or object of the image.

Our experiment design utilizes the stable-
diffusion-2-inpainting (Rombach et al., 2022) to
generate a corrupt image using the clean im-
age as a base template. In this context, we
define a prompt structure for the model as “a
picture of subneg + verbneg + objneg” where <
subneg, verbneg, objneg > denote the svo-triplet for
the negative image.

For the parametric constraints on the diffusion
model pipeline, we utilize a DDIM Scheduler
(Song et al., 2022), setting the DDIM value = 120
and the prompt guidance scale value to 8 for all
the image generations. For generating images on
the template of the base positive image, we use
a contour mask, which allows for inpainting of
the negative subject, verb, or object into the pos-
itive image. In such cases, a variation in quality
is observable in the images introduced due to the
probabilistic nature of the model.

Holistically, the generated images from stable-
diffusion-2-inpainting are largely closer to the
original corrupt images from SVO-Probes dataset
where the image annotations utilize simpler
terminologies to depict any one of the three
subneg, verbneg, objneg such as “grass” instead of
“meadow” (refer to Fig. 8 and 9).

E Compute Resources

For each experiment, we use one NVIDIA GeForce
RTX 3090 GPU. Running BLIP for each activation
patching experiment ranged from 12 hours for SVO
probes to 10 hours in MIT states and Facial Expres-
sions. Running LLaVA for each activation patching
experiment ranged from 96 hours for SVO probes
to 90 hours in MIT states and Facial Expressions.

F Results

F.1 SIP vs. Gaussian Noise Image Corruption.

Figure 10 illustrates the comparative effects of
Semantic Image Pairs (SIP) and Gaussian Noise
(GN) image corruption across all tasks, highlight-
ing SIP’s superior ability to emphasize the signifi-
cance of middle layers in the MLP, in contrast to
GN’s focus on later layers. These observations af-
firm SIP’s enhanced reliability and effectiveness

in revealing the nuanced functioning of vision-
language models, supporting its use for in-depth
interpretability studies.

F.2 Module-wise Activation Patching

Module-wise activation patching offers a detailed
examination of how different components of the
BLIP model respond to image and text corruption,
using Semantic Image Pairs (SIP) and Gaussian
noise for images and Symmetric Token Replace-
ment (STR) for texts. This approach is crucial
for uncovering the roles of self-attention, cross-
attention, and MLP modules within the architec-
ture, particularly focusing on their reaction to var-
ied corruption methods. Through these experi-
ments, we aim to pinpoint the layers most critical
for the model’s decision-making processes and ex-
plore how different corruption strategies affect the
transparency and reliability of the model’s internal
workings. This analysis not only tests the robust-
ness of the SIP technique against the traditional
Gaussian noise approach but also highlights the
strategic layers that are pivotal in handling multi-
modal data integration.

First, Figure 11 and Figure 12 show module-wise
activation patching for SVO Probes, broken down
into subjects, verbs, and objects, VQA prompts.

Next, we examine module-wise activation patch-
ing for the Facial Expressions dataset in Figure
13 for BLIP and Figure 14. We note that image
and text corruption results in similar patterns. This
provides further support to SIP corruption aligning
with STR corruption.

Lastly, Figure 15 and Figure 16 exhibit outcomes
similar to the other tasks but with a notable dis-
tinction: there’s an increased likelihood of accu-
rately predicting the correct token within the cross-
attention heatmaps during text corruption. This sug-
gests that the multiple-choice VQA prompts used
in the MIT States dataset may be more definitive
compared to the other datasets. While distinguish-
ing between emotions such as “angry” and “sad,” or
identifying subtle differences like “woman” versus
“girl” can be challenging in the Facial Expressions
and SVO Probes datasets, respectively, the task
of differentiating between clearly contrasting at-
tributes like “modern” versus “ancient” buildings
in MIT States appears to be more straightforward.
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Figure 8: Successful examples of images generating using stable-diffusion-2-inpainting that showcase corrupt
images close enough to the clean image yet different in (1) Subject (2) Verb (3) Object

Figure 9: Poor examples of images generating using stable-diffusion-2-inpainting that showcase corrupt images
which deviate from the clean image in (1) Subject (2) Verb (3) Object

G LLaVA Self-Attention Patching Details

We consider two methods for performing activa-
tion on LLaVA’s self-attention heads. First, we
patch only on the correct answer token. Although
Figure 5 demonstrates a strong patching effect in
BLIP, patching the correct answer token in LlaVA

results in an extremely small logit difference, with
the largest average logit difference being 0.016 as
shown in Figure G, regardless of modality corrup-
tion or dataset. Patching the correct answer token
does not result in any “universal attention heads”
indicating that self-attention does not play a pivotal
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Figure 10: Comprehensive view of Gaussian noise effects across all tasks in the SVO-Probes dataset, providing a
contrast to SIP effects and highlighting the differential impact of noise on model accuracy and layer activation.

Cross-Attention Functions SVO MIT Facial Expressions
object detection L3.H0 L3.H0 L3.H0

object suppression L5.H3 L5.H3 N/A
outlier suppression L0.H11 L0.H11 L0.H11, L5.H3

Table 3: Universal heads identified through cross-
attention head patching, alongside their functions.

role in associating the relevant images patches with
the correct answer token in LLaVA. Module-wise

patching using image corruption for both MLPs and
Self-Attention blocks shows that patching the ’As-
sistant:’ token consistently produces the strongest
patching effect for LLaVA. Accordingly, we ex-
periment with patching the ’Assistant:’ token for
LLaVa’s self-attention heads. Patching the “Assis-
tant:” token creates a far stronger logit difference
with some heads producing an average logit differ-
ence as high as 0.4. Patching ’Assistant:’ produces
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Figure 11: Module-wise activation patching results on BLIP for the SVO-Probes dataset.

consistent results with 6 universal self-attention
heads compared to 0 when patching the correct an-
swer token. Both the consistency and strength of
patching the ’Assistant:’ token highlight the impor-
tance of the ’Assistant:’ token in storing informa-
tion relevant to the image. Future studies perform-
ing activation patching on instruction-tuned VLMs
that utilize causal self-attention to fuse modalities
should focus on the information in the specific in-
struction tokens.

G.1 Comparing Cross-Attention and
Self-Attention Head Functions

Our result that the cross-attention mechanism
VLMs consistently associates the nouns with their
corresponding image patches and that causal self-
attention does not associate nouns to image re-
gions is supported by previous works investigat-
ing cross-attention and self-attention patterns in toy
VLMs (Ilinykh and Dobnik, 2022a). Although self-
attention heads in LLaVA associate neither the cor-
rect answer token nor the ’Assistant:’ token with
the relevant image patches, universal self-attention
heads in LLaVA have the primary function of miti-
gating outlier attention patterns in images.

Important cross-attention heads in BLIP are scat-
tered throughout the network ranging from layer 0
to layer 9. In contrast, import self-attention heads
in LLaVA are concentrated in the middle layers of
the network with x / y self-attention heads between
14-18.

G.2 Cross-Attention Head Function Classes

Understanding the specific functions of cross-
attention heads within vision-language models
(VLMs) is crucial for mechanistic interpretabil-
ity. In this section, we delve into the distinct roles
played by universal cross-attention heads identi-
fied by our NOTICE scheme. These heads can
be categorized into three primary function classes:
implicit object detection, object suppression, and
outlier suppression. Below, we provide detailed ex-
amples of these functions along with corresponding
visualizations from the SVO-Probes, MIT-States,
and Facial Expressions datasets.

L0.H11 - outlier suppression. Universal cross-
attention head L0.H11 implements outlier suppres-
sion in all tasks. It actively attends away from high-
probability image patches and uniformly attends to
the remaining patches. This function significantly
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Figure 12: Module-wise activation patching results on LLaVA for the SVO-Probes dataset.

Figure 13: Module-wise activation patching results on BLIP for the Facial Expressions dataset.

reduces the mean of the average cross-attention out-
puts, thereby enhancing the model’s robustness by
filtering out irrelevant visual information. L0.H11
does not produce a significant patching effect when
images are corrupted, highlighting its role as a text-
only universal cross-attention head.

L3.H0 - Object detection. Cross-attention layer
3, head 0 (L3.H0) performs implicit object detec-
tion by associating text tokens with relevant im-
age patches. It consistently demonstrates its im-

portance across all tasks, reliably associating the
correct emotion text token with the mouth region
in the Facial Expressions dataset, and associating
physical objects in images with their corresponding
nouns in SVO-Probes and MIT-States. This head’s
ability to map input text tokens to associated im-
age patches underscores its critical role in fusing
vision-language information.

L5.H3 - object suppression and outlier sup-
pression. Cross-attention head L5.H3 performs ob-
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Figure 14: Module-wise activation patching results on LLaVA for the Facial Expressions dataset.

Figure 15: Module-wise activation patching results on BLIP for the MIT States dataset.

Figure 16: Module-wise activation patching results on LLaVA for the MIT States dataset.

ject suppression by attending away from objects as-
sociated with an input token and attending strongly
to outlier patches. In SVO-Probes, it attends away
from subjects or objects, while in MIT-States, it
attends away from relevant portions forming the
noun that is changing states. In the Facial Expres-
sions dataset, L5.H3 performs outlier suppression
instead of object suppression.

These examples underscore the diverse functions
of cross-attention heads within BLIP, each playing
a pivotal role in processing and integrating mul-
timodal information. The identification and cate-
gorization of these heads provide a deeper under-
standing of the internal mechanisms driving VLMs,

highlighting the significance of targeted model im-
provements and adaptations.
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Figure 17: Logit difference when patching self-attention heads in LLaVA on the correct multiple choice option in
SVO-Probes, MIT States and Facial Expressions. Top row shows SIP image corruption, the bottom row shows STR
text corruption.

Figure 18: Cross-Attention patterns for universal cross-attention head L0.H11 on a sample of images from each
dataset.
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Figure 19: Cross-Attention patterns for universal cross-attention head L3.H0 on a sample of images from each
dataset.

Figure 20: Cross-Attention patterns for universal cross-attention head L5.H3 on a sample of images from each
dataset.
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