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Abstract

Researchers in social science and psychology
have recently proposed using large language
models (LLMs) as replacements for humans
in behavioral research. In addition to argu-
ments about whether LLMs accurately cap-
ture population-level patterns, this has raised
questions about whether LLMs capture human-
like conceptual diversity. Separately, it is de-
bated whether post-training alignment (RLHF
or RLAIF) affects models’ internal diversity.
Inspired by human studies, we use a new
way of measuring the conceptual diversity of
synthetically-generated LLM “populations” by
relating the internal variability of simulated in-
dividuals to the population-level variability. We
use this approach to evaluate non-aligned and
aligned LLMs on two domains with rich hu-
man behavioral data. While no model reaches
human-like diversity, aligned models generally
display less diversity than their instruction fine-
tuned counterparts. Our findings highlight po-
tential trade-offs between increasing models’
value alignment and decreasing the diversity of
their conceptual representations.

1 Introduction

As large language models (LLMs) have become
more sophisticated, there has been growing inter-
est in using them to replace human labor. This
appeal of LLMs has even made its way to set-
tings where human behavior itself is the object
of inquiry: recently, researchers have proposed that
LLM-generated responses can be used in place of
human data for tasks such as polling, user studies,
and behavioral experiments (e.g., Aher et al., 2023;
Argyle et al., 2023; Hämäläinen et al., 2023; Binz
and Schulz, 2024; Manning et al., 2024). If possi-
ble, using a synthetic replacement for the process
of human data collection could be transformative
for a variety of human factors disciplines, from
political science to economics and psychology.
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Figure 1: We investigate LLM populations comprised
of simulated individuals in two domains: color associ-
ations (top) and concept similarity (bottom). In both
domains, there is both individual- and population-level
variation. It is possible that individual variation overlaps
with the population average (homogeneous population)
or separates from it (heterogeneous population). Our ex-
periments are designed to tease these two options apart.

While prior work suggests that LLMs can cap-
ture certain behavioral patterns, there are ongoing
debates as to whether they are valid replacements
for human subjects (Dillion et al., 2023; Wang et al.,
2024a; Park et al., 2024). One key issue is whether
LLMs capture conceptual diversity: the variation
among individuals’ representations of a particu-
lar domain. A natural way to study conceptual
diversity is to study the variability in LLMs’ re-
sponse distributions at the population level – that
is, by considering averages across simulated indi-
viduals. However, population-level variability can
be a flawed measure of conceptual diversity for
several reasons. First, it assumes certain charac-
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teristics about the nature of people’s mental rep-
resentations that may not hold in practice – for
example, that people have high certainty in these
representations (e.g., Martí et al., 2018), or that
people’s responses are a deterministic best-guess,
with no additional information contained in suc-
cessive guesses (e.g., Vul and Pashler, 2008). Sec-
ond, assessing population-level variation without
individual-level variation can mask important infor-
mation about the population, particularly whether
it is homogeneous (comprised of individuals who
share similar underlying representations) or hetero-
geneous (comprised of individuals with meaning-
fully different representations) (see Figure 1).

Conceptual diversity may be negatively im-
pacted by alignment, which further complicates
the picture. Post-training alignment techniques,
such as RLHF (Ouyang et al., 2022; Bai et al.,
2022a) and RLAIF (Bai et al., 2022b), are now
standard parts of LLM development, and presumed
to contribute to the human-like abilities of models
(Ji et al., 2024). However, it has also been observed
that “aligned” models show biases that can limit the
lexical and content diversity of their outputs (janus,
2022; Padmakumar and He, 2024; Park et al., 2024;
O’Mahony et al., 2024). It also remains unknown
whether alignment to synthetic preferences (instead
of human preferences) might worsen these biases,
as it is possible these models “collapse” when re-
cursively trained on synthetically generated data
(Shumailov et al., 2024; Gerstgrasser et al., 2024).

In this paper, we (1) investigate the ability of
LLMs to capture human-like conceptual diversity,
and (2) analyze the effect of alignment by compar-
ing conceptual diversity across non-aligned models
to models aligned using RLHF or RLAIF. In our ex-
periments, we first simulate populations of unique
individuals in LLMs using two techniques pro-
posed by prior literature: temperature- and prompt-
based manipulations. We then evaluate ten open-
source LLMs on two domains with rich human
behavioral data: word-color associations, and con-
ceptual similarity judgments. While there is no
single agreed-upon metric for capturing conceptual
diversity, we consider two different metrics that
are each well-suited to their respective domains, to
measure the conceptual diversity of synthetically-
generated LLM “populations”.

We find that no model approaches human-like
conceptual diversity. Further, aligned models gen-
erally display less conceptual diversity than their
non-aligned, fine-tuned counterparts. Our findings

suggest that there may be trade-offs between in-
creasing model safety in terms of value alignment,
and decreasing other notions of safety, such as the
diversity of thought and opinion that models rep-
resent. We caution that these trade-offs should
be better understood before models are used as
replacements for human subjects, or deployed in
human-centered downstream applications.

2 Background

Recent works have proposed using LLMs as stand-
ins for humans in many applications and domains,
including opinion surveys and polling in political
science (Argyle et al., 2023), user studies in human-
computer interaction (Hämäläinen et al., 2023), an-
notation tasks (Gilardi et al., 2023), and various
economic, psycholinguistic, and social psychology
experiments (Aher et al., 2023; Dillion et al., 2023).

Several works have responded by identifying
LLMs’ lack of answer diversity as a potential harm
of using LLMs to replace human subjects. These
works have focused on whether models are capable
of capturing demographic- and subgroup-level vari-
ation in settings where accurately simulating the
social identities of a human population of interest
is directly relevant to the task. Wang et al. (2024a)
find that inference-time interventions to improve
models’ output diversity do not prevent LLMs from
misportraying and flattening the representations of
already marginalized demographic groups. Even
after explicit steering toward certain demographics,
LLMs still do not capture these group’s responses
on public opinion surveys (Santurkar et al., 2023).

These observations have motivated recent at-
tempts to go from broad, population-level obser-
vations of diversity, to metrics that assess finer-
grained notions. For example, He-Yueya et al.
(2024) measured the extent to which LMs cap-
ture human knowledge distributions on real-word
domains like language learning and mathematics.
Their metric captures whether two populations are
similarly sensitive to the relative difficulty of test
items. However, this metric is not well-suited for
domains that lack ground-truth answers or where
people’s mental representations are not easily pa-
rameterized. Franke et al. (2024) propose another
item-level account of diversity, from the perspec-
tive of Bayesian statistical modeling. They find
that LLMs do not capture human variance at the
item-level in an experiment on pragmatic language,
and aggregate item-level predictions to replicate
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Base model Non-aligned variant Aligned variant Alignment method

Mistral
(mistralai/Mistral-7B-v0.1)

Openchat
(openchat/openchat_3.5)

Starling
(berkeley-nest/Starling-LM-7B-alpha)

RLAIF (APA)

Mistral
(mistralai/Mistral-7B-v0.1)

Mistral-Instruct
(mistralai/Mistral-7B-Instruct-v0.1)

Zephyr-Mistral
(HuggingFaceH4/zephyr-7b-beta)

RLAIF (DPO)

Gemma
(google/gemma-7b)

Gemma-Instruct
(google/gemma-7b-it)

Zephyr-Gemma
(HuggingFaceH4/zephyr-7b-gemma-v0.1)

RLAIF (DPO)

Llama
(meta-llama/Llama-2-7b-hf)

Llama
(meta-llama/Llama-2-7b-hf)

Llama-Chat
(meta-llama/Llama-2-7b-chat-hf)

RLHF (PPO)

Llama
(meta-llama/Llama-2-7b-hf)

Tulu
(allenai/tulu-2-7b)

Tulu-DPO
(allenai/tulu-2-dpo-7b)

RLAIF (DPO)

Table 1: Pairs of non-aligned and aligned models tested in our experiments. Huggingface identifiers are shown in
parentheses underneath model names. The base models are shown for reference and are not directly tested, with the
exception of the comparison between Llama and Llama-Chat. All models have 7B parameters.

condition-level effects seen in human data. Simi-
larly, Wang et al. (2024c) also find that LMs repli-
cate broad-level patterns (e.g., mean and standard
deviation) but fail to capture item-level patterns
of human behavior. These studies highlight the
importance of finer-grained comparisons between
model and human outputs, but leave open the ques-
tion of how to measure the relationship between
individual-level variation and population-level vari-
ation in rich conceptual domains.

3 Methods

Our experiments are designed to investigate two
related research questions: (1) Do modern LLMs
capture the conceptual diversity of human popu-
lations, i.e., individuals’ variability in conceptual
representations? and (2) How does post-training
alignment (here, RLHF or RLAIF) affect models’
ability to capture this feature of response distribu-
tions from human populations?

The basic logic of our experiments is as follows.
First, we identify domains where prior work has
demonstrated rich conceptual diversity in humans.
Second, we test whether LLMs capture concep-
tual diversity patterns by simulating “populations”,
using temperature- and prompting-based manipula-
tions. Finally, we compare the conceptual diversity
achieved by models against that of humans, and
specifically examine the effect of alignment on the
degree of fit between models and humans.

3.1 Domain 1: Word-color associations
The first domain probes people’s intuitive associa-
tions between words and colors, building on the ex-
periments of Murthy et al. (2022). In this task, hu-
man participants were presented with a target word

(such as “chalk” or “obligation”) and asked to click
on the color most associated with the word, from
a set of 88 color chips. Participants were tested in
two blocks, ultimately providing two color associa-
tions for each word. This design enables measures
of population variability (how much color associ-
ations vary across individuals) as well as internal
variability (how much they vary in an individual’s
own representation).

Model evaluation. To measure which color a
model “associates” with a particular target word,
we used the following query:1

Question: What is the HEX code of the color you
most associate with the word [WORD]? You must
respond with a guess, even if you’re unsure. Make
sure your response contains a valid 6-digit HEX
code.

Conditioned on this input, models were allowed
to freely generate subsequent text.2 Two samples
were elicited for each word and HEX codes were
extracted from models’ generations using a regular
expression.3 This procedure was repeated to collect
models’ color associations for the 199 words tested
by Murthy et al. (2022), for a total of 150 simulated
“subjects” (i.e., 150 unique prompting contexts for
the relevant experiments).

Diversity metric. In order to examine concep-
tual diversity in any domain, including color-

1For the experiments that simulate unique subjects
through prompting manipulations, the relevant context was
prepended to this query (see Section 3.3 for more details).

2While the human baseline was collected through inter-
action with a visual color space, we adopt this textual format
following e.g., Marjieh et al. (2023); Niedermann et al. (2024)

3When one or both samples contained no valid HEX code,
the response was considered invalid and was excluded from
analyses.
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Figure 2: Human baselines in both domains. (a) Internal variability (y-axis) versus population variability (x-axis)
for human participants in the word-color association domain. Reproduced from Murthy et al. (2022). (b) Probability
of more than one conceptual representation, estimated using Chinese Restaurant Process model on human data for
conceptual similarity judgement task (Martí et al., 2023).

associations, we need a diversity metric over the
space. Here, following Murthy et al. (2022), we
measure the variability between two colors (de-
noted by ∆E) by their perceptual similarity in
CIELAB space. For a given word w, we compute
internal and population measures of variability as
follows. ∆Einternal(w) measures the ∆E between
the colors chosen by a participant in the first and
second blocks for word w. ∆Epopulation(w) cap-
tures the similarity between different individuals’
color responses for word w (i.e., the average pair-
wise similarity among every pair of color responses
provided by different participants).

For each word w ∈ W , the heterogeneity of a
population (i.e., a set of subjects S) is then captured
by the following metric:

dw =
1

S

∑

s∈S

|∆Einternal(s)−∆Epopulation(s)|√
2

(1)
Intuitively, this metric measures the divergence

from the “line of unity” – i.e., the signature of a ho-
mogeneous population in which individuals share
the same underlying distributions. The greater this
metric, the more conceptual diversity, since the vari-
ability between different individuals’ distributions
is greater than the variability of the individual’s
own internal distribution (Figure 1, top).4

4The reverse scenario, where ∆Einternal >
∆Epopulation is also possible, though highly unlikely,
especially as the sample size grows. Because the different
participants’ associations are independent samples, the
probability of sampling similar colors (low ∆Epopulation)
from different individuals’ highly variable internal probability
distributions (high ∆Einternal) is low.

Human baseline. The relationship between
∆Einternal and ∆Epopulation for human partici-
pants is shown in Figure 2a, with data reproduced
from Murthy et al. (2022). While these two mea-
sures are correlated for humans, internal variability
is overall lower than population variability, consis-
tent with a heterogeneous population. For the hu-
man data, the average of the metric in Equation (1)
= 15.82 (95% CI: [15.18, 16.58]).

3.2 Domain 2: Conceptual similarity
judgements

The second domain, inspired by Martí et al. (2023),
probes the number of latent concept clusters in a
population. In this task, participants were asked
for similarity judgments between concepts in a par-
ticular category (e.g., “Which is more similar to
a finch, a whale or a penguin?”). Two categories
were tested: common animals, which are more
likely to have shared conceptual representations
across individuals; and United States politicians,
which are likely to have varying representations
across individuals.

Model evaluation. To measure similarity judg-
ments within concept categories, we presented
models with the following query:

Question: Which is more similar to a [TARGET],
[CHOICE1] or [CHOICE2]? Respond only with
“[CHOICE1]” or “[CHOICE2]”.

where [TARGET] is one of the 10 words from
the relevant category (animals or politicians), and
[CHOICE1] and [CHOICE2] cover all combinations
of the remaining words therein. In most cases,
model output only one of the two answer choices,
but for outputs where additional text was generated,
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the first sentence of the generation was selected
(as it usually contained the model’s response) and
string matching was used to identify the model’s
choice. If neither choice was present, the model’s
response for that query was excluded from further
analyses.

Diversity metric. Here, the heterogeneity or di-
versity of the population intuitively corresponds to
the number of latent concepts for each word among
individuals in the population. To measure this for-
mally, the similarity judgment for a given word was
coded as a binary vector indicating the similarity
rating between every other pair of items. Following
Martí et al. (2023), the responses were then ana-
lyzed using a non-parameteric Bayesian clustering
model (Chinese restaurant process; CRP) to model
a distribution over the number of clusters (concepts)
for each word. For our analyses, we implement the
version of this model that implements a prior pref-
erence for fewer clusters and runs inference using
a Gibbs sampler.

For each word, the posterior distribution fit-
ted by the CRP was then used to estimate the
probability of only a single conceptual represen-
tation exists in the population of sampled individ-
uals. The higher this probability is, the less di-
verse the population is. Therefore, as our mea-
sure of population heterogeneity in this domain,
we compute 1 − P (one concept), or equivalently,
P (multiple concepts).

Human baseline. Martí et al. (2023) find that
words in the “politicians” category are far more
likely to have multiple meanings than “animal”
words (politicians: 0.69 (95% CI: [0.66, 0.72]); an-
imals: 0.43 (95% CI: [0.39, 0.48]); see Figure 2b).
This result reflects the conceptual diversity that is
inherent to human populations even in the simplest
domains: there exist multiple latent meanings and
representations even for words with very concrete,
real-world referents.

3.3 Simulating populations within models
Our main question is whether models can capture
human-like conceptual diversity, for the purposes
of simulating the response distributions of unique
human subjects. To investigate this question, we
tested two ways of manipulating the “diversity” of
responses generated by models: increasing the soft-
max temperature parameter, and conditioning on
different types of contexts. These techniques were

chosen because of their popularity in related lit-
erature, and their accessibility as inference-time
interventions for downstream users.

Method 1: Increasing temperature. Increasing
the temperature in the softmax normalization dur-
ing inference-time decoding effectively increases
the entropy of the distribution over tokens. Prior
work has explored this method as a way of increas-
ing the diversity of generated output (Yu et al.,
2023; Tevet and Berant, 2021; Peeperkorn et al.,
2024; Bellemare-Pepin et al., 2024). Most rele-
vant to our work, Wang et al. (2024a) explore dif-
ferent temperature values as a way to overcome
models’ flattening of the multi-faceted nature of
demographic groups. For completeness and to see
how much we can push our measure of diversity,
we test some higher values of temperature settings
for each model (t ∈ [t0, 1.5, 2.0], where t0 is the
default temperature of the base model5).

Method 2: Prompting. We also tested the ef-
fect of “persona prompting”, where the prompt
explicitly instructs the model to simulate a particu-
lar individual or group of individuals, usually using
group-specific demographic information. For ex-
ample, Wang et al. (2024a) use persona prompts of
the form “Speak from the perspective of [identity]
living in America”, and He-Yueya et al. (2024) use
more complex prompts such as “Pretend that you
are an 11-year-old student. Your gender is female.
You are eligible for free school meals due to be-
ing financially disadvantaged.” While both studies
found that such identity-based prompts do not cap-
ture relevant metrics to the extent seen in human
populations, other work has found success with
prompts that simulate expertise and developmental
stages (Salewski et al., 2024).

For our experiments, we adopt the demographic-
prompting paradigm, as this approach most closely
mimics the process of gathering a representative
sample of adult populations for behavioral ex-
periments in our domains. We prepended per-
sona contexts of the following form to the eval-
uation query: “You are a [race] [gender] from
[hometown] in [state] who is [age] and works
as a [occupation].” We additionally consid-
ered three control conditions: none, where no
context was prepended to the query (matching
the prompting setup from the temperature-based

5Mistral has a default temperature of 1.0, Llama a default
of 0.9, and Gemma a default of 0.7.
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manipulations described above); random, where
we prepended contexts matched in length to the
persona-based contexts but on unrelated topics; and
nonsense, where we scrambled these unrelated con-
texts at the word-level (see appendix A for details).
The latter two conditions were designed to test
whether adding randomness in the form of condi-
tioning models’ outputs on highly surprising tokens
could sufficiently simulate meaningful human di-
versity

This gave us a total of four prompting conditions,
for which the number of prompts varied depending
on the domain so as to most faithfully replicate
the participant sampling procedures for each ex-
periment (Ncolor = 150, Nconcept = 1800). In this
setting, we used each model’s default temperature.

3.4 Models
We test five pairs of open-source non-aligned and
aligned model variants, spanning across three fam-
ilies of base models: Mistral (Jiang et al., 2023),
Gemma (Gemma Team et al., 2024), and Llama
(Touvron et al., 2023). We generally use pairs such
that the non-aligned and aligned variants are both
fine-tuned on the same base model. This allows us
to factor out the effects of the underlying architec-
ture and pre-training, focusing only on the contrast
between alignment and other forms of fine-tuning.

Our tested models are summarized in Table 1.
Within the Mistral base family, we test two pairs of
non-aligned and aligned models: Openchat (Wang
et al., 2024b) vs Starling (Zhu et al., 2024), and
Mistral-Instruct (Jiang et al., 2023) vs Zephyr-
Mistral (Tunstall et al., 2024). For the Gemma base
family, we test Gemma-Instruct (Gemma Team
et al., 2024) vs Zephyr-Gemma (Tunstall et al.,
2024). And for the Llama base family, we test two
pairs of aligned and non-aligned models: Llama
(base) vs Llama-Chat (Touvron et al., 2023), and
Tulu vs Tulu-DPO (Ivison et al., 2023).

There are a few exceptions to the general group-
ing pattern described above. First, Starling under-
goes alignment on top of the already-reinforcement-
learning-fine-tuned (RLFT) Openchat model, in-
stead of the shared base Mistral model.6 And sec-
ond, Llama-Chat combines both instruction fine-
tuning and alignment into the same model, leav-
ing its non-aligned counterpart, Llama, as the only

6Because these models are still separated by one degree
of alignment, like the other model pairs we test, we still re-
fer to this pair as non-aligned vs. aligned in our results for
consistency.

model in our suite that has also not been instruction
fine-tuned after pre-training.

Our tested models span across two popular align-
ment methods: Reinforcement Learning from Hu-
man Feedback (RLHF; Bai et al., 2022a; Ouyang
et al., 2022), and Reinforcement Learning from
AI Feedback (RLAIF; Bai et al., 2022b). RLHF
involves collecting preference data from human
crowdworkers, which is then used either to derive
a reward model for subsequent fine-tuning (as in
PPO, Schulman et al. 2017; or APA, Zhu et al.
2023) or for direct, reward-free fine-tuning (as in
DPO; Rafailov et al., 2023). RLAIF involves a sim-
ilar process, but models are aligned to synthetically
generated data instead of human preferences.

In order to isolate the effect of alignment/training
methods, we control for model size, testing the 7B-
parameter version of all models. All models were
downloaded from HuggingFace.

4 Results

4.1 Word-color associations
Figure 3 shows the main results from the word-
color association domain. The y-axis shows the
heterogeneity metric dw (Equation (1)) averaged
over all tested words. We omit the results from two
models due to a high number of invalid responses
among their generations: Llama and Tulu (see Ap-
pendix Figure 5 for counts of invalid responses).

Overall, we find that none of the models reach
the heterogeneity of the human population, with
low values for the diversity metric detailed in Equa-
tion (1) compared to the human baseline of 15.82.
To more closely assess the effects of temperature
and prompting manipulations on models’ concep-
tual diversity we constructed a regression model
predicting our diversity metric from these condi-
tions with random effects of LLM. In a combined
model including both predictors we find a main ef-
fect of both prompt and temperature manipulation
(p < 0.001 for both), but a much higher coefficient
for prompts (b = 0.294) than for temperatures
(b = 0.093), with minimal between-group variabil-
ity among individual LLMs (b = 0.177, SE =
0.058). These findings suggest that adding noise
through prompting techniques is more effective in
increasing population heterogeneity than adding
noise via softmax temperature.

Turning to the effect of alignment (i.e., com-
paring light and dark bars within each facet), we
find that the aligned model variants have similar or
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Figure 3: Heterogeneity of simulated LLM population in word-color association domain for prompting and
temperature manipulations. The y-axis indicates dw (Equation (1)) averaged over words. Rows = baseline, followed
by prompting and temperature conditions; columns = model families. Darker bars indicate aligned models. For
reference, the human baseline (Murthy et al., 2022) is 15.82.

lower heterogeneity than their non-aligned coun-
terparts, with the exception of the Gemma mod-
els under the temperature manipulations. This
is reflected in the results of a regression model
predicting our diversity metric from the absence
or presence of model alignment with random ef-
fects of model family (columns in Figure 3). We
find a significant negative main effect of alignment
(b = −0.495, p < 0.001), particularly contribut-
ing to a decrease in our diversity metric in this
domain, with minimal between-group variability
among model families (b = 0.114, SE = 0.055).

We also qualitatively analyzed the similarity be-
tween models’ and humans’ word-color associa-
tions. Figure 9 shows human and model distri-
butions over color space for three example words
and the persona prompting manipulation relative

to the no-prompt baseline. The similarity between
models’ and humans’ color associations also cor-
roborates prior work showing that text-only models
can learn structure in perceptual domains such as
color space (e.g., Abdou et al., 2021; Patel and
Pavlick, 2022).

4.2 Conceptual similarity judgments
Figure 4 shows the main results from the concep-
tual similarity domain. We omit the results from
Llama in this domain due to a high number of in-
valid responses among their generations 7.

We find that in this domain as well, models

7Specific models and manipulations (e.g. high tempera-
ture settings) with a high number of invalid responses were
also removed post-clustering due to insufficient data and are
indicated by “NA”.
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Figure 4: Heterogeneity of simulated LLM population in conceptual similarity domain. The y-axis indicates the
probability of more than one conceptual representation, estimated using Chinese Restaurant Process model. Rows
= baseline, followed by prompting and temperature conditions; columns = model families. Darker bars indicate
aligned models. Human baselines for each conceptual category (Martí et al., 2023) are shown as horizontal lines.

largely fall short of the heterogeneity of the hu-
man population (horizontal lines), with only a few
non-aligned models reaching the human baseline.
Across models and concept words, the CRP es-
timates a very low probability that multiple con-
ceptual representations exist among the population.
Qualitatively, in Figure 4, we see that with the ex-
ception of the Gemma-Instruct and Zephyr-Gemma
pair (and in some of the temperature manipulation
settings), this effect is more pronounced among
the models that have been aligned. The results
of a regression model show a significant main ef-
fect of alignment (b = −0.079, p < 0.001) on the
probability of multiple concepts existing among
an LLM-simulated population, with minimal vari-
ability across model families (b = 0.002, SE =

0.009).
The results of a combined regression model pre-

dicting our diversity metric in this domain from
both predictors of prompt and temperature ma-
nipulations (with random effects of model fam-
ily) showed small, though significant effects of
both manipulations (b = 0.019, p < 0.001) and
(b = −0.018, p < 0.001), respectively. This result
corroborates that of the word-color domain, where
prompting manipulations seem to have a greater
impact on increasing models’ conceptual diversity
than temperature manipulations, though the effects
are small.

Interestingly, the models also fail to capture an-
other signature pattern in the human data: increased
diversity for politician words than animal words
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(cf. Figure 2b). The heterogeneity measure gen-
erally stays the same or even slightly decreases
between animals and politicians (with a few ex-
ceptions). It is reasonable to expect that text-only
models would be able to learn conceptual similar-
ity relationships based on the contexts in which
the terms appear, and yet, we do not find greater
diversity for politician words. We speculate that
this could be related to political concepts being
more important “targets” for alignment, as they
may be associated with more extreme or emotion-
ally charged language.

5 Discussion

In both domains, the base LLama and Tulu models
generated a high number of invalid responses (text
generations that did not mention a valid color/target
word). We hypothesize that for Llama, as the only
model in our suite that had not been instruction
fine-tuned, this indicates a fundamental difficulty
comprehending the task instructions. However, for
Tulu, (which had been instruction fine-tuned, but
not aligned) this could indicate weaker understand-
ing of subjective, non-fact-based domains like the
ones we test. Further, our findings that models
aligned through both RLHF and RLAIF display
less conceptual diversity suggests that the prefer-
ence information captured by pairwise judgements
in such feedback datasets could be too narrowly
constraining the post-training latent space of mod-
els. Exploring alternative paradigms of value align-
ment that allow for more complete pictures of hu-
man values (cf. Zhi-Xuan et al.) and further study-
ing models’ internals pre- and post-alignment could
help overcome such issues.

Our findings also corroborate those of recent
work in many domains that suggest that injecting
variability in models’ outputs through temperature
and prompt manipulations does not do enough to
induce meaningful variability on relevant metrics,
and often just leads to highly incoherent outputs (in-
valid responses). One reason for this could be that
increasing the entropy of the output distribution or
conditioning on highly surprising tokens will in-
crease models’ uncertainty over subsequent tokens
in a domain-general sense. However, the kind of
uncertainty that gives rise to meaningful individual
differences in humans is likely much more con-
strained to a particular task and cognitive domain
than this. Exploring more task-specific methods
for injecting structured randomness into models’

generations could help LLMs to overcome their
population-average behavior in ways that more
meaningfully simulate the cognitive differences in
human individuals.

This raises further questions of what factors
give rise to individual differences in humans and
whether these are the same attributes that can re-
sult in individual-like models. While it is common
to obtain representative samples of a human pop-
ulation for studies in cognitive science using iden-
tity attributes like gender or race, the identity-level
representations of people that are most easily repli-
cated in post-training methods likely do not capture
the reasons for the differences in people’s concep-
tual representations. Exploring corresponding no-
tions of context-specific cognitive or computational
resources (e.g., working memory) in models could
allow them to serve as testbeds for theories of in-
dividual differences in humans (cf. Hu and Frank,
2024).

6 Conclusion

Here, we used a new approach to evaluate concep-
tual diversity in synthetically-generated LLM “pop-
ulations”. Specifically, we adopted metrics from
prior studies of conceptual diversity in humans
that relate the variability in individuals’ underlying
representations to population-level variability. We
evaluate two popular methods for eliciting unique
individuals from LLMs – temperature and prompt-
ing manipulations – in the word-color and word-
concept domains and find that adding noise in the
form of unrelated and randomly shuffled prompts
does more to increase model diversity than persona
prompting and temperature manipulations. Across
two domains, no model reached human-level con-
ceptual diversity. Further, our results suggest that
alignment to synthetic or human preferences (in
the form of RLAIF and RLHF) flattens models’
conceptual diversity in these domains, compared
to their base or instruction fine-tuned counterparts.

While alignment has now become a central part
of LLM development, our findings urge caution
that more work should be done to understand how
it affects models’ internal diversity of “opinions” or
conceptual representations. This is especially im-
portant given recent calls to use LLMs as stand-ins
for human subjects in behavioral research. While
it is clear that there could be gains under this
paradigm, we should also ask: what might we be
losing?
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Limitations

We tested a limited set of models with a relatively
small number of parameters (7B), due to compu-
tational resource constraints. In addition, we only
tested two popular alignment methods, RLHF and
RLAIF. It remains unknown whether larger models,
possibly aligned using different techniques or pref-
erence datasets, would exhibit the same patterns
found in our experiments.

We only tested models in English-language do-
mains, and we compared models to data collected
from human participants based in the United States
(Murthy et al., 2022) or collected by US-based re-
searchers (Martí et al., 2023). While even these rel-
atively homogeneous participants already exhibit
individual-level variability, which LLMs fail to cap-
ture, an important consideration for future work is
to examine conceptual representations across in-
dividuals with more diverse cultural and personal
experiences.

Finally, we note that the models were tested in
relatively simple domains (word-color associations,
and similarity judgments between animals or politi-
cians), which might not reflect the settings or appli-
cations in which models will be used.
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A Details on constructing prompt manipulations

We derive the template and field values for the persona prompt condition from (Wang et al., 2024a)
with additions made to the [race] field to cover all the United States census data categories and to the
[occupation] field, to induce more diversity across our personas. We populate each field in the context
by randomly selecting a value for each.

To create the random and nonsense prompt contexts, we first filtered English Wikipedia to remove
articles about people (to avoid reduplicating persona prompting) as well as disambiguation pages. We
obtained the random contexts by taking the first sentence of a randomly sampled article from the filtered
dataset. We obtained the nonsense contexts by shuffling the words within each, and re-applying sentence
casing to each resulting bag of words.

B Percentage of invalid responses

Figure 5 shows the percentage of total queried responses that constituted invalid responses for each model
in each domain. We omit the results of models that have an average of 70% or more invalid responses
across all prompt and temperature manipulations: Llama and Tulu on the color task, and Llama on the
concept task. In general, we find that adding noise via high temperature and unrelated prompt contexts
increases incoherence and thus invalidity, not meaningful diversity.

C Word-color association domain

C.1 Population vs internal ∆E

Figures 6 and 7 show the population ∆E versus internal ∆E for prompt- and temperature-based ma-
nipulations, respectively. In all settings, the points are near the line of unity, suggesting low population
heterogeneity.

C.2 Comparing model and human color associations
To validate models’ ability to perform word-color associations, we report results comparing the similarity
between models’ and humans’ word-color associations. Figure 8 shows the Jensen-Shannon divergence
between models’ and humans’ color response distributions, averaged over all words.

C.3 Visualizing color associations for a variety of word types
Figure 9 shows models’ and humans’ color associations for a variety of word types. These are well-
aligned in some cases, like “tomato”, which is strongly associated with red. Interestingly, for more
abstract words like “optimism” or “fame” (not pictured), humans have heterogeneous color distributions,
whereas models’ responses are less diverse but still interpretable – for example, “fame” is associated
with gold and “jealousy” with green. For the word “skin”, we see humans’ color associations feature
the lighter skin tones that one might expect from a Western population. In contrast, some of the models
(e.g. Openchat, Starling, and persona-prompted Gemma-Instruct) actually do a better job of diversifying
these associations. This might suggest that models’ word-color associations largely rely on distributional
semantics (e.g., common co-occurrences such as “green with jealousy”), whereas humans might have
other associations with abstract concepts that aren’t commonly expressed in text corpora.

D Conceptual similarity judgements domain

D.0.1 Between-subjects reliability
As an additional measure of population heterogeneity in the conceptual similarity domain, we calculate
the between-subjects reliability for the human baseline and model data. Figure 10 shows the probability
that two random subjects will agree on the similarity judgements for a given concept.
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Figure 5: Number of invalid responses for the word-color associations task (top) and conceptual similarity judge-
ments task (bottom) for each tested combination of prompting condition and temperature manipulation. We omit
the results of Llama and Tulu on the color task, and for Llama on the concept task given the low average valid
responses across prompt and temperature manipulations. In general, we find that adding noise via high temperature
and unrelated prompt contexts increases incoherence, not meaningful diversity.
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Figure 6: Population vs. Internal ∆E for prompting manipulations.
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Figure 7: Population vs. Internal ∆E for temperature manipulations.
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variation (e.g. abstract words like “optimism”) the models’ responses appear to collapse to just handful of colors,
but these colors are easily interpretable (e.g. jealousy≈green)
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Figure 10: Between-subjects reliability for model data and human baseline in the conceptual similarity domain.
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