
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 11135–11147

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

LLM-Supported Natural Language to Bash Translation

Finnian Westenfelder1,2, Erik Hemberg1, Miguel Tulla1,
Stephen Moskal1, Una-May O’Reilly1, Silviu Chiricescu3

1ALFA Group MIT-CSAIL, 2Draper Scholar, 3Charles Stark Draper Laboratory
{finnw,ehemberg,mtulla,smoskal,unamay}@mit.edu silviu@draper.com

Abstract

The Bourne-Again Shell (Bash) command-line
interface for Linux systems has complex syntax
and requires extensive specialized knowledge.
Using the natural language to Bash command
(NL2SH) translation capabilities of large lan-
guage models (LLMs) for command compo-
sition circumvents these issues. However, the
NL2SH performance of LLMs is difficult to
assess due to inaccurate test data and unreli-
able heuristics for determining the functional
equivalence of Bash commands. We present a
manually verified test dataset of 600 instruction-
command pairs and a training dataset of 40,939
pairs, increasing the size of previous datasets
by 441% and 135%, respectively. Further, we
present a novel functional equivalence heuristic
that combines command execution with LLM
evaluation of command outputs. Our heuris-
tic can determine the functional equivalence of
two Bash commands with 95% confidence, a
16% increase over previous heuristics. Evalua-
tion of popular LLMs using our test dataset and
heuristic demonstrates that parsing, in-context
learning, in-weight learning and constrained
decoding can improve NL2SH accuracy by up
to 32%. Our findings emphasize the impor-
tance of dataset quality, execution-based eval-
uation and translation method for advancing
NL2SH translation. Our code is available at
https://github.com/westenfelder/NL2SH.

1 Introduction

The default command-line interface (CLI) for in-
teracting with Linux systems is the Bourne-Again
Shell (Bash) (Shotts, 2019). Bash commands allow
computer users to control processes, interact with
the file system and manage the network. However,
using Bash requires knowledge of numerous util-
ities, each with unique parameters and complex
syntax (Ramey and Fox, 2024). Moreover, the
reference documentation for these utilities, called
manual pages, can be cumbersome and confusing

(Kerrisk, 2024). This makes the CLI a barrier for
inexperienced users and increases the chance of
errors for experienced users (Agarwal et al., 2021).

Language models that convert natural language
to command-line instructions, a task referred to
as NL2SH, NL2CMD or NL2Bash Translation, of-
fer a promising solution to this problem (Agarwal
et al., 2021). We use the term NL2SH model to
refer to models trained specifically for the task
of NL2SH, as well as the NL2SH capabilities of
general-purpose large language models (LLMs).
Figure 1 shows an example of natural language to
Bash command translation. NL2SH models are
well suited for CLIs because they are designed
for text-based interactions. NL2SH models can
simplify human-computer interactions by allow-
ing users to interact with Linux systems through
natural language on the command line. This ad-
vancement enhances usability by reducing the need
for syntax memorization (Sammet, 1966).

Input: Natural Language
List files in the /workspace directory that
were accessed over an hour ago.
Output: Bash Command
find /workspace -type f -amin +60

Figure 1: Natural language to Bash command transla-
tion example from our NL2SH-ALFA dataset.

The use of NL2SH models necessitates bench-
marks to measure task accuracy (Lloyd et al., 2024;
Sadykov, 2024; Rosenkilde et al., 2024; Microsoft,
2024; Services, 2024). A NL2SH benchmark
requires test data consisting of natural language
prompts and ground truth commands (referred to
as instruction-command pairs). Given a natural lan-
guage prompt, a NL2SH model generates a Bash
command. A benchmark must then use a heuristic
to determine if the model command is functionally
equivalent to the ground truth command. Determin-
ing functional equivalence of commands is difficult
because there are multiple possible correct com-

11135

https://github.com/westenfelder/NL2SH


mands for a given task, due to a wide range of
interchangeable utilities. Further, command execu-
tion may not result in identical outputs, neutralizing
evaluation with string comparison. Current bench-
marks do not accurately measure NL2SH model
performance due to errors in assessment data and
inaccurate heuristics for determining the functional
equivalence of commands (Yang et al., 2023; Song
et al., 2024; Aggarwal et al., 2024). This makes it
difficult to assess model capabilities and measure
methods for improving model performance.

To address these challenges, we investigate the
following research questions: (1) How can we vali-
date NL2SH datasets to ensure models are evalu-
ated using accurate assessments? (2) How can we
design a functional equivalence heuristic that accu-
rately measures the quality of model translations?
(3) How can we improve the accuracy of NL2SH
models as measured by a reliable benchmark?

Our contributions are summarized as follows: (1)
We create a manually verified test dataset of 600
instruction-command pairs and a training dataset
of 40,939 pairs, increasing the size of previous test
and training datasets by 441% and 135%, respec-
tively. (2) We present a novel functional equiva-
lence heuristic that combines command execution
with LLM evaluation of command outputs, capa-
ble of determining the functional equivalence of
two Bash commands with 95% confidence, a 16%
increase over previous heuristics. (3) We evalu-
ate popular LLMs using our test data and heuristic
and demonstrate that parsing, in-context learning,
in-weight learning and constrained decoding can
improve NL2SH accuracy by up to 32%.

2 Background

NL2SH translation falls under the broader domain
of machine translation, where models automatically
translate text or speech from one language to an-
other. LLMs are well suited for this task, enabling
translation that was impossible with previous meth-
ods (Zhu et al., 2024b). Evaluating NL2SH models
requires determining the functional correctness of
generated commands. Functional correctness is
defined as whether the code produces the correct
output for each input, as specified, or as compared
to ground truth (Chen et al., 2024). Functional
correctness does not consider the diversity of code
generated, or other factors such as run time and
memory consumption (Chon et al., 2024).

Ensuring the functional correctness of code is

difficult because validation methods are error-prone
and take an impractical amount of time for large
volumes of code (Chen et al., 2024). There are two
main validation techniques: static and dynamic
analysis. Static analysis checks code without ex-
ecution, using parsers, lexical analysis or control
flow checking (Shaikhelislamov et al., 2024). Dy-
namic analysis evaluates code outputs and runtime
behavior using an execution environment (Yang
et al., 2023). Some frameworks combine static and
dynamic analysis (Aggarwal et al., 2024).

Determining the functional correctness of Bash
commands translated from natural language is a
sub-problem of validating code correctness. We as-
sess the functional correctness of Bash commands
by comparing the generated (model) command
with a ground truth Bash command. We define
the term "functional equivalence heuristic" (FEH)
to describe a heuristic that performs this compari-
son and determines the functional correctness of a
Bash command. Due to varying definitions in this
field, we provide notation in Table 1 defining the
terms used in this paper.

Table 1: Definition of terms.

Term Definition
Natural Language Task t ∈ T English

Ground Truth Command b ∈ B Bash-5.2

Model Command b′ ∈ B

Functionally Equivalent b̂ ∈ B

Command

Docker Environment e ∈ E Linux

Command Output o ∈ O stdout and system state
and Side Effects

Model Weights θ ∈ R
Translation f : T × R → B f(t, θ) = b′

Execution g : B × E → O

g(b, e) = o g(b′, e) = o′

Ideal FEH m : T × O × O → {0, 1}

m(t, o, o′) =

{
1 : o ≈ o′

0 : o ̸= o′

Training Dataset DT : {(ti, bi) | i = 1, 2, . . . , x}
Test Dataset DH : {(ti, bi, b̂i) | i = 1, 2, . . . , y}

m(t, g(b, e), g(b̂, e)) = 1 ideal m
DT ∩ DH = ∅

Benchmark (DH ,m)

3 Related Work

NL2SH translation is a well-studied natural lan-
guage processing (NLP) task. Table 2 summarizes
the contributions of previous work by listing the
names of datasets, functional equivalence heuris-
tics (FEHs), and models used in this field. The
table is sparsely populated because the majority
of previous work focused on improving a NL2SH
dataset, FEH, or model in isolation.

11136



Table 2: Summary of NL2SH datasets, FEHs, and mod-
els created in previous work.

Citation Datasets FEHs Models
Lin et al. (2018) NL2Bash - -
Gros (2019) - - AInix
Agarwal et al. (2021) - NL2CMD Tellina
Fu et al. (2021) - - Magnum
Ramesh (2022) NL2CMD - -
Bharadwaj et al. (2022) - - AST
Jenson and Liu (2022) - - T5, GPT2
Shi et al. (2023) - - ShellGPT
Yang et al. (2023) InterCode-Bash InterCode -
Mali (2023) text_to_bash - -
Cassano et al. (2023) MultiPL-E Unit Tests -
Song et al. (2024) - TSED -
Aggarwal et al. (2024) CodeSift CodeSift -
Vo et al. (2024) IBM_Instana Podman -
Romit (2024) LinuxCmds - -
Lloyd et al. (2024) - - Warp AI
Sadykov (2024) - - shell-gpt
Rosenkilde et al. (2024) - - Copilot CLI
Services (2024) - - CodeWhisperer
Microsoft (2024) - - AI Shell
Chatterjee et al. (2024) - - ScriptSmith
Joshi (2024) - - CodeLlama2
Ours (2025) NL2SH-ALFA IC-ALFA Llama, Qwen, GPT

The 2020 NeurIPS NLC2CMD Competition for-
malized the task of NL2SH translation by provid-
ing a human-curated NL2Bash dataset of 9,305
instruction-command pairs and the NL2CMD
benchmark for evaluating submitted models (Lin
et al., 2018; Agarwal et al., 2021). The compe-
tition resulted in numerous NL2SH models and
showed that fine-tuning a pre-trained foundation
model could outperform dedicated transformer (Fu
et al., 2021), recurrent neural network (Lin, 2017),
abstract syntax tree (Bharadwaj et al., 2022), and
sequence to sequence (Gros, 2019) based models
for the task of NL2SH translation (Shi et al., 2023).

The NL2CMD benchmarks’s FEH parses com-
mands and assigns a similarity score based on the
utilities used, order of utilities, and number of util-
ity flags. This heuristic outperforms conventional
string comparison techniques, such as edit distance,
for measuring the functional equivalence of com-
mands. However, Agarwal et al. (2021) state that
the NL2CMD FEH could be improved by execut-
ing commands and measuring the similarity of the
outputs and side effects. Verification by execution
is preferable because Bash is a Turing-complete
language, so verifying the equivalence of two com-
mands before execution is undecidable due to side
effects (Churchill et al., 2019). Despite this known
shortcoming, the NL2CMD benchmark is widely
used for model evaluations (Fu et al., 2023).

Yang et al. (2023) address this shortcoming
with the InterCode-Bash benchmark. The bench-
mark uses a subset of 224 instruction-command
pairs from the NL2Bash dataset for testing. In-

terCode’s FEH executes the model command and
ground truth command in identical Docker con-
tainers (Merkel, 2014). The results of command
execution are then compared using three checks.
First, the pre and post-execution states of each
container are compared using git-diff. Second,
the file contents of each container are compared
using MD5 hashes. Third, the standard output
of both commands are vectorized and compared
using the term frequency, inverse document fre-
quency (TFIDF) method (Sparck Jones, 1988). If
every check finds the execution results identical,
the model and ground truth command are consid-
ered functionally equivalent (Yang et al., 2023).
Although this method is more accurate than previ-
ous heuristics, it will fail to identify a valid model
command that has syntactically different output
from the ground truth command.

Huang et al. (2022) and Vijayaraghavan et al.
(2024) present similar execution-based frameworks
for Jupyter Notebooks and VHDL code, respec-
tively. Vo et al. (2024) describe an execution-based
framework similar to the InterCode-Bash bench-
mark using Podman containers. Unfortunately, the
code for their FEH and the 50 instruction-command
pairs in their test dataset are not public.

Focusing on the FEH, Song et al. (2024) present
a novel benchmark that uses OpenAI’s GPT-4
model to determine functional equivalence. Their
FEH passes the model command and ground truth
command to GPT-4 with the prompt, "Given 2 Bash
commands, please generate a similarity score from
0 to 1." Song et al. (2024) find this method fails to
determine functional equivalence because current
LLMs are unable to emulate command execution.
Maveli et al. (2024) and Naik (2024) confirm this
finding with broader evaluations of LLM’s ability
to determine semantically equivalent or different
pairs of programs. They find LLMs show a lack of
depth in understanding code semantics.

Aggarwal et al. (2024) attempt to advance the
work presented by Song et al. (2024), by address-
ing the scalability constraints of execution-based
frameworks. Their FEH, CodeSift, uses an LLM
to convert the model command to a natural lan-
guage description. Then they compare this nat-
ural language description with the original natu-
ral language task using an LLM. While they find
CodeSift to be more effective than conventional
FEHs, their work lacks comparison with execution
based heuristics. Further, their FEH introduces
uncertainty by requiring accurate Bash to natural

11137



Figure 2: A diagram of NL2SH translation with a comparison of functional equivalence heuristics.

language translation, which is equally as challeng-
ing as the task they aim to measure, natural lan-
guage to Bash translation. Their follow on work
concludes that "executing [Bash] scripts within a
controlled environment would offer more reliable
assessments" (Chatterjee et al., 2024).

The MultiPL-E benchmark is widely used for
evaluating code generation models, containing 540
Bash scripting tasks (Cassano et al., 2023). This
benchmark uses unit tests to determine if a gen-
erated script produces the expected output for a
given input. The use of unit tests is sufficient for
this benchmark because its tasks, such as string ma-
nipulation and math calculations, are deterministic
and result in simple outputs. This method fails to
assess file manipulation, system administration and
network management tasks because they produce
more complex outputs than what can reasonably be
assessed with unit tests.

Current SOTA NL2SH models use general pur-
pose LLMs for translation. In practice, users can
either accept, reject, or edit the model translation
(Lloyd et al., 2024; Rosenkilde et al., 2024). A
human-in-the-loop approach is necessary because
the models may produce incorrect translations (Hui
et al., 2024). Efforts to improve model performance
include fine-tuning and prompt engineering. Jen-
son and Liu (2022) fine-tune the BART, T5, and
GPT-2 models on the NL2Bash dataset and find

model performance improves as measured by the
NL2CMD benchmark. Joshi (2024) conducts a
similar study, fine-tuning the CodeLlama2 model
on the NL2Bash dataset. Unfortunately, neither of
these studies evaluate their models using a reliable
execution-based benchmark.

We begin by creating verified and expanded
NL2SH datasets starting from multiple datasets
presented in previous work. Next, we combine
the InterCode execution FEH presented by Yang
et al. (2023) with the language model evaluation
presented by Song et al. (2024). Using our new
datasets and FEH, we evaluate methods for improv-
ing model performance. Figure 2 summarizes the
shortcomings of FEHs in previous work.

4 Methodology

4.1 Dataset Creation

Bash is considered a low-resource programming
language due to the limited availability of NL2SH
data (Joel et al., 2024). We aim to augment NL2SH
datasets and begin with an evaluation of Inter-
Code. All 224 commands in the InterCode dataset
were manually curated from the NL2Bash dataset
presented by Lin et al. (2018), containing 9,305
instruction-command pairs. The InterCode dataset
is significantly smaller than the NL2Bash dataset
because a Docker environment is configured for
each command, enabling execution. We manually

11138



verify all 224 instruction-command pairs and find
that over half of the InterCode dataset is erroneous.

Table 3 shows the number of errors organized
by type. We define three types of errors: invalid
prompt, invalid command, and invalid environment.
An invalid prompt error refers to a natural language
instruction that describes an impossible task or does
not give enough information to accomplish the task.
An invalid command error refers to a Bash com-
mand that does not accomplish the task described in
the prompt or does not execute. An invalid environ-
ment error refers to an incorrect Docker configura-
tion such as a missing file, environment variable, or
utility that prevents a valid command from accom-
plishing the task. Our manual verification reveals
102 instruction-command pairs with one or more
errors and 11 duplicate pairs.

Table 3: InterCode dataset errors.

Error Type Count Percentage
Duplicate 11 4.9%
Invalid Prompt 17 7.6%
Invalid Cmd 24 10.7%
Invalid Env 18 8.0%
Invalid Prompt and Cmd 29 12.9%
Invalid Prompt and Env 0 0.0%
Invalid Cmd and Env 3 1.3%
Invalid Prompt, Cmd and Env 11 4.9%
Invalid Total 113 50.4%
Valid Total 111 49.6%

We fix 82 of these errors by correcting natural
language prompts, Bash commands, and Docker
configuration files. We remove 11 duplicate and 20
irreparable pairs from the dataset, resulting in 193
verified pairs. We create 117 more verified pairs by
referencing Bash tutorials and books, such as The
Linux Command Line by Shotts (2019) and the
Linux Command Line and Shell Scripting Bible by
Blum and Bresnahan (2021).

Additionally, for our 300 verified pairs, we cre-
ate a second Bash command that accomplishes the
task described in the prompt. Our final test dataset
contains two functionally equivalent, ground truth
Bash commands for each natural language instruc-
tion, for a total of 600 instruction-command pairs.
This is an increase of 441% over the 111 valid
commands in the InterCode dataset. Our annotated
corrections for the InterCode dataset errors can be
found on HuggingFace1.

We collect training data by combining the
NL2Bash dataset with three publicly available
NL2SH datasets (Ramesh, 2022; Romit, 2024;
Mali, 2023). Further, we scrape the tldr-pages,

1InterCode-Corrections HuggingFace

a collection of example Bash commands, as a
new data source (Krishna et al., 2024). We com-
bine these data sources and deduplicate with exact
matching. Then, we use the bashlex parser to re-
move unparsable commands (Kamara, 2016).

We de-conflict our training and test dataset using
exact matching and semantic similarity, removing
917 rows from the training data. First, we remove
rows from the training data that exactly match in-
structions or commands in the test data. Next, we
remove pairs from the training data with a natu-
ral language prompt that is syntactically similar to
a prompt in the test data using the mxbai-embed-
large-v1 embedding model and a cosine similarity
threshold of 0.9 (Lee et al., 2024). Our final train-
ing dataset contains 40,939 instruction-command
pairs, an increase of 135% over the previous largest
dataset. Figure 3 shows the relationships between
data sources used to create our datasets. Our final
datasets can be found on HuggingFace2.

Figure 3: Relationships between NL2SH datasets.

4.2 Functional Equivalence Heuristic (FEH)

Our evaluation of related work in Section 3 reveals
the InterCode benchmark is more accurate than pre-
vious NL2SH benchmarks because its FEH uses
execution-based evaluation. However, its TFIDF
method for comparing command outputs may fail
to determine functional equivalence because syn-
tactically different outputs may convey the same
information to the end user.

For example, consider the prompt "Print the disk
usage of the current directory", a ground truth com-
mand of "du -s ." and a model command of "du
-d 0 -h". The first command outputs the number
of bytes and the second command outputs the num-
ber of bytes in human-readable format. The two
commands are functionally equivalent, conditioned
on the prompt. However, their outputs contain dif-
ferent characters, resulting in a low similarity score
using TfidfVectorizer. Similar issues arise when
comparing commands that print hardware informa-
tion or system time in different formats, display

2NL2SH-ALFA HuggingFace

11139

https://huggingface.co/datasets/westenfelder/InterCode-Corrections
https://huggingface.co/datasets/westenfelder/NL2SH-ALFA


text with line numbers or other delimiters, and use
non-deterministic utilities, such as those that inter-
act with the network. The difficulty of determining
functional equivalence is exacerbated by ambiguity
in natural language prompts, which is an inherent
problem with human inputs.

To address this problem, we replace the Tfid-
fVectorizer method for comparing command out-
puts with an LLM. Our intuition is that an LLM can
determine more complex cases of functional equiv-
alence by evaluating the semantics of command
outputs with relation to the prompt. Replacing
TfidfVectorizer with an LLM increases the compu-
tational cost of the FEH. Additionally, since LLMs
are stochastic, our FEH has inherent variability. We
compare our FEH with previous heuristics in Sec-
tion 5.1, finding it achieves superior performance.

We present our FEH and test dataset as a new
version of the InterCode benchmark, InterCode-
ALFA. Our benchmark and datasets are released
under MIT licenses. In addition to the dataset and
FEH modifications, we add error handling and up-
date the Docker configuration files to use stable
Linux releases. We also identify and fix an error
in the benchmark’s Docker reset script that causes
the filesystem structure of the two execution envi-
ronments to diverge. We publish the benchmark
source code on GitHub3 and provide a Python pack-
age on PyPI4 for ease of use. Our benchmark and
dataset can be configured with 10 lines of code,
simplifying the process for evaluating new models.

4.3 Translation Methods
Using our benchmark, we evaluate the NL2SH per-
formance of the Llama, Qwen and GPT model
families (Llama, 2024; Hui et al., 2024; OpenAI,
2024). We find the models have poor baseline
performance and identify three translation failure
modes: incorrect output format, incorrect utility
and syntactically incorrect Bash command.

Incorrect output format refers to a translation
with extraneous information, such as an explana-
tion of the translation, or additional text format-
ting, such as markdown code blocks. Incorrect
utility refers to a translation with a utility that can-
not accomplish the task described in the prompt.
Syntactically incorrect Bash command refers to a
translation that is not valid Bash syntax.

To address these failure modes, we evaluate
four methods for improving model performance:

3InterCode-ALFA GitHub
4InterCode-ALFA PyPI

markdown parsing 4.3.1, constrained decoding
(CD) 4.3.2, in-context learning (ICL) 4.3.3, and
in-weight learning (IWL) 4.3.4. Our results are
listed in Section 5.2.

4.3.1 Markdown Parser
Despite prompting models with "You will not out-
put markdown or other formatting", translations
often include markdown formatting, likely due to
instruct tuning. We implement a markdown parser
to extract the Bash command from the first code
block in model outputs, discarding additional text.

4.3.2 Constrained Decoding
We inspect the token probabilities for each ground
truth Bash command in our test dataset using the
Llama3.1-8b-Instruct model. We find the average
relative probability of the first token is four orders
of magnitude smaller than the following tokens. In
our case, the first token of each command is a Bash
utility. This indicates the model is unlikely to select
the correct utility as the first token. However, if it
does select the correct utility, the following flags
and arguments are correct with high probability.
We address this by constraining the first tokens of
the model output to a list of Bash utilities using
grammar-constrained decoding Geng et al. (2023).

4.3.3 In-Context Learning
In-context learning can improve model perfor-
mance for a variety of tasks (Brown et al., 2020;
Alves et al., 2023). We select 50 representa-
tive instruction-command pairs from our training
dataset as ICL examples. We create embeddings
for the commands using the mxbai-embed-large-v1
model and cluster the embeddings using k-means
clustering. The closest instruction-command pair
to each centroid is selected as an ICL example.
We append these pairs to our translation prompt as
show in Figure 9. We evaluate the performance of
Llama3.1-8b-Instruct with the number of appended
pairs ranging from 1-50 and find the optimal num-
ber to be 25, with performance saturating as more
pairs are added. We use 25 example instruction-
command pairs for all ICL evaluations.

4.3.4 In-Weight Learning
We use our training dataset to perform a LoRA
fine-tune of the Llama and Qwen models (Hu
et al., 2021). We experiment with common hyper-
parameters within our hardware constraint of a sin-
gle Nvidia RTX A6000. We find that training each
model for 10 epochs with an adapter rank of 64,

11140

https://github.com/westenfelder/InterCode-ALFA
https://pypi.org/project/icalfa/


adapter alpha of 32, adapter dropout of 0.1, batch
size of 32 and learning rate of 1e − 5 results in
the best performance. We do not fine-tune the GPT
models due to financial constraints and the inability
to control training hyper-parameters.

5 Experiments

5.1 Evaluation of FEHs

We compare our FEH with the heuristics presented
by Sparck Jones (1988), Papineni et al. (2002),
Agarwal et al. (2021), Yang et al. (2023) and Song
et al. (2024) in previous work using our test dataset.
A FEH should return true given two functionally
equivalent Bash commands, and false given two
non-equivalent Bash commands. We record the
precision, recall, F1 score and accuracy of each
FEH and report our results in Table 4.

Our test dataset, described in Section 4.1, is
structured {nl, bash, bash2}, providing 300 pairs of
functionally equivalent commands. To create a set
of non-equivalent commands, we arbitrarily rotate
the third column of the dataset by ten positions.
The result is 600 pairs of Bash commands. Ex-
plicitly, each FEH is tested using 300 functionally
equivalent pairs m(t, g(b, e), g(b̂, e)) = 1 where
g(b, e) ≈ g(b̂, e) and 300 non-equivalent pairs
m(t, g(b, e), g(b̂, e)) = 0 where g(b, e) ̸= g(b̂, e).

For the bleu and nl2cmd FEHs we use a thresh-
old of 0.75 for functional equivalence. For the
tfidf and mxbai-embed FEHs we calculate the co-
sine similarity of the resulting embeddings and
use a threshold of 0.75 for functional equivalence.
For the llama-3.1-8b-inst, gpt-3.5-t-0125 and gpt-
4-0613 FEHs we pass the tasks and commands
to each model using the prompt in Figure 5. For
the exec + tfidf and exec + mxbai-embed FEHs,
we pass the stdout of command execution to the
models, calculate the cosine similarity of the re-
sulting embeddings and use a threshold of 0.75
for functional equivalence. Finally, for the exec +
llama-3.1-8b-inst, exec + gpt-3.5-t-0125 and exec
+ gpt-4-0613 FEHs, we pass the tasks, commands
and stdouts of command execution to each model
using the prompt in Figure 6. We use a temperature
of zero and a static seed value of 123 for all LLMs.

5.2 Evaluation of Translation Methods

We evaluate the impact of parsing, constrained de-
coding, in-context learning and in-weight learning
on the NL2SH performance of the Llama, Qwen
and GPT model families. All models are evaluated

Table 4: Evaluation of Bash functional equivalence
heuristics. Heuristics were tested on a dataset com-
prising 300 pairs of equivalent commands and 300 pairs
of non-equivalent commands. We find execution paired
with LLM evaluation significantly increases recall. Bold
indicates the highest F1 score and accuracy.

Heuristic Prec. Rec. F1 Acc.
bleu (Papineni et al., 2002) 0.99 0.39 0.56 0.69
nl2cmd (Agarwal et al., 2021) 0.98 0.20 0.33 0.60
tfidf (Sparck Jones, 1988) 0.99 0.46 0.63 0.73
exec + tfidf (Yang et al., 2023) 0.99 0.65 0.79 0.82
mxbai-embed (Lee et al., 2024) 0.84 0.88 0.86 0.85
exec + mxbai-embed (Ours) 0.97 0.83 0.90 0.90
llama-3.1-8b-inst (Llama, 2024) 1.00 0.05 0.10 0.53
exec + llama-3.1-8b-inst (Ours) 0.88 0.74 0.80 0.82
gpt-3.5-t-0125 (Brown et al., 2020) 1.00 0.37 0.54 0.69
exec + gpt-3.5-t-0125 (Ours) 0.98 0.60 0.75 0.80
gpt-4-0613 (Song et al., 2024) 1.00 0.51 0.68 0.76
exec + gpt-4-0613 (Ours) 0.99 0.91 0.95 0.95

using version 0.3.6 of the InterCode-ALFA bench-
mark with the execution + mxbai-embed FEH. Our
results are summarized in Table 5.

We use the prompt in Figure 7 for the baseline
evaluation. For the constrained decoding evalua-
tion, we use the prompt in Figure 8 and constrain
the first tokens of the model output to a list of
Bash utilities, as described in Section 4.3.2. For
the parser evaluation, we use the prompt in Figure
8 and pass model outputs to a markdown parser,
as described in Section 4.3.1. For the in-context
learning evaluation, we use the prompt in Figure
9. Finally, for the in-weight learning evaluation,
we use the prompt in Figure 8 and the fine-tuned
models described in Section 4.3.4. We use a tem-
perature of zero and a static seed value of 123 for
all model evaluations.

Table 5: Impact of constrained decoding, parsing, in-
context learning and in-weight learning on the NL2SH
performance of Llama, Qwen and GPT models. Accu-
racy is measured using the exec + mxbai-embed FEH.
Translation method can improve performance up to 32%
over the baseline, but model size remains the dominant
factor. The highest accuracy in each row and column is
indicated with bold and an underline, respectively.

Model Base CD Parse ICL IWL
llama-3.2-1b-instruct 0.12 0.19 0.32 0.34 0.37
llama-3.2-3b-instruct 0.17 0.39 0.49 0.47 0.47
llama-3.1-8b-instruct 0.46 0.51 0.53 0.56 0.40
qwen2.5-coder-0.5b-instruct 0.10 0.05 0.35 0.36 0.27
qwen2.5-coder-1.5b-instruct 0.21 0.06 0.50 0.44 0.19
qwen2.5-coder-3b-instruct 0.26 0.06 0.58 0.50 0.51
qwen2.5-coder-7b-instruct 0.61 0.08 0.62 0.62 0.51
gpt-3.5-turbo-0125 0.58 - 0.67 0.69 -
gpt-4o-mini-2024-07-18 0.71 - 0.72 0.71 -
gpt-4o-2024-08-06 0.74 - 0.73 0.73 -
gpt-4-0613 0.68 - 0.68 0.73 -

11141



6 Discussion

6.1 Dataset

Our first research question aims to validate NL2SH
datasets to ensure models are evaluated using valid
translations. Manual verification of the Inter-
Code dataset identified over half of the instruction-
command pairs as erroneous. We find human verifi-
cation of data is important for reliable evaluations.

Manual creation and verification of our test
dataset took over 100 hours, highlighting the need
for more efficient means to verify larger datasets.
Further, since the InterCode dataset is sampled
from the NL2Bash dataset, there is a risk the
NL2Bash dataset contains a significant percent-
age of erroneous data. This is concerning because
the NL2Bash dataset is commonly used to train
NL2SH models (Fu et al., 2021; Lin, 2017; Shi
et al., 2023; Bharadwaj et al., 2022; Joshi, 2024).

We are confident our training dataset contains
valid data due to our filtering process to remove
invalid Bash commands. Moreover, fine-tuning the
Llama and Qwen models using our dataset results
in an average performance increase of 11%.

6.2 Functional Equivalence Heuristic

Our second research question aims to design an
FEH that accurately measures the quality of model
translations. We find that command execution
paired with LLM evaluation of command outputs
can determine the functional equivalence of Bash
commands with 95% accuracy. The ability of
LLMs to condition command outputs on natural
language inputs is an advancement that was not pos-
sible with previous heuristics. Further, command
execution improves performance across methods
and the use of an LLM significantly increases re-
call. Broadly, LLM evaluation of execution out-
puts is a promising advancement for measuring the
functional correctness of generated code and more
investigation is warranted.

In accordance with Maveli et al. (2024), we find
that without execution, current LLMs are poor ar-
biters of functional equivalence, achieving simi-
lar performance when compared to conventional
evaluation methods. Non-execution methods likely
fail because two commands can be syntactically
similar and yield different results when executed.
For example, changing a single flag can result in
vastly different command outputs. Further, two
commands with no syntactic similarity can yield
identical results when executed. For example, the

awk and sed utilities can accomplish identical text
processing tasks but use different domain-specific
languages, requiring different syntax. Notably, the
low recall of bleu and nl2cmd FEHs indicates these
methods cannot identify cases where syntactically
different commands are functionally equivalent.

6.3 Translation Methods

Our third research question aims to improve the ac-
curacy of NL2SH models as measured by a reliable
benchmark. We find that constrained decoding,
parsing, in-context learning and in-weight learning
can improve model performance by up to 32%. Our
baseline evaluation shows that model performance
is correlated with number of parameters.

We find that constrained decoding is model de-
pendent, with performance increases for Llama
models and significant performance decreases for
Qwen models. Parsing and ICL provide perfor-
mance increases across Llama and Qwen models,
with average increases of 21% and 19%, respec-
tively. However, these methods have a decreasing
impact as model size increases. This is evidence
that incorrect output format is the dominant failure
mode for small (less than 7b parameter) models.

With IWL, llama-3.2-3b-instruct and qwen2.5-
coder-0.5b-instruct achieve the baseline perfor-
mance of llama-3.1-8b-instruct and qwen2.5-coder-
3b-instruct, respectively. Despite performance
gains for small models, fine-tuning decreases the
performance of llama-3.1-8b-instruct and qwen2.5-
coder-7b-instruct. This is likely due to computa-
tional constraints on the size of our LoRA adapters,
which we are unable to scale with model size.

We find that gpt-4o-2024-08-06 achieves SOTA
performance on our benchmark, correctly trans-
lating 74% of test cases. From the total of our
experiences, we find that NL2SH translation is a
difficult task for current models, necessitating im-
provements before models can be used in practice.

7 Conclusion

In this paper, we explore applications for LLMs in
NL2SH translation and benchmarking. We identify
issues with current benchmarks, including inac-
curate datasets and unreliable functional equiva-
lence heuristics. To address these problems, we
correct and expand NL2SH datasets and create a
new heuristic to determine the functional equiva-
lence of Bash commands. We assess our heuristic
and find that Bash command execution paired with

11142



language model evaluation of command outputs
can determine the functional equivalence of com-
mands more accurately than previous heuristics.
Using our dataset and heuristic, we evaluate how
constrained decoding, parsing, in-context learning
and in-weight learning impact the performance of
Llama, Qwen and GPT models. We find that pars-
ing and in-context learning reliably improve the
performance of open and closed-source LLMs for
the task of NL2SH translation. Ultimately, we find
that NL2SH translation is a difficult task for LLMs,
necessitating further research in this field. In fu-
ture work, we plan to investigate efficient means
to verify our training dataset and conduct more
fine-tuning experiments.

8 Limitations

This work presents a verified and expanded NL2SH
test dataset. However, due to the time and effort
required to manually configure an execution envi-
ronment for each command, the dataset remains
small, with only 600 test cases. In contrast, our
training dataset is too large for manual verification,
and we are unable to guarantee its correctness. Our
datasets are limited to English prompts and one-
line Bash commands. We do not consider other
natural languages or scripting languages.

Although improved over previous methods, our
functional equivalence heuristic has inherent vari-
ability due to the use of an LLM, requiring multiple
runs to assess model performance. The use of an
LLM also increases the computational cost of run-
ning our heuristic compared to conventional meth-
ods. Finally, despite improved model performance
with constrained decoding, parsing, ICL and IWL,
the accuracy of SOTA LLMs for NL2SH transla-
tion remains low, motivating further research.

9 Ethical Considerations

Due to the low performance of current NL2SH
models, using these models in practice could result
in invalid commands that have unintended effects
on a system. We recommend that model-generated
commands are never used without human verifica-
tion. Further, we recommend that users test com-
mands using a sand-boxed environment, such as
try (Zhu et al., 2024a), before running them on per-
sonal systems. Figure 4 shows an example of a dan-
gerous command observed during model testing.
The hallucinated rm -f /dev/null command cor-
rupted our benchmark’s Docker container. While

our benchmark automatically creates a new Docker
container to handle this type of error, the command
could have corrupted a user’s system.

Natural Language Prompt:
Recursively remove all empty folders from the
/system/temp folder.
Ground Truth Command:
find /system/temp -type d -empty -delete
Llama3.1-8b-Instruct Command:
find /system/temp -type d -empty -delete
-print; rm -f /dev/null 2>&1

Figure 4: Dangerous translation observed in testing.

Natural language to Bash translation aims to in-
crease computer accessability by simplifying in-
teractions with the command-line interface. Un-
fortunately, good and bad actors can benefit from
increased accessability. Models could be used to
generate malicious Bash commands. This risk is
difficult to mitigate because malicious use depends
on the intent of the user. For example, a com-
mand to delete files could be used for a legitimate
or harmful purpose. We do not believe current
NL2SH models pose any risks beyond those of
other readily available Bash resources.

References
Mayank Agarwal, Tathagata Chakraborti, Quchen Fu,

David Gros, Xi Victoria Lin, Jaron Maene, Kartik Ta-
lamadupula, Zhongwei Teng, and Jules White. 2021.
Neurips 2020 nlc2cmd competition: Translating nat-
ural language to bash commands. In Proceedings
of the NeurIPS 2020 Competition and Demonstra-
tion Track, volume 133 of Proceedings of Machine
Learning Research, pages 302–324. PMLR.

Pooja Aggarwal, Oishik Chatterjee, Ting Dai, Prateeti
Mohapatra, Brent Paulovicks, Brad Blancett, and
Arthur De Magalhaes. 2024. CodeSift: An LLM-
Based Reference-Less Framework for Automatic
Code Validation . In 2024 IEEE 17th International
Conference on Cloud Computing (CLOUD), pages
404–410, Los Alamitos, CA, USA. IEEE Computer
Society.

Duarte Alves, Nuno Guerreiro, João Alves, José Pom-
bal, Ricardo Rei, José de Souza, Pierre Colombo,
and Andre Martins. 2023. Steering large language
models for machine translation with finetuning and
in-context learning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
11127–11148, Singapore. Association for Computa-
tional Linguistics.

Shikhar Bharadwaj, Shirish Shevade, and Marine
Carpuat. 2022. Efficient constituency tree based en-
coding for natural language to bash translation. In
Proceedings of the 2022 Conference of the North

11143

https://proceedings.mlr.press/v133/agarwal21b.html
https://proceedings.mlr.press/v133/agarwal21b.html
https://doi.org/10.1109/CLOUD62652.2024.00052
https://doi.org/10.1109/CLOUD62652.2024.00052
https://doi.org/10.1109/CLOUD62652.2024.00052
https://doi.org/10.18653/v1/2023.findings-emnlp.744
https://doi.org/10.18653/v1/2023.findings-emnlp.744
https://doi.org/10.18653/v1/2023.findings-emnlp.744
https://doi.org/10.18653/v1/2022.naacl-main.230
https://doi.org/10.18653/v1/2022.naacl-main.230


American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3159–3168, Seattle, United States. Association
for Computational Linguistics.

Richard Blum and Christine Bresnahan. 2021. Linux
Command Line and Shell Scripting Bible. Wiley.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, Arjun Guha, Michael Greenberg,
and Abhinav Jangda. 2023. MultiPL-E: A Scal-
able and Polyglot Approach to Benchmarking Neural
Code Generation . IEEE Transactions on Software
Engineering, 49(07):3675–3691.

Oishik Chatterjee, Pooja Aggarwal, Suranjana Samanta,
Ting Dai, Prateeti Mohapatra, Debanjana Kar, Ruchi
Mahindru, Steve Barbieri, Eugen Postea, Brad
Blancett, and Arthur De Magalhaes. 2024. Script-
smith: A unified llm framework for enhancing it op-
erations via automated bash script generation, assess-
ment, and refinement. Preprint, arXiv:2409.17166.

Liguo Chen, Qi Guo, Hongrui Jia, Zhengran Zeng, Xin
Wang, Yijiang Xu, Jian Wu, Yidong Wang, Qing Gao,
Jindong Wang, Wei Ye, and Shikun Zhang. 2024. A
survey on evaluating large language models in code
generation tasks. Preprint, arXiv:2408.16498.

Heejae Chon, Seonghyeon Lee, Jinyoung Yeo, and
Dongha Lee. 2024. Is functional correctness enough
to evaluate code language models? exploring diver-
sity of generated codes. Preprint, arXiv:2408.14504.

Berkeley Churchill, Oded Padon, Rahul Sharma, and
Alex Aiken. 2019. Semantic program alignment for
equivalence checking. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2019, pages
1027–1040, New York, NY, USA. Association for
Computing Machinery.

Quchen Fu, Zhongwei Teng, Marco Georgaklis, Jules
White, and Douglas Schmidt. 2023. Nl2cmd: An
updated workflow for natural language to bash com-
mands translation. Journal of Machine Learning
Theory, Applications and Practice, 1.

Quchen Fu, Zhongwei Teng, Jules White, and Dou-
glas C. Schmidt. 2021. A transformer-based ap-
proach for translating natural language to bash com-
mands. In 2021 20th IEEE International Conference
on Machine Learning and Applications (ICMLA),
pages 1245–1248.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and
Robert West. 2023. Grammar-constrained decoding
for structured NLP tasks without finetuning. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 10932–
10952, Singapore. Association for Computational
Linguistics.

David Gros. 2019. Ainix: An open platform for natural
language interfaces to shell commands. Undergrad-
uate Honors Thesis, Computer Science Department,
University of Texas at Austin.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Junjie Huang, Chenglong Wang, Jipeng Zhang, Cong
Yan, Haotian Cui, Jeevana Priya Inala, Colin Clement,
and Nan Duan. 2022. Execution-based evaluation for
data science code generation models. In Proceedings
of the Fourth Workshop on Data Science with Human-
in-the-Loop (Language Advances), pages 28–36, Abu
Dhabi, United Arab Emirates (Hybrid). Association
for Computational Linguistics.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Daniel Jenson and Yingxiao Liu. 2022. Translating nat-
ural language to bash commands using deep neural
networks. https://web.stanford.edu/class/
archive/cs/cs224n/cs224n.1224/reports/
custom_116997097.pdf. Accessed: 2024-10-09.

Sathvik Joel, Jie JW Wu, and Fatemeh H. Fard.
2024. A survey on llm-based code generation for
low-resource and domain-specific programming lan-
guages. Preprint, arXiv:2410.03981.

Anish Joshi. 2024. Bash scripting assis-
tant. https://github.com/AnishJoshi13/
Bash-Scripting-Assistant. Accessed: 2024-10-
09.

Idan Kamara. 2016. bashlex: Python parser for bash.
https://github.com/idank/bashlex. Accessed:
2024-09-09.

Michael Kerrisk. 2024. Linux manual pages. https:
//man7.org/linux/man-pages/index.html. Ac-
cessed: 2024-09-09.

K.B.Dharun Krishna, Sebastiaan Speck, Owen Voke,
and Darío Herenu. 2024. Tldr: Collaborative cheat-
sheets for console commands. https://github.
com/tldr-pages/tldr. Accessed: 2024-10-09.

11144

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://arxiv.org/abs/2409.17166
https://arxiv.org/abs/2409.17166
https://arxiv.org/abs/2409.17166
https://arxiv.org/abs/2409.17166
https://arxiv.org/abs/2408.16498
https://arxiv.org/abs/2408.16498
https://arxiv.org/abs/2408.16498
https://arxiv.org/abs/2408.14504
https://arxiv.org/abs/2408.14504
https://arxiv.org/abs/2408.14504
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.13052/jmltapissn.2023.002
https://doi.org/10.13052/jmltapissn.2023.002
https://doi.org/10.13052/jmltapissn.2023.002
https://doi.org/10.1109/ICMLA52953.2021.00202
https://doi.org/10.1109/ICMLA52953.2021.00202
https://doi.org/10.1109/ICMLA52953.2021.00202
https://doi.org/10.18653/v1/2023.emnlp-main.674
https://doi.org/10.18653/v1/2023.emnlp-main.674
http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127814
http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127814
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://aclanthology.org/2022.dash-1.5/
https://aclanthology.org/2022.dash-1.5/
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1224/reports/custom_116997097.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1224/reports/custom_116997097.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1224/reports/custom_116997097.pdf
https://arxiv.org/abs/2410.03981
https://arxiv.org/abs/2410.03981
https://arxiv.org/abs/2410.03981
https://github.com/AnishJoshi13/Bash-Scripting-Assistant
https://github.com/AnishJoshi13/Bash-Scripting-Assistant
https://github.com/idank/bashlex
https://man7.org/linux/man-pages/index.html
https://man7.org/linux/man-pages/index.html
https://github.com/tldr-pages/tldr
https://github.com/tldr-pages/tldr


Sean Lee, Aamir Shakir, Darius Koenig, and Julius
Lipp. 2024. Open source strikes bread - new fluffy
embeddings model.

Xi Victoria Lin. 2017. Program synthesis from natural
language using recurrent neural networks.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D. Ernst. 2018. NL2Bash: A corpus
and semantic parser for natural language interface
to the linux operating system. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Meta Llama. 2024. The llama 3 herd of models.
Preprint, arXiv:2407.21783.

Zach Lloyd, Michelle Lim, and Aloke Desai. 2024.
Warp: Your terminal, reimagined. https://www.
warp.dev/. Accessed: 2024-09-09.

Yogesh Mali. 2023. text_to_bash.

Nickil Maveli, Antonio Vergari, and Shay B. Co-
hen. 2024. What can large language models cap-
ture about code functional equivalence? Preprint,
arXiv:2408.11081.

Dirk Merkel. 2014. Docker: lightweight linux con-
tainers for consistent development and deployment.
Linux journal, 2014(239):2.

Microsoft. 2024. Microsoft ai shell. https:
//learn.microsoft.com/en-us/powershell/
utility-modules/aishell/overview?view=
ps-modules.

Atharva Naik. 2024. On the limitations of embedding
based methods for measuring functional correctness
for code generation. Preprint, arXiv:2405.01580.

OpenAI. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, pages 311–318, USA.
Association for Computational Linguistics.

T. Ramesh. 2022. Nl2cmd. Accessed: 2024-08-20.

Chet Ramey and Brian Fox. 2024. Bash: GNU Project’s
Shell. Accessed: 2024-09-09.

Romit. 2024. Linuxcommands. Accessed: 2024-08-20.

Johan Rosenkilde, Matt Rothenberg, and Andy Feller.
2024. Github copilot for cli. https://githubnext.
com/projects/copilot-cli/.

Farkhod Sadykov. 2024. Shellgpt: A command-line pro-
ductivity tool powered by ai large language models
like gpt-4. https://github.com/TheR1D/shell_
gpt. Accessed: 2024-09-09.

Jean E. Sammet. 1966. The use of english as a program-
ming language. Commun. ACM, 9(3):228–230.

Amazon Web Services. 2024. Amazon codewhisperer
natural language to bash translation. https://
docs.aws.amazon.com/codewhisperer/latest/
userguide/command-line-conversation.html.

Danil Shaikhelislamov, Mikhail Drobyshevskiy, and An-
drey Belevantsev. 2024. Codepatchllm: Configuring
code generation using a static analyzer.

Jie Shi, Sihang Jiang, Bo Xu, Jiaqing Liang, Yanghua
Xiao, and Wei Wang. 2023. Shellgpt: Generative
pre-trained transformer model for shell language un-
derstanding. In 2023 IEEE 34th International Sym-
posium on Software Reliability Engineering (ISSRE),
pages 671–682.

William E Shotts. 2019. The Linux Command Line: A
Complete Introduction. No Starch Press.

Yewei Song, Cedric Lothritz, Xunzhu Tang, Tegawendé
Bissyandé, and Jacques Klein. 2024. Revisiting code
similarity evaluation with abstract syntax tree edit
distance. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 38–46, Bangkok,
Thailand. Association for Computational Linguistics.

Karen Sparck Jones. 1988. A statistical interpretation
of term specificity and its application in retrieval,
pages 132–142. Taylor Graham Publishing, GBR.

Prashanth Vijayaraghavan, Luyao Shi, Stefano Am-
brogio, Charles Mackin, Apoorva Nitsure, David
Beymer, and Ehsan Degan. 2024. Vhdl-eval: A
framework for evaluating large language models in
vhdl code generation. Preprint, arXiv:2406.04379.

Ngoc Phuoc An Vo, Brent Paulovicks, and Vadim
Sheinin. 2024. Execution-based evaluation of nat-
ural language to bash and powershell for incident
remediation. Preprint, arXiv:2405.06807.

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2023. Intercode: standardizing and
benchmarking interactive coding with execution feed-
back. In Proceedings of the 37th International Con-
ference on Neural Information Processing Systems,
NIPS ’23, Red Hook, NY, USA. Curran Associates
Inc.

Ezri Zhu, Georgios Liargkovas, Michael Greenberg,
and Konstantinos Kallas. 2024a. try utility. https:
//github.com/binpash/try. Accessed: 2024-09-
25.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu,
Shujian Huang, Lingpeng Kong, Jiajun Chen, and
Lei Li. 2024b. Multilingual machine translation with
large language models: Empirical results and anal-
ysis. In Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pages 2765–2781,
Mexico City, Mexico. Association for Computational
Linguistics.

11145

https://www.mixedbread.ai/blog/mxbai-embed-large-v1
https://www.mixedbread.ai/blog/mxbai-embed-large-v1
https://api.semanticscholar.org/CorpusID:3809743
https://api.semanticscholar.org/CorpusID:3809743
https://aclanthology.org/L18-1491/
https://aclanthology.org/L18-1491/
https://aclanthology.org/L18-1491/
https://arxiv.org/abs/2407.21783
https://www.warp.dev/
https://www.warp.dev/
https://huggingface.co/datasets/yogeshm/text_to_bash
https://arxiv.org/abs/2408.11081
https://arxiv.org/abs/2408.11081
https://learn.microsoft.com/en-us/powershell/utility-modules/aishell/overview?view=ps-modules
https://learn.microsoft.com/en-us/powershell/utility-modules/aishell/overview?view=ps-modules
https://learn.microsoft.com/en-us/powershell/utility-modules/aishell/overview?view=ps-modules
https://learn.microsoft.com/en-us/powershell/utility-modules/aishell/overview?view=ps-modules
https://arxiv.org/abs/2405.01580
https://arxiv.org/abs/2405.01580
https://arxiv.org/abs/2405.01580
https://arxiv.org/abs/2303.08774
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://huggingface.co/datasets/TRamesh2/NL2CMD
https://huggingface.co/datasets/Romit2004/LinuxCommands
https://githubnext.com/projects/copilot-cli/
https://githubnext.com/projects/copilot-cli/
https://github.com/TheR1D/shell_gpt
https://github.com/TheR1D/shell_gpt
https://doi.org/10.1145/365230.365274
https://doi.org/10.1145/365230.365274
https://docs.aws.amazon.com/codewhisperer/latest/userguide/command-line-conversation.html
https://docs.aws.amazon.com/codewhisperer/latest/userguide/command-line-conversation.html
https://docs.aws.amazon.com/codewhisperer/latest/userguide/command-line-conversation.html
https://genai-evaluation-kdd2024.github.io/genai-evalution-kdd2024/assets/papers/GenAI_Evaluation_KDD2024_paper_25.pdf
https://genai-evaluation-kdd2024.github.io/genai-evalution-kdd2024/assets/papers/GenAI_Evaluation_KDD2024_paper_25.pdf
https://doi.org/10.1109/ISSRE59848.2023.00082
https://doi.org/10.1109/ISSRE59848.2023.00082
https://doi.org/10.1109/ISSRE59848.2023.00082
https://doi.org/10.18653/v1/2024.acl-short.3
https://doi.org/10.18653/v1/2024.acl-short.3
https://doi.org/10.18653/v1/2024.acl-short.3
https://arxiv.org/abs/2406.04379
https://arxiv.org/abs/2406.04379
https://arxiv.org/abs/2406.04379
https://arxiv.org/abs/2405.06807
https://arxiv.org/abs/2405.06807
https://arxiv.org/abs/2405.06807
https://github.com/binpash/try
https://github.com/binpash/try
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176


Appendix A. Prompts

Functional Equivalence Heuristic Prompt: LLM

You will be given a task and two Bash commands. The first command is the ground truth. If the second command accomplishes
the task, return true. Otherwise, return false. Only output ’true’ or ’false’. Task: natural_language_prompt, Ground
Truth Command: ground_truth_command, Model Command: model_command.

Figure 5: Prompt for evaluating the functional equivalence of Bash commands.

Functional Equivalence Heuristic Prompt: Execution + LLM

You will be given a task, two Bash commands, and the output of the two Bash commands. The first command is the
ground truth. If the second command accomplishes the task, return true. Otherwise, return false. Only output ’true’ or

’false’. Task: natural_language_prompt, Ground Truth Command: ground_truth_command, Model Command: model
_command, Ground Truth Command Output: ground_truth_command_output, Model Command Output: model_command
_output.

Figure 6: Prompt for evaluating the functional equivalence of Bash commands after execution. Note the addition of
command outputs compared to the prompt in Figure 5.

Translation Prompt: Baseline

Your task is to translate a natural language instruction to a Bash command. You will receive an instruction in English and
output a Bash command that can be run in a Linux terminal. You will not output markdown or other formatting. You will not
include additional information. natural_language_prompt

Figure 7: NL2SH translation prompt used in the baseline evaluation.

Translation Prompt: Parser, Constrained Decoding and In-Weight Learning

Your task is to translate a natural language instruction to a Bash command. You will receive an instruction in English and
output a Bash command that can be run in a Linux terminal. natural_language_prompt

Figure 8: NL2SH translation prompt used in the parsing, constrained decoding and in-weight learning evaluations.

11146



Translation Prompt: In-Context Learning

Your task is to translate a natural language instruction to a Bash command. You will receive an instruction in English and output a Bash command that can be
run in a Linux terminal.

Show logged-in users info
w

Print the contents of "xx.sh"
cat xx.sh

Change owner to "root" and group to "www-data" of "/foobar/test_file"
chown root:www-data /foobar/test_file

delete all the text files in the current folder
find . -type f -name "*.txt" -delete

find all the files in the /path folder and delete them
find /path -type f -delete

Print the exit status of the last executed command
echo $?

Display a tree of processes
pstree

Display information about all CPUs
lscpu

Make an HTTPS GET request to example.com and dump the contents in ‘stdout‘
curl https://example.com

Display system memory
free

List all files, including hidden files
ls -a

Print a sequence from 1 to 10
seq 10

Get the properties of all the user limits
ulimit -a

List the name and status of all services
service –status-all

Display a calendar for the current month
cal

Show the environment
env

create directory TestProject
mkdir TestProject

Query the default name server for the IP address of example.com
nslookup example.com

Print Hello World
echo "Hello World"

List all bound commands and their hotkeys
bind -p

Display the openssl version
openssl version

Print current time, uptime, number of logged-in users
uptime

Print file system disk space usage
df

List all configuration values available
getconf -a

Delete empty folder ’nonsense_dir’.
rmdir nonsense_dir

natural_language_prompt

Figure 9: NL2SH translation prompt used in the in-context learning evaluation.

11147


