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Abstract
Zero-shot Named Entity Recognition (ZS-
NER) aims to recognize entities in unseen do-
mains without specific annotated data. A key
challenge is handling missing entities while
ensuring accurate type recognition, hindered
by: 1) the pre-training assumption that each
entity has a single type, overlooking diversity,
and 2) insufficient contextual knowledge for
type reasoning. To address this, we propose
IRRA (Integrated Recall and Retrieval Aug-
mentation), a novel two-stage framework lever-
aging large language model techniques. In the
Recall Augmented Entity Extracting stage, we
built a perturbed dataset to induce the model
to exhibit missing or erroneous extracted en-
tities. Based on this, we trained an enhanced
model to correct these errors. This approach
can improve the ZS-NER’s recall rate. In the
Retrieval Augmented Type Correcting stage, we
employ Retrieval-Augmented Generation tech-
niques to locate entity-related unannotated con-
texts, with the additional contextual informa-
tion significantly improving the accuracy of
type correcting. Extensive evaluations demon-
strate the state-of-the-art performance of our
IRRA, with significant improvements in zero-
shot cross-domain settings validated through
both auto-evaluated metrics and analysis. Our
implementation will be open-sourced at https:
//github.com/DMIRLAB-Group/IRRA.

1 Introduction

Zero-shot Named Entity Recognition (ZS-NER)
aims to achieve efficient named entity recognition
in unseen domains without requiring training on
specific annotated datasets. ZS-NER allows for
effective entity detection and classification in vari-
ous domains(Xie et al., 2024a; Picco et al., 2023).
The existing leading ZS-NER approaches involve
end-to-end training of a robust language model on
large NER corpora to enhance its cross-domain
generalization capabilities.

*Corresponding author, hpakyim@gmail.com

Figure 1: The upper part shows the difference between
typical dataset and perturbed dataset. The typical dataset
usually assigns one single gold type to each entity, while
The perturbed dataset assigns multiple types to each
entity. The dashed boxes represent the scope of entity
types sets corresponding to these entity types. The lower
part illustrates that the entity types of the retrieved enti-
ties may be not precise enough.

Although promising results were reported, we
observe that end-to-end solutions have two notable
limitations that adversely impact their generaliza-
tion performance: (i) the lack of diversity in the
data annotation process. Existing NER corpora typ-
ically assign only one type to each entity, whereas
entities in real world may correspond to multiple
types. This restricts the model’s ability to learn the
diversity of entities and understand the connections
between different types during end-to-end training.
As shown in Figure 1, given a sample similar in
form to the training sample but with entities of
different types, the semantic distance between the
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Figure 2: The overall framework. In Stage #2, The extracted entities are used to retrieve contexts, and these
retrieved entity-related contexts are used to prompt the LLM to correct the type of the entity. (“Missing” indicates
that the entity is not extracted in Stage #1)

types “Train institute”, “Institution” and “Univer-
sity” could lead to “PMI” being neither extracted
nor recognized, or (ii) the lack of sufficient contex-
tual information for entity recognition. As shown
in Figure 1, Unlike in the given training set sam-
ple, the context surrounding the entity “PMI” may
be insufficient to determine its specific type. The
key to overcome these limitations lies in decou-
pling the end-to-end processes to introduce specific
augmentation mechanisms.

Instead of utilizing end-to-end methods, we pro-
pose the IRRA (Integrated Recall and Retrieval
Augmentation), a two-stage ZS-NER framework
that strategically leverages large language models
(LLMs) techniques. Specifically, IRRA is fea-
tured with a Recall Augmented Entity Extracting
stage and Retrieval Augmented Type Correcting
stage. In Recall Augmented Entity Extracting stage,
we introduce a data perturbation method by en-
riching each entity’s type with synonyms and hy-
pernyms, thereby constructing a perturbed dataset
which model will make inference errors on it. We
then use these errors to build an enhanced dataset to
train an enhanced extractor, which can recall more
entities. Through the above process, as shown in
Figure 1, the entity “Stanford” in the training sam-
ple matched to multiple types, also increases the
probability that the test sample entity “PMI” to
be extracted, due to the introduction of the types
“Educational institution” and “Institution”, which
are more closely related to “Training institute”. In
Retrieval Augmented Type Correcting stage, we em-

ploy Retrieval-Augmented Generation (RAG) tech-
niques to retrieve contexts in the database related
to the entities extracted in the previous stage. Then
we instruct a frozen LLM to correct the entity’s
type based on the contextual information brought
by the retrieved contexts. The main contributions
of the paper are summarized as follows:

• A two-stage ZS-NER framework, IRRA, com-
posed of an entity extracting stage and a type
correcting stage, integrates LLMs techniques
to address the issue of lack of information in
end-to-end methods.

• A Recall Augmented Entity Extracting stage
constructs a perturbed dataset that improves
type diversity. Based on this, we propose
two different extraction approaches, achiev-
ing nearly a 20% improvement in recall rate
compared to the base extractor.

• A Retrieval Augmented Type Correcting stage
incorporates RAG techniques to address the is-
sue of performance degradation in accurately
classifying entities without necessary exten-
sive contextual information.

• We conduct extensive experiments to evalu-
ate the effectiveness of IRRA, which notably
outperforms the state-of-the-art LLM-based
methods.
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2 Related Work

2.1 LLM Self-correction

The evolution of LLMs has brought the concept of
self-correction into focus. The discussion around
self-correction centers on whether these advanced
models can recognize the accuracy of their out-
puts and provide refined answers (Bai et al., 2022;
Madaan et al., 2023; Welleck et al., 2022; Huang
et al., 2024). Previous research has explored self-
correction methods based on feedback (Pan et al.,
2023), where feedback can come from the LLM
itself or from external inputs. Internal feedback
relies on the model’s inherent knowledge and pa-
rameters. In contrast, external feedback involves
inputs from humans, other models (Wang et al.,
2023a; Paul et al., 2024), external tools, external
knowledge(Gou et al., 2024; Chen et al., 2024;
Olausson et al., 2024; Gao et al., 2023), etc. Our
approach is inspired by this technology.

2.2 Retrieval Augmented NER

The RAG method enhances the performance of
LLMs by incorporating external knowledge (Lewis
et al., 2021). The standard RAG approach fol-
lows the "retrieve-then-read" paradigm. First, a
retrieval query is constructed, which is then used
to search for relevant information from an external
knowledge source such as BookCorpus (Kobayashi,
2018). The retrieved information is then provided
as context to the LLM, allowing the model to gener-
ate the final response based on it. Retrieval is based
on similarity scores between the query and knowl-
edge text and is mainly divided into two categories:
sparse retrievers, like BM25 (Robertson, 2009);
and dense retrievers, such as DPR (Karpukhin et al.,
2020), Contriever (Izacard et al., 2022), and BCEm-
bedding. Additionally, there is work involving
graph-based retrieval (Baek et al., 2023).

In the NER field, there is research using RAG
technique to retrieve examples from annotated cor-
pora as few-shots to improve the model’s extraction
performance (Xie et al., 2024b). While in medical
and biological NER tasks, there is research retriev-
ing relevant entity descriptions by entities matching
from the specific databases to correct entity type
(Kim et al., 2024).

However, prior work introducing the RAG tech-
nique into the NER field has not attempted to cor-
rect entity type in open-domain NER tasks. The
work on retrieving few-shot examples does not fo-
cus on introducing entity-related external contexts

for the model to reference, while retrieval methods
in specific domains require manually constructed
and maintained databases. To the best of our knowl-
edge, we are the first to introduce the RAG method
in the open-domain NER field, and using raw con-
texts as the retrieval data source. IRRA retrieves
entity-related contexts to guide the LLM in cor-
recting entity type. This retrieval process can be
directly performed by a search engine, and the
knowledge base used for retrieval does not require
manual annotation, which enhances the robustness
and generalizability of the method.

3 Methodology

The overall IRRA framework is shown in Figure
2. The entire process of this framework is divided
into two stages: Recall Augmented Entity Extract-
ing stage and Retrieval Augmented Type Correct-
ing. In Recall Augmented Entity Extracting stage,
we first deploy an LLM for entity extraction, then
construct a perturbed dataset and train an LLM on
it to enhance the initial extraction results. This
stage is responsible for providing entity extraction
results for the next stage while also enabling multi-
label recognition. In Retrieval Augmented Type
Correcting stage, based on the extracted entities,
corresponding queries are generated to retrieve and
rerank contexts from the database. These contexts
are then provided as additional contextual informa-
tion to the type correcting model.

3.1 Recall Augmented Entity Extracting

We develop two specialized models to extract enti-
ties. First, a base extractor Extractorbase is used
for initial entity extraction. Then, a perturbed
dataset is constructed, and an enhanced extrac-
tor Extractorenhanced is trained to identify poten-
tially missed entities, thus improve the recall rate
of this stage. Afterward, the extraction results of
both extractors are merged, providing the results
for stage 1, which consists of multiple entity-type
pairs.

3.1.1 Base Extractor
We first train a vanilla model on the original dataset
D to serve as the Extractorbase to directly extract
the initial entities ybasei :

ybasei = Extractorbase(xi, Ti).

Where xi denotes the sentence to be extracted; Ti

denotes the schema which is a set of entity types
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that extraction needs to be performed based on. To
facilitate the analysis of the generated results, we
stipulate that ybasei must be a parsable JSON string,
where each key represents an entity type and its
corresponding value is a list of entities.

3.1.2 Enhanced Extractor
To obtain the Extractorenhanced capable of
supplementing the extraction results of the
Extractorbase, we aim to discover behaviors
where the Extractorbase overlooks some poten-
tial entities. To achieve this, we introduce a se-
ries of perturbation measures to disrupt the train-
ing dataset of the Extractorbase. When the
Extractorbase performs inference on this per-
turbed dataset, it exhibits behaviors of extraction
omission or error. The perturbation measures are
as follows. Formally, given a dataset

D = {(xi, Ti, yi)|i ∈ [0, |D|)}.

yi = {(ej , tj)|j ∈ [0, |yi|)} denotes the entity-type
pairs for the i-th sample in D. We first define a
function SH(·) based on the LLM API, which map
an entity type t to the union of the synonym set
Synt and hypernym Hynt set for that entity type:

SH(t) = Synt ∪Hypt.

Given the i-th sample in the original dataset D, we
apply the following three perturbation measures to
get the perturbed dataset D′:

• Random Syno-Hypernym Selection: For
each t ∈ Ti, we randomly select a t′ ∈ SH(t)
and replace t with t′ in T p

i . This perturbation
introduces variability and disrupts the Base
Extractor’s reliance on a fixed vocabulary for
understanding entity types, helping to uncover
instances where it overlooks latent entities dur-
ing inference.

• Type Order Shuffle: We randomly shuffle
T p
i . This perturbation makes it more difficult

for the model to correctly extract entities, as it
disrupts its reliance on memorizing task defi-
nitions based on entity type order, reflecting
the reality that entity type order is not fixed
in real-world scenarios and encouraging the
model to understand the underlying relation-
ships instead.

• Syno-Hypernym Types Insertion: This is
the central aspect of our perturbation strat-
egy. For each type t ∈ T p

i , we first draw a

random value r ∼ U(0, 1) from a uniform
distribution. If r < p, we randomly select a
t′ ∈ SH(t) and insert it into T p

i . This pro-
cess is repeated, updating the value of r each
time, until r ≥ p. This method compels the
model to learn that an entity can correspond
to different types and helps the model better
comprehend the relationships between various
entity types, thereby enhancing its ability to
generalize in diverse contexts.

Algorithm 1: Dataset perturbation with Noise In-
troduction

1: Input: D, p
2: D′ = {}
3: for (xi, Ti, yi) ∈ D do
4: T p

i = {}
5: for t ∈ Ti do
6: t′ ← randomly sample in SH(t)
7: T p

i ← T p
i ∪ {t′}

8: end for
9: T p

i ← randomly shuffle T p
i

10: r ∼ U(0, 1)
11: for t ∈ T p

i do
12: while r < p do
13: t′ ← randomly sample in SH(t)
14: T p

i ← T p
i ∪ {t′}

15: r ∼ U(0, 1)
16: end while
17: end for
18: ypi = {}
19: for (ej , tj) ∈ yi do
20: for t ∈ T p

i ∩ SH(tj) do
21: ypi ← ypi ∪ {(ej , t)}
22: end for
23: end for
24: D′ = D′ ∪ {(xi, T p

i , y
p
i )}

25: end for
26: Output: D′

Subsequently, we modify the output of each sam-
ple to align the schema T p

i . Consider the j-th entity-
type pair (ej , tj) in yi of the i-th sample, we take
out all types in SH(tj) that have been placed into
T p
i , and assign each of them to that entity to ob-

tain the output ypi = {(ej , tjk)|j ∈ [0, |yi|) ∧ k ∈
[0, |SH(tj) ∩ T ∗

i |)}. Finally, we obtain the per-
turbed dataset

D′ = {(xi, T p
i , y

p
i )|i ∈ [0, |D|)}.

Then we use the Extractorbase to inference on
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D′, obtain

y′i = Extractorbase(xi, T
p
i ),

Then, we place y′i into D′, resulting in the enhanced
dataset D′′ for training Extractorenhanced:

D′′ = {(xi, T p
i , y

′
i, y

p
i )|i ∈ [0, |D|)}.

Then we train the Extractorbase on D′′ to ob-
tain the Extractorenhanced, Then we use the
Extractorenhanced to expand the initial recall re-
sults. Finally, we have the result of stage 1:

yfinali = Extractorenhanced(xi, Ti, y
base
i ).

Similarly, yfinali is a parsable JSON string in the
same format. We use yfinali for correction in the
subsequent steps.

Utilizing these methods on the IEPile dataset, we
observed a nearly 20% increase in recall. This sig-
nificant improvement highlights the effectiveness
of our perturbation strategy. By using the perturbed
dataset, we aim to develop a more adaptable and
resilient model capable of handling diverse and
complex real-world scenarios.

3.2 Retrieval Augmented Type Correcting
The previous stage can recall more entities, but
there is no guarantee that the corresponding type of
each entity is inferred correctly. thus after extract-
ing entities, we need to correctly correct their types.
We use LLMs to perform the type correcting task.
However, since xi may lack relevant contextual
information to help the LLM identify the correct
entity type, We believe that external contexts is
needed. We pull out all entities from yfinali and
deduplicate them to obtain the set of all entities to
be processed, denoted as E∗

i = {e∗j |j ∈ [0, |E∗
i |)}.

For each e∗j ∈ E∗
i , we apply retrieval augmented

type correcting approaches to correctly match the
entity with its type. In the correcting stage, we re-
trieve a small set of entity-related external contexts
to guide the correcting model.

3.2.1 Vector Database Construction
The corpora used for retrieval can come from
sources such as Wikipedia, domain-specific
databases, websites, and other data that do not re-
quire manual annotation. In IRRA, the retrieval
method is independent of the module, we can use
search engine retrieval, vector database retrieval, or
other methods. However, since using search engine

APIs can be costly, we pre-collect the relevant data
and use vector database retrieval in this paper. After
collecting a large amount of original text, due to the
length of the original text often exceeds the context
window length of the LLM, we chunk the original
text into multiple shorter contexts. Let the set of
all contexts be Dall = {dl|l ∈ [0, |Dall|)}. Given
the embedding model, we define the embedding
function Emb : T 7→ RD, where T represents the
text space and RD represents the D-dimensional
embedding space. For each context dl ∈ Dall, we
obtain its vector representation dl = Emb(dl).
Then we store all context vectors in a open-source
vector database along with its domain in the corre-
sponding metadata for subsequent retrieval.

3.2.2 Contexts Retrieval
Given an entity to be processsed e∗j ∈ E∗

i , we
construct a retrieval query qj = "What is ej ",
and then obtain the vector representation of the
query qj = Emb(qj). Subsequently, we compute
the cosine similarity between the query and the
context:

CosineScore(qj , dl) =
qj · dl

||qj|| · ||dl||
.

Based on the CosineScore of all contexts, we re-
call the top ncontexts with the highest score, de-
noted as D̂ = {d̂l|l ∈ [0, n)}.

Due to the limitations of cosine similarity, we
additionally use a reranker model to further filter
the d̂l ∈ D̂. The reranker model is based on the
cross-encoder architecture. Unlike other encoders
that require the query and context to be fed into sep-
arate encoder models, the cross-encoder requires
the query and context to be concatenated and input
into a single encoder model. This allows the en-
coder to better capture the relationship between the
query and the context. After obtaining the encoder
output, the representation of the [CLS] token is
taken and passed through a fully connected layer to
get the relevance score between the query and the
context. Similarly, given the cross-encoder based
reranker model, we define the reranker function
Reranker : T 7→ R. We directly concatenate the
same query qj and the retrieved context d̂l, then
obtain the score:

RerankScore = Reranker([qj ; d̂l]).

We then select the top k (k ≤ n) contexts with the
highest RerankScore, denoted as D∗ = {d∗l |l ∈
[0, k)}.
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3.2.3 Type Correcting
After retrieving the entity-related contexts, we can
use these contexts to correctly correct the entity e∗j
to its entity type. We treat this as an ICL-based QA
task. We use a frozen LLM Correctorcontexts as
the type correcting model and construct a prompt
using xi, e∗j , D∗, and Ti to instruct the LLM in
performing the type correcting task and obtain the
final type t∗j to the entity e∗j :

t∗j = Correctorcontexts(xi, e
∗
j ,D∗, Ti).

For each e∗j ∈ E∗
i , we apply the above process

in batches to correct the type of each extracted
entity, thereby obtaining the final output yfinali of
our framework.

4 Experiment

This section presents experiments conducted under
zero-shot settings to validate the effectiveness of
IRRA. The details of the experimental settings are
described in the following parts.

Tokens AI Literature Music Politics Science

512 73964 2353876 2427757 2444698 1334738
1024 33772 1158747 1144115 1144115 624434

Table 1: The number of contexts in each domain of
the database under different maximum token length
processing.

4.1 Implement of IRRA

• Backbones: We use Llama3-8B as the back-
bone model for the entity extraction stage and
the type correcting model. Llama3-8B aligns
well with human intent and is better at under-
standing and responding to user requests.

• Training details: We directly use the trained
Llama3-8B provided by the IEPile (Gui et al.,
2024) as the base extractor. The IEPile dataset
collects a large number of NER datasets and
includes some modifications to the original
NER datasets. Training for all extractors is
performed using supervised instruction-based
LoRA (Hu et al., 2021) fine-tuning with the
LlamaFactory library (Zheng et al., 2024) on
an Nvidia A800 GPU.

• Database: We use Chroma (Chroma, 2024)
as a vector database for retrieval. Due to the
high costs associated with using search engine

interfaces as a retrieval tool, we collected a
large amount of raw text from sources similar
to those in the CrossNER dataset to serve as
the data source for our vector database. Each
text is sliced into multiple smaller contexts
with a maximum length of not more than 512
tokens. The end of each context is a period or
new-line character to ensure that the context
is not split in the middle of a sentence. All the
contexts are indexed and stored in the vector
database. The number of documents is shown
in Table 1.

• Retrieval: For retrieval, we adopt BCEmbed-
ding (NetEase Youdao, 2023), a state-of-the-
art model for context embedding, to obtain
context embeddings. We first select the top
n = 20 contexts, then we use BCEReranker
(NetEase Youdao, 2023), which is usually
compatible with BCEmbedding, to score and
filter the retrieved n contexts, selecting the top
k = 1 contexts.

4.2 Evaluation Metrics

We mainly focus on the zero-shot evaluation. We
adopt CrossNER (Liu et al., 2020) benchmark
following IEPile’s settings. CrossNER provides
datasets that spans multiple domains, including AI,
Literature, Music, Politics, and Science which is
suited for evaluating zero-shot NER tasks. We
mainly report the micro-F1 score as it’s a widely
used metric in Named Entity Recognition.

4.3 Comparsion Baselines

we use the following methods as baselines:

• InstructUIE (Wang et al., 2023b) InstructUIE
improves performance by learning multiple
similar tasks. We use the best settings in the
corresponding paper as the comparison.

• ChatGPT (OpenAI, 2024) We use the zero-
shot settings on ChatGPT directly.

• UniNER (Zhou et al., 2024) This method in-
vestigates targeted distillation combined with
mission-focused instruction tuning to train stu-
dent models. These models not only excel
in a wide range of applications but also sig-
nificantly outperform general large language
models. We directly use the best scores pro-
vided in the paper for comparison.
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Method Extra Training Data AI Literature Music Politics Science Average

InstructUIE(2023) ! 49.0 47.2 53.2 48.2 49.3 49.4
ChatGPT(2023) % 54.4 54.0 61.2 59.1 63.0 58.3
UniNER(2023) ! 54.2 60.9 64.5 61.4 63.5 60.9
GoLLIE(2024) ! 61.6 62.7 68.4 60.2 56.3 61.8

IEPile-Baichuan2-13B(2024) IEPile 48.5 43.6 57.0 51.4 49.8 50.1
IEPile-Llama3-8B(2024) IEPile 49.7 43.0 53.9 56.9 50.4 50.8
IEPile-Qwen1.5-14B(2024) IEPile 55.6 44.3 58.7 54.6 51.4 52.9
OneKE(2024) IEPile - - - - - 60.9

IRRA(ours) IEPile 57.5 59.3 69.4 74.0 68.3 65.7

Table 2: The micro-F1 scores on zero-shot cross-domain setting. All settings for baselines are selected by the
highest score in the corresponding papers. InstructUIE, UniNER and GoLLIE use extra training data from different
sources given in their paper. Since ChatGPT does not provide the training APIs, no extra training data is used.
IEPile, OneKE and our method use IEPile’s training set as extra training data.

• GoLLIE (Sainz et al., 2024) GoLLIE pro-
vided some Large Language Models trained
to follow annotation guidelines. We follow
all the settings in this paper completely, and
for the results obtained from different models,
we directly choose the highest-scoring result,
even if the model used is larger than ours.

• IEPile This method builds a large dataset to
train the model’s information extraction capa-
bilities. Since our method uses this dataset for
training, its settings are close to ours.

• OneKE (Gui et al., 2024) OneKE uses
“Schema-based Polling Instruction Construc-
tion” method in instruction fine-tuning. We
directly use the best scores provided in the
paper for comparison.

4.4 Main Results

We report the micro-F1 scores for each domain in
CrossNER, as well as the average micro-F1 score,
as shown in Table 2. Except for ChatGPT, all meth-
ods require extra training data to train the mod-
els. Among all the generative LLM-based meth-
ods, IRRA achieves the highest average micro-F1
score, showing an nearly 4% improvement over the
previous SOTA. Additionally, we report the perfor-
mance of using three different LLMs as backbones
for the IEPile method. Consistent with IRRA’s
results, IEPile also scores lower in the AI and Lit-
erature domains, which may be due to internal bi-
ases in the extra training data. We also note that
using Qwen1.5-14B as the backbone for IEPile re-
sults in a relatively higher score in the AI domain,
likely due to its broader internal knowledge in AI.

The SOTA scores for the AI and Literature do-
mains come from GoLLIE. Although our method
is slightly weaker than GoLLIE, the model used by
GoLLIE is significantly larger than ours (34B vs.
8B). However, even with such a large difference in
model size, IRRA still achieves higher scores in
other domains and a higher average score compared
to GoLLIE, which may be due to the compensatory
effect of incorporating external knowledge.

5 Analytical Experiment

5.1 Ablation Analysis

To analyze the specific parts of the IRRA frame-
work, we design several different pipeline settings.
For each setting, we conduct the analysis from three
dimensions: recall, precision and F1 score.

We report the performance of the base extractor
trained solely on IEPile (Base) for direct entity
extraction. Additionally, we compare two methods
in the type correcting stage: one based on inserting
annotation guidelines to the prompt (Guidelines)
and another based on inserting retrieved contexts
to the prompt (Contexts).

Entity Extracting Type Correcting Recall Precision F1

Base % 49.1 54.0 50.8
Base & Enhanced % 69.4 49.5 57.4

Base Contexts 53.6 72.8 61.3
Base & Enhanced Guidelines 59.0 63.8 61.2
Base & Enhanced Contexts 63.4 68.5 65.7

Table 3: Performance of different entity extracting meth-
ods and type correcting methods across all domains.
This comparative analysis experiments are all based on
Llama3-8B. All other experimental settings are consis-
tent with the main experiments.
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As shown in Table 3, incorporating external
knowledge to correct the base model’s extraction re-
sults improves performance as expected. However,
applying retrieval-based correction to the enhanced
model’s extraction results leads to a decrease in
recall. This is likely because the recall-enhanced
model identifies more challenging entities, which
are prone to being incorrectly modified during the
correction stage. These errors result in an increase
in false negatives (FN) and a corresponding de-
crease in true positives (TP).

5.2 Effect of Vanilla Models
To verify that our method works with different
LLMs, we use Qwen1.5-14B (Bai et al., 2023)
and Baichuan2-13B (Baichuan, 2023) as additional
backbone models and type correcting model in our
framework. All of these models are trained on the
IEPile dataset and our perturbed dataset and used as
base extractor and enhanced extractor. The results
from different models using the IEPile method are
shown in Table 2.

Entity Extracting Type Correcting Recall Precision F1

Baichuan2-13B Baichuan2-13B 51.9 52.1 51.9
Baichuan2-13B Llama3-8B 58.5 61.8 60.0
Qwen1.5-14B Qwen1.5-14B 62.0 65.0 63.4
Qwen1.5-14B Llama3-8B 62.6 66.0 64.2
Llama3-8B Llama3-8B 63.4 68.5 65.7

Table 4: Performance of different combinations of mod-
els in two stages of IRRA over all domains. During
the retrieval and type correcting stages, we set the maxi-
mum length of the retrieved context to 512 tokens and
the number of contexts utilized by the model to 1.

We use different combinations of vanilla models
within our framework, with the results presented in
Table 4. The results indicate that our method im-
proves performance across different vanilla models,
with the most significant improvement observed
on Llama3-8B, while the improvement is less pro-
nounced on the larger Baichuan2-13B model. From
Table 2, we can observe that even without using
our method, Baichuan2-13B is still slightly weaker
than other models. Based on our observations,
Baichuan2-13B is weaker in following instruction,
whereas Llama3-8B shows superior performance.

5.3 Effect of Top Documents
We conducted an ablation study by evaluating the
performance of our model when using the top-1,
top-2, and top-3 highest-scored documents as addi-
tional knowledge during inference. The results are

shown in the table 5:

Top Documents Recall Precision F1

3 62.8 67.2 64.8
2 63.1 68.0 65.3
1 63.4 68.5 65.7

Table 5: The number of documents retrieved is con-
trolled by the parameter k.

In line with human intuition, the performance of
the model shows a gradual decline with the increase
of k. This indicates to some extent that the quality
and quantity of retrieved documents have an impact
on the performance of the model.

5.4 Generality of Framework

To further demonstrate the validity of our approach,
we propose a 10-ways-0-shots benchmark on the
Few-NERD (Ding et al., 2021) dataset, a com-
monly used dataset for Few-shot NER that contains
a large number of fine-grained entity types. Under
this setting, there are 10 random fine-grained entity
types in the schema of each sample for extraction,
and annotated samples are not allowed to be used as
prompts. At the same time, we test several different
base models and our methods on this benchmark:

Method Recall Precision F1

IEPile-Baichuan2-13B(2024) 31.3 67.3 42.7
IEPile-Qwen1.5-14B(2024) 47.9 70.3 57.0
IEPile-Llama3-8B(2024) 29.6 68.3 41.3
OneKE(2024) 54.1 66.5 59.6
IRRA(ours) 56.0 68.0 61.4

Table 6: We use the test set of supervised partition (a
few-nerd default partition) for our experiments.

We followed exactly the same configuration as
the main experiment, which means that we choose
Llama3-8B as the vanilla model. From the results,
we can see that our approach can significantly im-
prove the performance of the vanilla model, while
also outperforming other basic models. Since this
dataset is not divided by domains, we choose to use
Wikipedia as an additional source of knowledge,
which may limits the performance of our method.

5.5 Correction Analysis

As shown in Figure 3, we observe that when the
type of the entity extracted in the previous stage is
unique and correct, the performance of both meth-
ods is similar. This similarity may be due to that
the correcting model is more confident with easily
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judged samples. However, both methods introduce
some noise, leading to recognition error, especially
the one based on retrieved contexts. Consider the
entity “Apple” in a text about fruit. Using retrieved
contexts to correct the entity type may retrieve in-
formation from technology-related contexts, lead-
ing the model to incorrectly match “Apple” to com-
pany rather than fruit.

Similar to human intuition, when the extraction
model struggles to determine the specific type or
completely mismatches the type, introducing the
related external knowledge can achieve better im-
provement. This indicates that the model may lack
the necessary contexts to judge the type when ex-
tracting the entity.

Figure 3: Comparison of correction based on annota-
tion guidelines and correction based on retrieved con-
texts. em indicates that the extracted entity’s type ex-
actly matches the ground truth type. cm indicates that
among the multiple types for the extracted entity, at
least one matches the ground truth type. nm indicates
that none of the types for the extracted entity match any
ground truth types. redundant indicates that the entity
should not be extracted.

5.6 Redundant Entities
From Figure 4, we can see that while our method
recalls more correct entities, it also retrieves more
redundant entities. For the domain-specific types,
our method recalls fewer redundant entities, indi-
cating that it is more cautious with less common
types. For the common types, the number of re-
dundant entities retrieved by our method increases,
suggesting a more lenient approach toward com-
mon types. As for the miscellaneous types, our
method recalls a large number of redundant enti-
ties, which may be due to the unclear definition of
redundant entities. This kind of types also exhibits
annotation bias in human labeling. For zero-shot
tasks, handling the miscellaneous types remains a
challenge.

Figure 4: Type cases in redundant recalled entities. com-
mon represents the type common to all domains such
as country, location, organisation and person. domain-
specific represents the type specific to a domain, and
miscellaneous represents the type that does not belong
to the other two types. We counted the types of entities
that were eventually recognized by the model.

6 Conclusion

In this paper, we propose a two-stage IRRA
framework for zero-shot Named Entity Recog-
nition (NER), strategically leveraging large lan-
guage model techniques. The core idea of IRRA
is to supplement missing information in entity ex-
traction and recognition through the Recall Aug-
mented Entity Extracting and Retrieval Augmented
Type Correcting stages. Experimental results show
significant improvements over state-of-the-art ap-
proaches, highlighting the efficacy of multi-stage
processing in large model applications.

Limitations

This work has two main limitations:
(1) Due to the prohibitive expense of commercial

search APIs, our document retrieval relies on cost-
efficient alternatives (e.g., local indexes), which
may limit result quality compared to industry-grade
systems.

(2)The pipeline’s sequential structure prevents
dynamic cross-module interactions (e.g., feedback
loops), potentially capping performance gains. Fu-
ture work could explore interactive module designs.
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A Appendix

A.1 Prompts

Syno-Hypernyms generation prompt is specifi-
cally designed and employed to generate a compre-
hensive set of synonyms and hypernyms for each
entity type. This process ensures that for every
entity type, a robust and contextually relevant col-
lection of alternative expressions is created.

Prompt 1: Synonym generation
prompt

Complete each word’s list with multiple pos-
sible synonyms and hypernyms.
{
"entity type 1": ["entity type 1"],
"entity type 2": ["entity type 2"],
...

}

Extraction prompt is utilized to guide the base
extractor. It directs the models to accurately extract
entities from the provided text in accordance with
the predefined schema. This prompt ensures that
the extraction process is aligned with the specific
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requirements of the schema, thereby improving the
quality of the extracted results.

Prompt 2: Extraction prompt

{
"instruction": "Please extract

entities that match the schema
definition from the input. Return
an empty list if the entity type
does not exist. Please respond

in the format of a JSON string.",
"schema": [list of entity types],
"input": "input sentence string"

}

Complement prompt is used to guide the en-
hanced extractor. It directs the model to expand
and complement the initial recall results.

Prompt 3: Complement prompt

{
"instruction": "Modify the extracted

entities based on input and
schema. If you think there may be
some entities missing or that

you don 't understand something ,
please list them as entities.",

"schema": [list of entity types],
"input": "input sentence string",
"entities": {
"eneity type 1": [list of entities],
"eneity type 2": [list of entities],
...
}

}

Correcting prompt based on retrieved con-
texts is employed to guide the model in correct-
ing entities and their types based on the retrieved
contexts. This prompt ensures that the model ac-
curately corrects each entity and its corresponding
type.

Prompt 4: Correcting prompt
based on retrieved contexts

# Instruction
You need to answer the **type** of the cor-
responding entity in the text according to
the **Types** and **the relevant contexts
retrieved**.
# Text
{text}
# Entity
{entity}
# Relevant contexts
{contexts}
# Types
[list of entity types]
# Rules
Guidance information needed when extract-
ing entities.
# Answer format
{
"entity": "the entity in Entity",
"reason": "The reason you judge the

type which from Types",
"entity type": "type from Types"

}

Prompt 5: Correcting prompt
based on annotation guidelines

# Instruction
You need to answer the **type** of the cor-
responding entity in the text according to
the **Types** and **guidelines**.
# Text
{text}
# Entity
{entity}
# Guidelines
Annotation guidelines about the data.
# Types
[list of entity types]
# Rules
Guidance information needed when extract-
ing entities.
# Answer format
{
"entity": "the entity in Entity",
"reason": "The reason you judge the

type which from Types",
"entity type": "type from Types"

}

Correcting prompt based on annotation
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guidelines is employed to guide the model in cor-
recting entities and their types based on predefined
annotation guidelines. This prompt also ensures
that the model accurately corrects each entity and
its corresponding type.
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