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Abstract

Low-rank adaptation (LoRA) has been demon-
strated effective in reducing the trainable pa-
rameter number when fine-tuning a large foun-
dation model (LLM). However, it still encoun-
ters computational and memory challenges
when scaling to larger models or addressing
more complex task adaptation. In this work, we
introduce Sparse Spectrum Adaptation via Dis-
crete Hartley Transformation (SSH), a novel
approach that significantly reduces the number
of trainable parameters while enhancing model
performance. It selects the most informative
spectral components across all layers, under the
guidance of the initial weights after a discrete
Hartley transformation (DHT). The lightweight
inverse DHT then projects the spectrum back
into the spatial domain for updates. Exten-
sive experiments across both single-modality
tasks—such as language understanding and
generation—and multi-modality tasks—such
as visual-text understanding—demonstrate that
SSH outperforms existing parameter-efficient
fine-tuning (PEFT) methods while achieving
substantial reductions in computational cost
and memory requirements.

1 Introduction

Pretrained foundation models, such as GPT-4 (Is-
lam and Moushi, 2024), LLaMA3.1 (Touvron et al.,
2023), and Vision Transformers (ViT)(Dosovitskiy
et al., 2020), have demonstrated remarkable perfor-
mance across diverse natural language processing
(NLP)(Liu et al., 2019; Brown, 2020) and vision
tasks (Liu et al., 2024c,a; Yi et al., 2024). This suc-
cess can largely be attributed to the unprecedented
growth in model size (Wei et al., 2022). However,
as these models scale up to billions of parame-
ters, adapting them for downstream tasks in vari-
ous domains presents significant computational and
memory challenges. Fully fine-tuning these large
models becomes prohibitively expensive, both in
terms of memory consumption and computational
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Figure 1: Performance and computation comparison of
fine-tuning methods in NLP and CV Tasks. (a) For NLP
on LLaMA3.1-8B, SSH achieves 7.93 GPT-4 score, closely
matching full fine-tuning’s 7.95 score, while using less than
0.1% of the parameters. (b) In CV tasks, SSH achieves 77.4%
accuracy, matching the performance of full fine-tuning with
significantly fewer parameters. (c) & (d) SSH reduces up to
55% of GFLOPs compared to FourierFT in both NLP and CV
tasks, providing significant computation efficiency gains.

resources. For instance, fine-tuning the LLaMA3.1
model with 8 billion parameters requires 60GB
of GPU memory. While parameter-efficient fine-
tuning (PEFT) methods like LoRA (Hu et al., 2022)
and QLoRA (Dettmers et al., 2024) can reduce
memory requirements to 16GB and 6GB, respec-
tively, they still fall short when applied to larger
models such as LLaMA3.1 70B, which demands
up to 48GB of memory, even with Q-LoRA.

LoRA and its successors (Lialin et al., 2023;
Renduchintala et al., 2024; Liu et al., 2024b) have
made substantial progress by introducing low-rank
adaptations and quantization techniques to mitigate
the memory overhead when fine-tuning large mod-
els. Despite their ability to reduce the number of
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trainable parameters, as these methods primarily
operate in the weight space of the original models,
they still face limitations in terms of overall compu-
tational efficiency and GPU memory requirements,
especially when scaling to massive models.

A promising alternative to address this bottle-
neck is to leverage the frequency transformations,
which offer a more compact representation of
model weights with less trainable parameters. Re-
cent work on frequency-based PEFT, such as the
discrete Fourier transform (DFT) approach (Gao
et al., 2024), has shown that transforming weight
matrices into the spectral domain and updating
spectral components can significantly reduce the
number of trainable parameters. However, DFT
operates in the complex domain, introducing po-
tential computational overhead and numerical in-
stability (Press, 2007), particularly in large-scale
models (Gao et al., 2024). Such numerical inaccu-
racies inevitably degrade the performance. More-
over, the asymmetry between DFT and its inverse
(iDFT) complicates forward and backward trans-
formations, increasing computational intensity.

To address these challenges, we propose a novel
fine-tuning framework, Sparse Spectrum Adapta-
tion via Discrete Hartley Transform (SSH). The
advantage of leveraging DHT over DFT (Gao et al.,
2024) is twofold. Firstly, DHT integrates both
cosine and sine components in a single opera-
tion. It avoids the imaginary number computation,
simplifies the computations and improves the nu-
merical stability. Secondly, its symmetry—where
the inverse transformation is identical to the for-
ward—streamlines the fine-tuning process, allow-
ing efficient transitions between time and frequency
domains. SSH selectively fine-tunes the most crit-
ical frequency components, identifies through the
energy compaction properties, and efficiently re-
covers weight updates via inverse DHT. By cap-
italizing on the symmetrical nature of DHT and
reducing parameter usage, SSH provides a highly
parameter-efficient and computationally optimized
fine-tuning strategy.

As shown in Fig. 1(a) & (b), SSH achieves com-
parable performance in both instruction tuning with
the LLaMA3.1-8B model and image classification
with the ViT 85.8M model, with significantly fewer
parameters than LoRA and FourierFT. Fig. 1(c)
& (d) further demonstrate its superior computa-
tional efficiency, requiring 55% fewer GFLOPs
than FourierFT. This is due not only to reduce the
parameter count but also to avoid the complex num-

ber handling required by FourierFT, where real and
imaginary parts must be processed separately.

Concretely, our contribution is threefold.

• We introduce SSH, a novel PEFT method
based on discrete Hartley transform. It simpli-
fies operations and enhances numerical stabil-
ity by avoiding complex arithmetic.

• An energy-based frequency selection strategy
is proposed to help SSH selectively fine-tune
the most critical frequency components.

• SSH shows superior performance and compu-
tational efficiency across various NLP, vision,
and multi-modal tasks, achieving significant
parameter savings and GFLOPs reduction.

2 Related Work

Low-Rank Adaptation (LoRA) (Hu et al., 2022)
reduces trainable parameters by learning low-rank
matrices that bypass full-weight updates, minimiz-
ing memory usage for gradients and optimizers.
Different from adapter-based methods (He et al.,
2021; Pfeiffer et al., 2020; Lin et al., 2020; Liao
et al., 2023b,a), LoRA incurs no inference over-
head as the low-rank updates are merged with the
frozen weights. However, scaling LoRA to larger
models and more complex tasks remains challeng-
ing. Recent improvements, including AdaLoRA
(Zhang et al., 2023), VeRA (Kopiczko et al., 2023),
QLoRA (Dettmers et al., 2024) and DoRA (Liu
et al., 2024b), optimize parameter allocation and
weight decomposition but still face scalability chal-
lenges on larger models.
Frequency-based Spectrum Learning has been
used to reduce trainable parameters while preserv-
ing model capacity. Prior works (Xu et al., 2020;
Tang et al., 2022; Yang and Xie, 2016) showed the
effectiveness of compact and sparse spectral rep-
resentation learning. Gao et al. (Gao et al., 2024)
applied the Fourier Transform to fine-tune a subset
of spectral coefficients, highlighting the potential
of sparse spectrum adaptation in large foundation
models. However, the DFT introduces complex op-
erations, and the asymmetry between the DFT and
its inverse increases computational overhead. SSH
addresses these issues with the real-valued DHT,
which eliminates complex arithmetic, reduces com-
putational complexity, and enhances numerical sta-
bility through symmetric transforms. Additionally,
SSH’s energy-based sparse selection further de-
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Algorithm 1 SSH Algorithm
Input: Input tensor x, number of parameters n, scaling factor
α, input dimension d1, output dimension d2, energy ratio δ,
pretrained layer weights W
Output: Transformed tensor h
1: Initialization:
2: WF = DHT(base_layer.weight) //DHT for weights,

Eq(2)
3: // Select top-(n× δ ) frequencies by energy
4: nselect = n× δ← RankTopEnergyFreq(M)
5: // Randomly select the rest of frequencies
6: nrandom = n× (1− δ)← RandomSelectFreq(M)
7: // Initialize spectral coefficients
8: ∆H← KaimingInitial()
9: Forward Pass:

10: // Set n selected freq. trainable and froze (d1 × d2 − n).
11: Set n frequencies← requireGrad(True)
12: // Compute ∆WT using inverse DHT based on Eq(5)
13: ∆WT ← DHT−1(∆H)× α
14: // Merge ∆W with base layer output
15: h←W +∆WT

16: return h

creases trainable parameters, improving efficiency
and scalability.
DHT has shown potential in deep learning for
model compression and computational efficiency.
For example, (Rani et al., 2024) employed DHT
in medical image retrieval, (Ma et al., 2021) used
it in single-pixel imaging for efficient data acqui-
sition, and (Coutinho et al., 2021) leveraged it for
media image compression and recovery. These
works highlight DHT’s ability to reduce parameters
while maintaining performance. Our work extends
DHT to language models and multi-modal tasks,
utilizing its efficiency for compact and parameter-
efficient fine-tuning across diverse domains.

3 Methodology

We propose SSH, a novel frequency selection strat-
egy based on the discrete Hartley transform for
PEFT, as illustrated in Fig. 2. It operates in the
Hartley spectral domain and learns a set of spectral
coefficients. Specifically, we employ the discrete
Hartley transform to the pretrained weights, us-
ing energy-based frequency selection to identify
the most informative frequencies. In addition, we
incorporate random sampling to ensure diversity
in the selected frequencies while maintaining the
representation ability.

The SSH algorithm 1 selectively fine-tunes a pre-
trained layer’s weights using the Discrete Hartley
Transform (DHT) to capture the most significant
frequency components. First, the layer’s weights
are transformed into the frequency domain using
DHT, and the top frequencies, based on energy,

are selected for fine-tuning, while the remaining
frequencies are randomly chosen and kept frozen.
The trainable spectral coefficients are initialized
using Kaiming initialization, and during backprop-
agation, only the selected frequencies have their
gradients updated. The inverse DHT is then ap-
plied to these updated spectral coefficients, scaled
by a factor α, to obtain the transformed weights in
the spatial domain. These updates are merged with
the original pretrained weights, resulting in the fi-
nal transformed tensor. This approach ensures that
only the most informative frequency components
are fine-tuned, significantly reducing the number
of trainable parameters while maintaining model
performance.

3.1 Sparse Hartley Spectral Learning
Let W0 ∈ Rd1×d2 denote the pretrained weight
matrix, and ∆W ∈ Rd1×d2 denote the weight
change during fine-tuning. LoRA (Hu et al., 2022;
Liu et al., 2024b; Gao et al., 2024) models the
weight change by low-rank decomposition, repre-
sented as BA, where B ∈ Rd1×r and A ∈ Rr×d2 .
The fine-tuned weight matrix W is expressed as:

W = W0 +BA. (1)

Rather than update the weights directly in the
spatial domain, we project pretrained weights into
the spectral domain using the 2D discrete Hart-
ley transform, which helps us to select the most
informative frequencies. DHT is an orthogonal
transform similar to the discrete Fourier transform
but operates solely on real-valued inputs, making
it computationally efficient and suitable for fine-
tuning. Given a weight matrix W0 ∈ Rd1×d2 , its
frequency counterpart H0 after the 2D DHT is de-
fined as:

H0(u, v) =

d1−1∑

x=0

d2−1∑

y=0

W0(x, y)×

[
cos

(
2πux

d1
+

2πvy

d2

)
− sin

(
2πux

d1
+

2πvy

d2

)] (2)

where u ∈ [0, d1 − 1] and v ∈ [0, d2 − 1] repre-
sent the Hartley indices.

As demonstrated in Fig. 3, we analyze the key
and value matrices of the RoBERTa-base model
before and after applying the discrete Hartley trans-
form, which effectively compresses the weight ma-
trix into a compact spectral form. Similar trends are
observed across models such as ViT, LLaMA, and
VL-BART. To optimize parameter efficiency and
reduce computational complexity, we selectively

10402



Pretrained Weights Coefficients
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Figure 2: Overview of Sparse Spectrum Adaptation via Discrete Hartley Transform (SSH). First, the discrete Hartley transform
(DHT) is applied to the pretrained weights to extract and retain the most important frequency components. Then, a selective
process identifies specific spectral coefficients to be learned as trainable parameters, which are organized into a spectral matrix.
Finally, the modified spectral matrix is transformed back to the spatial domain through the symmetric application of the inverse
discrete Hartley transform (iDHT), ensuring accurate reconstruction and efficient updates to the model’s weights.

update only n Hartley coefficients. This selection
is driven by an energy-based method to capture the
most informative coefficients, complemented by
random initialization for diversity.

The energy of each Hartley component E(u, v)
is calculated as:

E(u, v) = |H(u, v)|2 , (3)

where H(u, v) is the DHT coefficient at (u, v).
The top nenergy = ⌊δ · n⌋ components with the
highest energy are selected, while the rest are ran-
domly chosen to ensure diversity.

∆Hselect = ∆Hnenergy +∆Hnrandom . (4)

After updating ∆H, the inverse DHT is applied
to project the updates back into the spatial domain:

W = W0 + DHT−1(∆H). (5)

During the backward pass, the gradient with re-
spect to the learnable Hartley coefficients is com-
puted by projecting the spatial gradient ∂L

∂W into
the spectral domain. To ensure that only the se-
lected n coefficients are updated, an indicator mask
M ∈ {0, 1}d1×d2 is employed to the gradient:

∂L
∂∆H

= M ◦ DHT
(

∂L
∂W

)
, (6)

where ◦ denotes the element-wise multiplication.
Finally, the selected n Hartley coefficients are

updated using the gradient descent:

∆H← ∆H− η

(
M ◦ ∂L

∂∆H

)
, (7)
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Figure 3: Visual representation of the RoBERTa attention
mechanism’s key and value matrices before and after discrete
Hartley transform (DHT). (a)(b) show the original weight dis-
tributions of the key and value matrices, respectively. (d)(e)
depict the transformed DHT values, demonstrating effective
spectral compression. Heatmaps (c)(f) illustrate the output
weights before and after DHT, highlighting the achieved spar-
sity and efficient representation.

where η is the learning rate. This ensures that
only the learnable Hartley coefficients are modified,
maintaining sparsity.

3.2 Parameter Efficiency Analysis

We evaluate the parameter efficiency and memory
requirement of SSH in comparison to LoRA across
several base models. The number of trainable pa-
rameters in SSH is given by |Θ| = n × L, where
n represents the number of selected frequencies,
and L is the number of layers being fine-tuned.
For LoRA, the parameter count is calculated as
|Θ| = r × (d1 + d2)× L, where d1 and d2 are the
dimensions of each layer, and r is the rank used for
LoRA’s low-rank decomposition.

10403



Base Models LoRA SSH

r # Tr. Para. Req. Bytes n # Tr. Para. Req. Bytes

RoBERTa Base 4 147K 574KB 200 4.8K 18.8KB
8 295K 1.13MB 200 24K 94KB

RoBERTa Large 4 393K 1.5MB 200 9.6K 36.5KB
8 786K 3MB 750 36.0K 131.6KB

GPT-2 Medium 4 400K 1.34MB 375 18.1K 65.8KB
8 786K 3MB 750 36.0K 131.6KB

GPT-2 Large 4 737K 2.81MB 375 18.1K 105.8KB
8 1.47M 5.74MB 750 36.0K 211.5KB

LLaMA-2 7B 16 8.39M 32.8MB 750 48.0K 187KB
64 33.5M 131.1MB 1500 96.0K 375KB

LLaMA-2 13B 16 13.1M 51.2MB 750 60K 234KB
64 52.4M 204.8MB 1500 120K 469KB

LLaMA-3.1 8B 16 13.1M 51.2MB 750 53.7K 209KB
64 52.4M 204.8MB 1500 107.5K 420.1KB

ViT Base 8 295K 1.13MB 2250 54K 210.7KB
16 590K 2.25MB 7500 179.2K 700.5KB

ViT Large 8 786K 2.93MB 2250 108K 422.3KB
16 1.57M 6MB 7500 350K 1.38MB

Table 1: Comparison of trainable parameters and re-
quired bytes between LoRA and SSH on different base
models. SSH offers a substantial reduction in both train-
able parameters and memory usage.

Tab. 1 compares SSH and LoRA in terms of
trainable parameters and memory usage. SSH
consistently requires fewer parameters and signif-
icantly less memory than LoRA. For instance, in
the RoBERTa Base model, SSH with n = 200
uses only 4.8K parameters and 18.8KB of memory,
while LoRA with r = 4 requires 147K parameters
and 574KB of memory. This trend continues with
larger models, such as LLaMA-2 13B, where SSH
uses 60K parameters compared to LoRA’s 13.1M
parameters.

The memory efficiency of SSH becomes even
more pronounced in larger models like ViT Large.
For n = 2250, SSH requires just 108K parame-
ters (422.3KB), while LoRA with r = 8 needs
786K parameters (2.93MB). This considerable re-
duction in both the parameter number and memory
footprint highlights the scalability and efficiency
of SSH, making it especially suitable for resource-
constrained environments.

4 Experiments

SSH is compared against state-of-the-art parameter-
efficient fine-tuning (PEFT) methods. The experi-
ments are conducted across multiple domains, in-
cluding single-modality tasks such as natural lan-
guage understanding (NLU) and natural language
generation (NLG), as well as instruction tuning,
text summarization, and mathematical reasoning.
Additionally, SSH is evaluated on multi-modality
tasks, such as vision-language image classification.
Finally, an ablation study is performed to assess

the effectiveness of our approach.

4.1 Baselines
We compare SSH with the following baselines:

• Full Fine-Tuning (FF): The entire model is
fine-tuned, with updates to all parameters.

• Adapter Tuning (Houlsby et al., 2019; Lin
et al., 2020; Rücklé et al., 2020; Pfeiffer
et al., 2020): Methods that introduce adapter
layers between the self-attention and MLP
modules for parameter-efficient tuning.

• LoRA (Hu et al., 2022): A method that esti-
mates weight updates via low-rank matrices.

• AdaLoRA (Zhang et al., 2023): An exten-
sion of LoRA that dynamically reallocates the
parameter budget based on importance scores.

• DoRA (Liu et al., 2024b): Decomposes pre-
trained weights into magnitude and direction,
using LoRA for efficient directional updates.

• VeRA (Kopiczko et al., 2023): Employs a sin-
gle pair of low-rank matrices across all layers,
to reduce parameters.

• FourierFT (Gao et al., 2024): Fine-tunes
models by learning a subset of spectral coeffi-
cients in the Fourier domain.

• AFLoRA (Liu et al., 2024d): Freezes low-
rank adaptation parameters using a learned
freezing score, reducing trainable parameters
while maintaining performance.

• LaMDA (Azizi et al., 2024): Fine-tunes
large models via spectrally decomposed low-
dimensional adaptation, reducing trainable pa-
rameters and memory usage while maintain-
ing performance.

4.2 Natural Language Understanding
Models and Datasets. We evaluate SSH on
the GLUE benchmark (Wang et al., 2019) using
RoBERTa (Liu et al., 2019) in both Base and Large
configurations. The GLUE benchmark comprises a
diverse set of NLU tasks, offering a comprehensive
evaluation framework.
Implementation Details. The SSH method uses
750 of the 7682 available spectral coefficients for
RoBERTa Base and 10242 for RoBERTa Large, en-
suring that each layer retains the most important
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Model # Trainable SST-2 MRPC CoLA QNLI RTE STS-B Avg.& Method Parameters (Acc.) (Acc.) (MCC) (Acc.) (Acc.) (PCC)

BA
SE

FF 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.22
BitFit 0.1M 93.7 92.7 62.0 91.8 81.5 90.8 85.42
AdptD 0.9M 94.7 88.4 62.6 93.0 75.9 90.3 84.15
LoRA 0.3M 95.1 89.7 63.4 93.3 78.4 91.5 85.23
AdaLoRA 0.3M 94.5 88.7 62.0 93.1 81.0 90.5 84.97
DoRA 0.3M 94.9 89.9 63.7 93.3 78.9 91.5 85.37
AFLoRA 0.27M 94.1 89.3 63.5 91.3 77.2 90.6 84.33
LaMDA 0.06M 94.6 89.7 64.9 91.7 78.2 90.4 84.92
VeRA 0.043M 94.6 89.5 65.6 91.8 78.7 90.7 85.15
FourierFT 0.024M 94.2 90.0 63.8 92.2 79.1 90.8 85.02
SSH 0.018M 94.1 91.2 63.6 92.4 80.5 90.9 85.46

L
A

R
G

E

FF 356M 96.3 90.9 68.0 94.7 86.6 92.4 88.11
AdptP 3M 96.1 90.2 68.3 94.7 83.8 92.1 87.55
AdptP 0.8M 96.6 89.7 67.8 94.7 80.1 91.9 86.82
AdptH 6M 96.2 88.7 66.5 94.7 83.4 91.0 86.75
AdptH 0.8M 96.3 87.7 66.3 94.7 72.9 91.5 84.90
LoRA 0.8M 96.2 90.2 68.2 94.8 85.2 92.3 87.82
DoRA 0.9M 96.4 91.0 67.2 94.8 85.4 92.1 87.82
AFLoRA 0.76M 96.3 90.0 67.5 94.3 86.6 91.9 87.77
LaMDA 0.093M 96.2 90.1 68.1 94.5 87.3 92.0 88.03
VeRA 0.061M 96.1 90.9 68.0 94.4 85.9 91.7 87.83
FourierFT 0.048M 96.0 90.9 67.1 94.4 87.4 91.9 87.95
SSH 0.036M 96.2 90.9 67.9 94.5 87.4 92.2 88.17

Table 2: Performance of various fine-tuning methods on GLUE benchmark, using base and large models. Metrics include MCC
for CoLA, PCC for STS-B, and accuracy for other tasks. Results are medians of 5 runs with different seeds; the best scores
in each category are bolded. SSH delivers the best average performance across tasks while using significantly fewer trainable
parameters.

spectral components. This selection remains con-
sistent across all layers. To ensure fair comparison,
we follow the same experimental settings as LoRA
and FourierFT. Additional hyperparameters and
details are provided in Tab. 9 in the appendix 7.1.
Results and Analysis The results in Table 2 in-
dicate that SSH consistently delivers competitive
performance across diverse NLU tasks while main-
taining a significantly lower number of trainable
parameters. Notably, SSH achieves 80.5% accu-
racy on RTE, 92.4% on QNLI, and 90.9 on STS-
B, demonstrating its capability to generalize effec-
tively across multiple linguistic tasks.

SSH also maintains robust performance in sen-
timent classification, achieving 94.1% accuracy
on SST-2, which is on par with other parameter-
efficient methods such as LoRA and BitFit. On
CoLA, SSH attains a score of 63.6, matching Fouri-
erFT and outperforming AdptD and AdaLoRA. Ad-
ditionally, SSH exhibits strong generalization on
MRPC with 91.2% accuracy and achieves a 90.9
Pearson correlation on STS-B, further reinforcing
its effectiveness across textual similarity and en-

Method # Tr. Para. BLEU NIST METE. ROU-L CIDEr

G
PT

-2
M

ed
iu

m

FT1 354.92M 68.2 8.62 46.2 71.0 2.47
AdptL

1
0.37M 66.3 8.41 45.0 69.8 2.40

AdptL
1

11.09M 68.9 8.71 46.1 71.3 2.47
AdptH

1
11.09M 67.3 8.50 46.0 70.7 2.44

LoRA 0.35M 68.9 8.76 46.6 71.5 2.51
DoRA 0.36M 69.2 8.79 46.9 71.7 2.52
VeRA 0.35M 70.1 8.81 46.6 71.5 2.50
FourierFT 0.048M 69.1 8.82 47.0 71.8 2.51
SSH 0.036M 70.1 8.82 47.2 71.9 2.54

G
PT

-2
L

ar
ge

FT1 774.03M 68.5 8.78 46.0 69.9 2.45
AdptL

1
0.88M 69.1 8.68 46.1 71.0 2.49

AdptL
1

23.00M 68.9 8.70 46.1 71.3 2.45
LoRA 0.77M 69.4 8.81 46.5 71.9 2.50
DoRA 0.79M 69.8 8.83 46.9 71.9 2.50
VeRA 0.17M 70.3 8.85 46.6 71.6 2.54
FourierFT 0.072M 70.2 8.90 47.0 71.8 2.50
SSH 0.054M 70.3 8.93 47.2 71.9 2.55

Table 3: Performance comparison of various fine-tuning
methods on GPT-2 Medium and Large models, evaluated us-
ing BLEU, NIST, METEOR, ROUGE-L, and CIDEr metrics.
1 denotes results sourced from previous studies.

tailment tasks. These findings highlight SSH as a
highly efficient and scalable fine-tuning approach,
capable of achieving state-of-the-art performance
with minimal parameter overhead.
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Model Method # Tr. Para. MT-Bench Vicuna

LLaMA2-7B

LoRA 159.9M 5.19 7.37
DoRA 163.7M 5.20 7.41
VeRA 1.6M 5.18 7.47
FourierFT 0.064M 5.09 7.50
SSH 0.048M 5.22 7.51

LLaMA2-13B

LoRA 250.3M 5.77 7.89
DoRA 264.5M 5.79 7.90
VeRA 2.4M 5.93 7.90
FourierFT 0.08M 5.82 7.92
SSH 0.06M 5.93 7.95

LLaMA3.1-8B

LoRA 183.3M 5.65 7.52
DoRA 186.9M 5.66 7.59
VeRA 1.9M 5.61 7.49
FourierFT 0.073M 5.67 7.67
SSH 0.055M 5.69 7.71

Table 4: Performance comparison of fine-tuning methods on
LLaMA models using the Alpaca dataset. Evaluation scores
on MT-Bench and Vicuna are generated and scored by GPT-4.

4.3 Natural Language Generation
Models and Datasets. We evaluate SSH on
the E2E natural language generation (NLG)
task (Novikova et al., 2017), fine-tuning GPT-2
Medium and Large models (Radford et al., 2019),
which consist of 24 and 36 transformer blocks.
Implementation Details. We fine-tune LoRA,
DoRA, FourierFT, VeRA, and the proposed SSH on
GPT-2 Medium and Large, using a linear learning
rate scheduler over 5 epochs. Results are averaged
across 3 runs, with detailed hyperparameters pro-
vided in Tab. 10 in the Appendix 7.1.
Results and Analysis. As shown in Tab. 3, SSH
consistently delivers superior or comparable perfor-
mance across all evaluation metrics, while requir-
ing significantly fewer trainable parameters. For
GPT-2 Medium, SSH matches the highest BLEU
score (70.1) and outperforms other methods in
NIST (8.82), METEOR (47.2), ROUGE-L (71.9),
and CIDEr (2.54), all with 10.3% fewer parameters
than LoRA and 25% fewer than FourierFT. A simi-
lar trend is observed for GPT-2 Large, where SSH
achieves the highest NIST (8.93) and METEOR
(47.2) scores, while maintaining a 7.1% parameter
reduction compared to LoRA.

4.4 Instruction Tuning
Models and Datasets. We fine-tune LLaMA2-7B,
LLaMA2-13B, and LLaMA3.1-8B using SSH and
baseline methods on the Alpaca dataset (Taori et al.,
2023). For evaluation, we generate responses to
predefined questions from the MT-Bench (Zheng
et al., 2024) and Vicuna Eval datasets, which are
then scored by GPT-4 on a 10-point scale.

Model Method # Train. Para. CIFAR100 DTD EuroSAT OxfordPets

ViT-B

Head - 84.3 69.8 88.7 90.3
Full 85.8M 92.4 77.7 99.1 93.4
LoRA 581K 92.1 75.2 98.4 93.2
Dora 594K 92.3 75.3 98.7 93.2
VeRA 57.3K 91.7 74.6 98.5 93.4
FourierFT 72K 94.2 75.1 98.8 93.2
SSH 54K 91.6 76.1 99.1 93.4

ViT-L

Head - 84.7 73.3 92.6 91.1
Full 303.3M 93.6 81.8 99.1 94.4
LoRA 1.57M 94.9 81.8 98.63 94.8
Dora 1.62M 95.1 81.8 98.8 94.8
VeRA 130.5K 94.2 81.6 98.6 93.7
FourierFT 144K 93.7 81.2 98.7 94.5
SSH 108K 94.5 81.9 99.0 94.8

Table 5: Performance of various fine-tuning methods on ViT-
B and ViT-L models across different datasets. The best results
for each dataset are highlighted in bold. The best results are
highlighted in bold. SSH offers strong parameter efficiency,
excelling on DTD and EuroSAT while delivering competitive
performance on CIFAR100 and OxfordPets, making it a bal-
anced solution for various vision tasks.

Implementation Details. Following previous
work (Dettmers et al., 2024, 2022), we apply LoRA,
DoRA, and VeRA to all linear layers except the
top one. For FourierFT, we use the configura-
tion from (Gao et al., 2024), and for SSH, we set
n = 750. All models are trained using QLoRA’s
quantization technique (Dettmers et al., 2024) on a
single GPU. Each method is trained for one epoch,
and we report the average score across all generated
responses. Hyperparameter details are provided in
Tab.11 in the Appendix 7.1.
Results and Analysis. The results in Tab. 4 clearly
demonstrate the significant efficiency of SSH com-
pared to other fine-tuning methods such as LoRA,
DoRA, and FourierFT. For LLaMA2-7B, SSH
achieves the best MT-Bench (5.22) and Vicuna
(7.51) scores while reducing trainable parameters
by over 99.7%, using only 0.048M parameters com-
pared to LoRA’s 159.9M. Similarly, in LLaMA2-
13B, SSH ties with VeRA for the highest MT-Bench
score (5.93) and surpasses all methods in Vicuna
(7.95), again achieving this with a drastically lower
parameter count (0.06M vs. 250.3M for LoRA).
Even in the larger LLaMA3.1-8B model, SSH con-
tinues to outperform, leading in MT-Bench (5.69)
and maintaining a competitive Vicuna score (7.71)
with far fewer parameters (0.055M).

4.5 Text Summarization

Models and Datasets. We evaluate the effective-
ness of SSH against other baseline methods on
the BART-Large model (Lewis et al., 2019) for text
summarization tasks. Specifically, we assess its per-
formance on the XSUM (Narayan et al., 2018) and
CNN/DailyMail (Hermann et al., 2015) datasets.
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Method Para. (M) XSUM CNN/DailyMail

AFLoRA (r = 32) 5.27 44.71/21.92/37.33 44.95/21.87/42.25
LaMDA (r = 32) 0.85 43.94/20.69/35.21 44.16/21.17/40.48
SSH (n = 5000) 0.21 44.72/22.05/37.42 44.89/21.75/42.13

Table 6: Performance comparison of SSH, AFLoRA,
and LaMDA on BART-Large for text summarization
tasks. Results are reported as ROUGE-1/ROUGE-
2/ROUGE-L.

Implementation Details. We compare SSH
against AFLoRA and LaMDA under consistent ex-
perimental conditions. For AFLoRA and LaMDA,
we set the rank r = 32, while for SSH, we se-
lect n = 5000 Hartley spectrum points. The
models are trained using a learning rate of 2 ×
10−4, with a batch size of 32 for XSUM and
64 for CNN/DailyMail. Training is conducted
for 25 epochs on XSUM and 15 epochs on
CNN/DailyMail.
Results and Analysis. Table 6 presents the
ROUGE evaluation scores (ROUGE-1/ROUGE-
2/ROUGE-L) for different fine-tuning approaches.
SSH achieves competitive performance while uti-
lizing significantly fewer trainable parameters com-
pared to AFLoRA and LaMDA. On the XSUM
dataset, SSH attains the highest ROUGE-2 score
(22.05), surpassing AFLoRA (21.92) and LaMDA
(20.69) by 0.13 and 1.36 points, respectively. Fur-
thermore, SSH achieves the highest ROUGE-L
score (37.42), outperforming AFLoRA by 0.09 and
LaMDA by 2.21 points.

Similarly, on the CNN/DailyMail dataset, SSH
attains a ROUGE-1 score of 44.89, which is
marginally lower than AFLoRA (44.95) by 0.06
points, but it outperforms LaMDA (44.16) by 0.73
points. In terms of ROUGE-2, SSH achieves 21.75,
trailing AFLoRA (21.87) by 0.12 points but ex-
ceeding LaMDA (21.17) by 0.58 points. Addi-
tionally, SSH attains a ROUGE-L score of 42.13,
which is 0.12 points lower than AFLoRA but signif-
icantly higher than LaMDA by 1.65 points. Overall,
SSH consistently demonstrates strong performance
while requiring significantly fewer trainable param-
eters (0.21M) compared to AFLoRA (5.27M) and
LaMDA (0.85M).

4.6 Mathematical Reasoning

Models and Dataset. We evaluate the performance
of SSH against AFLoRA and LaMDA on the
LLaMA3.1-8B model using the GSM8K (Cobbe
et al., 2021), a widely used dataset designed to

Method Trainable Parameters (M) GSM8K Accuracy

AFLoRA (r = 32) 20.23 38.63
LaMDA (r = 32) 4.99 38.11
SSH (n = 10000) 1.54 38.67

Table 7: Comparison of SSH with AFLoRA and
LaMDA on LLaMA3.1-8B for GSM8K. Accuracy is
reported as a percentage.

assess mathematical reasoning abilities.
Implementation Details. All methods are trained
with a learning rate of 3× 10−4 for six epochs us-
ing a batch size of 16. For parameter-efficient fine-
tuning, AFLoRA and LaMDA employ a low-rank
adaptation setting of r = 32, while SSH leverages
a Hartley spectrum selection with n = 10000. Ta-
ble 7 presents a comparison of the methods in terms
of trainable parameters and accuracy on GSM8K.
Results and Analysis. SSH achieves the highest
accuracy (38.67%), surpassing AFLoRA (38.63%)
and LaMDA (38.11%) while using significantly
fewer trainable parameters. SSH requires only
1.54M parameters, representing a 92.4% reduc-
tion compared to AFLoRA and a 69.1% reduction
compared to LaMDA.

Despite having nearly 13 times fewer parame-
ters than AFLoRA, SSH achieves comparable ac-
curacy, demonstrating a superior trade-off between
efficiency and performance. While LaMDA ex-
hibits the lowest accuracy, SSH maintains robust-
ness in mathematical reasoning tasks with minimal
resource requirements.

4.7 Image Classification

Models and Datasets. We evaluate our method on
the Vision Transformer (ViT) (Dosovitskiy et al.,
2020), using both the Base and Large variants.
Image classification is performed on the CIFAR-
100 (Krause et al., 2013), DTD (Cimpoi et al.,
2014), EuroSAT (Helber et al., 2019), and Oxford-
Pets (Parkhi et al., 2012) datasets.
Implementation Details. We evaluate SSH, LoRA,
DoRA, VeRA, and FourierFT by applying them to
the query and value layers of ViT. Training only
the classification head is denoted as "Head". We
set r = 16 for LoRA, n = 3000 for FourierFT, and
n = 2250 for SSH. Learning rates and weight de-
cay are tuned for all methods, with training limited
to 10 epochs. Further hyperparameter details are
provided in Tab. 12 in the Appendix 7.1.
Results and Analysis. Tab. 5 highlights the per-
formance of various fine-tuning methods on ViT-B
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Figure 4: Ablation study of SSH on GLUE tasks illustrat-
ing the effect of varying energy ratios (δ) on performance
with RoBERTa-base (n=750). Performance is normalized to
δ = 0.5, showing optimal balance and diversity in spectral
representation at δ = 0.7.

and ViT-L across four image classification datasets.
For the ViT-B model, SSH delivers competitive
results with only 54K trainable parameters, sig-
nificantly fewer than LoRA and DoRA, which use
more than 10 times as many. Notably, SSH matches
the full fine-tuning performance on EuroSAT and
OxfordPets, achieving 99.1% and 93.4% accuracy,
respectively. For the ViT-L model, SSH also proves
efficient, achieving near-optimal performance with
only 108K parameters. It sets the highest score on
DTD with 81.9% accuracy and matches the best
performance on OxfordPets at 94.8%.

4.8 Ablation Study

Energy Ratio Ablation Study. Figure 4 presents
an ablation study of SSH across GLUE tasks with
varying energy ratios (δ) on RoBERTa-base with
n = 750, where performance is normalized to δ =
0.5. The energy ratios considered are δ = 0.5,
δ = 0.6, δ = 0.7, δ = 0.8, and δ = 0.9.

The ablation study indicates that an energy ra-
tio of δ = 0.7 optimally balances the selection of
spectral components, consistently enhancing per-
formance across natural language understanding
tasks such as MRPC and CoLA. This balance pre-
vents overfitting and underfitting, ensuring the re-
tention of informative frequencies while excluding
those that are redundant. In contrast, lower ratios
(δ = 0.5 or δ = 0.6) result in inadequate frequency
representation, adversely affecting performance in
tasks that require robust syntactic and semantic
analysis, such as QNLI and CoLA. Higher ratios
(δ = 0.8 and δ = 0.9), while expanding the range
of considered frequencies, often introduce noise
that compromises the model’s focus and general-
ization ability, particularly evident in tasks like
QNLI and STS-B.

5 Limitations

While SSH shows great promise in terms of param-
eter and computation efficiency, there are several
limitations that need to be addressed in the future:

• One-go Additional Computational over-
head: A notable limitation is the need to per-
form a one-go Discrete Hartley Transforma-
tion (DHT) on pre-trained weights to guide the
selection of the most informative frequencies.
This step introduces additional computational
overhead and memory requirements upfront.

• Generalization across Different Tasks: Al-
though SSH has demonstrated strong perfor-
mance across various tasks, its effectiveness
might vary depending on the task or the struc-
ture of the data. Due to specific model charac-
teristics, certain tasks may favor other meth-
ods, such as LoRA or FourierFT.

• Dependency on Pretrained Model Quality:
Since SSH is a fine-tuning method, its per-
formance is inherently dependent on the qual-
ity of the pretrained model. If the pretrained
model is suboptimal, SSH may not yield sig-
nificant improvements over other methods.

6 Conclusion

We introduced Sparse Spectrum Adaptation via
Discrete Hartley Transformation (SSH), a novel
parameter-efficient fine-tuning (PEFT) method that
reduces the number of trainable parameters while
maintaining competitive performance and compu-
tation efficiency. SSH leverages the real-valued
DHT and its symmetric forward and backward
transform to selectively update the most informa-
tive spectral components, addressing the computa-
tional and memory challenges of fine-tuning large
models. Through extensive experiments across
diverse tasks, SSH demonstrates robust versatil-
ity, excelling in single-modality NLP tasks such
as natural language understanding (NLU), natural
language generation (NLG), text summarization,
and mathematical reasoning. Furthermore, SSH
extends its effectiveness to multi-modality applica-
tions, including vision-language image classifica-
tion. SSH not only achieves state-of-the-art perfor-
mance but also surpasses existing PEFT methods in
both parameter and computational efficiency, posi-
tioning it as a scalable and lightweight solution for
fine-tuning large models across various domains.
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7 Appendix

In this supplementary material, we first provide
detailed information about the datasets used in our
experiments. Next, we outline the implementa-
tion specifics and hyper-parameter settings. We
then present additional experimental results that
further validate the effectiveness of the proposed
SSH method. Finally, we include examples of in-
struction tuning to highlight the practical applica-
tion of our approach SSH.

7.1 Details of Datasets
GLUE Benchmark. The General Language Un-
derstanding Evaluation (GLUE) benchmark(Wang
et al., 2019) is a widely used platform for evalu-
ating and advancing progress in natural language
understanding (NLU). It includes nine tasks cov-
ering various NLU challenges, such as sentiment
analysis, paraphrase detection, linguistic accept-
ability, natural language inference, and textual sim-
ilarity. Notable tasks include the Stanford Senti-
ment Treebank (SST-2), which focuses on binary
sentiment classification of movie reviews, and the
Microsoft Research Paraphrase Corpus (MRPC),
which assesses whether two sentences are seman-
tically equivalent. The Corpus of Linguistic Ac-
ceptability (CoLA) measures a model’s ability to
distinguish grammatically correct sentences from
incorrect ones, reflecting syntactic judgment skills.
By offering diverse tasks and including some with
limited training data, the benchmark promotes the
development of models that generalize well across
different language tasks and genres.

In addition to single-sentence classification tasks,
GLUE includes several sentence-pair tasks. The
Question Natural Language Inference (QNLI) task,
derived from the Stanford Question Answering
Dataset (SQuAD), requires models to determine
whether a given context sentence contains the an-
swer to a corresponding question. The Recognizing
Textual Entailment (RTE) task combines several
textual entailment datasets from diverse domains,
such as news and Wikipedia, to test if a hypothe-
sis can be logically inferred from a premise. The
Semantic Textual Similarity Benchmark (STS-B)
measures the similarity between sentence pairs us-
ing a regression-based approach, where models
predict similarity scores on a continuous scale.

E2E Benchmark. The E2E dataset (Novikova
et al., 2017) is designed for training and evaluating
end-to-end data-driven natural language genera-

tion (NLG) systems within the restaurant domain.
Comprising over 50,000 instances, it is notable for
its linguistic complexity, including greater lexical
diversity, syntactic variation, and discourse phe-
nomena compared to earlier datasets. Evaluation is
primarily based on five metrics: BLEU, NIST, ME-
TEOR, ROUGE-L, and CIDEr. BLEU measures
n-gram overlap between the generated text and hu-
man references, emphasizing precision. METEOR
accounts for synonymy and stemming, providing a
more nuanced assessment of similarity. ROUGE-L
evaluates fluency and structure through the longest
common subsequence. CIDEr, by weighting n-
grams according to their relevance in human refer-
ences, offers a comprehensive measure of output
quality.

Instruction Tuning Related Benchmarks The
Alpaca dataset (Taori et al., 2023) consists of
51K instruction-following examples generated us-
ing OpenAI’s text-davinci-003. It was devel-
oped to fine-tune Meta’s LLaMA 7B model into
a lightweight, instruction-following model called
Alpaca. The dataset spans a wide range of tasks,
including question-answering, summarization, and
classification, allowing the fine-tuned model to per-
form similarly to much larger models while being
more cost-efficient. A specific example is shown
below:

{
"instructions": Translate the sentence

from English to Spanish.
"input": The weather is beautiful

today.
"output": El clima está hermoso hoy.

}

MT-Bench (Zheng et al., 2024) is a recently
introduced benchmark designed to evaluate the
instruction-following capabilities of language foun-
dation models. It features a set of open-ended ques-
tions aimed at assessing model performance across
a variety of domains, including writing, roleplay,
reasoning, mathematics, coding, information ex-
traction, STEM, and the humanities. MT-Bench
effectively distinguishes these abilities through
domain-specific questions, providing a more com-
prehensive evaluation of model performance. An
example from the benchmark is shown below.
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{
"Q1": How many days are there in a leap

year?
"Q2": How many days are there in two

consecutive leap years?
"Solution": Q1: There are 366 days in

a leap year. Q2: There are 732 days in two
consecutive leap years.
}

Vicuna Eval (Chiang et al., 2023) is a bench-
mark designed to evaluate the alignment of large
language models (LLMs) with human preferences
and is the predecessor to MT-Bench. Vicuna Eval
assesses models across a wide range of topics, in-
cluding coding, writing, mathematics, counterfac-
tual reasoning, Fermi estimation, common sense,
roleplay, knowledge, and general tasks. It offers a
comprehensive framework for gauging how well
models meet human expectations across various
scenarios. An example from this evaluation is
shown below.

{
"question": Describe the difference

between supervised and unsupervised
learning.

"category": machine learning.
}

Image Classification Datasets. Tab. 8 provides
detailed information about four widely-used vi-
sion datasets: CIFAR100, DTD, EuroSAT, and
OxfordPets. It outlines key statistics, including
the number of training (#Train), validation (#Val),
and test (#Test) samples, as well as the number of
classes (#Class) in each dataset. These datasets
cover a range of domains, from object recognition
(CIFAR100 (Krizhevsky et al., 2009)) and texture
classification (DTD (Cimpoi et al., 2014)) to satel-
lite image classification (EuroSAT (Helber et al.,
2019)) and pet identification (OxfordPets (Parkhi
et al., 2012)). This diversity ensures that models are
tested on various visual tasks, providing a robust
evaluation of their performance.

To maintain consistency in model evaluation, all
datasets are rescaled to a resolution of 224 × 224.
This standardized input size simplifies comparisons
by ensuring that all models receive uniformly sized
images, which is essential for fair benchmarking.
The datasets vary significantly in terms of size and
complexity, with CIFAR100 containing the largest
number of samples (60,000) across 100 classes,
while OxfordPets is more specialized, focusing on
37 classes. This variety highlights the unique chal-

Dataset #Train #Val #Test #Class Rescaled res.

CIFAR100 45,000 5,000 10,000 100

224 × 224
DTD 4,060 452 1,128 47
EuroSAT 16,200 5,400 5,400 10
OxfordPets 3,312 368 3,669 37

Table 8: Details about the vision datasets.

lenges posed by each dataset, contributing to com-
prehensive model assessments.

7.2 Hyperparamaters

Hyperparameters on GLUE Benchmarks.
Tab. 9 summarizes the key hyperparameters used
in experiments across various GLUE tasks for
both Base and Large models. The table includes
details on learning rate schedules, optimizer
settings, warmup ratios, and seed values to ensure
reproducibility. For both model sizes, the AdamW
optimizer is employed with a linear learning
rate schedule and a warmup ratio of 0.06. The
frequency bias is set to false, and the frequency
coefficient n is fixed at 750 for SSH unless
otherwise specified. Each experiment is run using
five different seeds: {0, 11111, 22222, 33333,
44444}.

For Base models, the number of training epochs
varies between 30 and 100, depending on the task,
with SST-2 requiring the longest training time. The
FourierFT and SSH methods use a higher learn-
ing rate for base model training compared to the
learning rate applied during fine-tuning of the head
layers.

In contrast, Large models typically require fewer
epochs but are trained with slightly lower learning
rates. The batch size remains consistent across both
model sizes, set at 32 for all tasks. Additionally,
maximum sequence lengths are adjusted according
to the task, with longer sequences allocated for
more complex tasks like CoLA and QNLI.

Hyperparameter settings on E2E benchmark.
Tab. 10 details the hyperparameter configurations
used for the medium and large models on the
E2E benchmark. Both models are optimized using
AdamW with a linear learning rate schedule. For
the medium model, the learning rates for SSH and
FourierFT are set to 2E − 2, while for the large
model, the learning rates are set to 5E − 2. The
head layers are fine-tuned with lower learning rates
of 2E − 4 for the medium model and 1E − 4 for
the large model. Both models employ a batch size
of 128, with weight decay values of 0.01 for the
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Model Hyperparameter STS-B RTE MRPC CoLA SST-2 QNLI

Both

Optimizer AdamW
LR Schedule Linear
Warmup Ratio 0.06
Frequency Bias False
nSSH 750
nFourierFT 1000

Base

Epochs 60 90 30 100 40 40
Learning Rate (SSH) 9E-2 9E-2 5E-2 1.2E-1 5E-2 1E-2
Learning Rate (FourierFT) 9E-2 9E-2 5E-2 1.2E-1 5E-2 1E-2
Learning Rate (VeRA) 9E-2 9E-2 5E-2 1.2E-1 5E-2 1E-2
Learning Rate (Head) 9E-3 1.1E-2 6E-3 8E-3 6E-3 1E-3
Max Seq. Len 512 512 512 512 512 512
Scaling Value 84 110 141 49 140 29
Batch Size 32 32 32 32 32 32

Large

Epochs 30 60 30 80 10 30
Learning Rate (SSH) 7E-2 8E-2 6E-2 4.3E-2 4.3E-2 6E-2
Learning Rate (FourierFT) 7E-2 8E-2 6E-2 4.3E-2 4.3E-2 6E-2
Learning Rate (VeRA) 7E-2 8E-2 6E-2 4.3E-2 4.3E-2 6E-2
Learning Rate (Head) 1E-3 5E-3 1E-3 1.1E-2 1E-3 5E-3
Max Seq. Len 512 512 512 256 128 512
Scaling Value 121 90 120 90 69 69
Batch Size 32 32 32 128 32 32

Table 9: Hyperparameters used for SSH across various GLUE tasks.

Hyperparameter Medium Large

Optimizer AdamW
Learning Rate (SSH) 2E-2 5E-2
Learning Rate (FourierFT) 2E-2 5E-2
Learning Rate (VeRA) 2E-2 5E-2
Learning Rate (Head) 2E-4 1E-4
Batch Size 128
Weight Decay 0.01 0.03
nSSH 750
nFourierFT 1000
Scaling value α 300
Epochs 5
Label Smooth 0.1
LR Schedule Linear

Table 10: Hyperparameter settings on E2E benchmark

medium model and 0.03 for the large model. The
number of selected frequencies, n, is set to 750
for SSH and 1000 for FourierFT, with the scaling
factor α fixed at 300 for both models. Additionally,
label smoothing with a value of 0.1 is applied, and
the models are trained for 5 epochs.

Hyperparameter Setup for Instruction-Tuning.
Table 11 provides a summary of the key hyperpa-
rameters used for fine-tuning the LoRA, FourierFT,
and SSH models. For all methods, the optimizer
is AdamW, with a warmup ratio of 0.06. A batch
size of 4 is used, along with gradient accumula-
tion steps of 4 to ensure stability during training.
The default training duration is 1 epoch, although

Hyperparameter LoRA FourierFT SSH VeRA

Optimizer AdamW
Warmup Ratio 0.06
Batch Size 4
Acc. Steps 4
Epochs 1
n – 1000 750 –
Scaling Value α 300.0 16.0 16.0 300.0
LR Schedule Linear
Learning Rate 3E-2 3E-3 3E-3 3E-3

Table 11: Hyperparameter settings for instruction-tuning
configurations.

in specific cases—such as the motivation example
in the introduction and the ablation study in the
supplementary material—2 epochs are used.

For SSH, the parameter n is set to 750. The
scaling factor α varies across methods: it is set
to 300.0 for LoRA, 16.0 for FourierFT, and 16.0
for SSH. Learning rates are adjusted individually,
with LoRA using 3E-2, while both FourierFT and
SSH use a lower rate of 3E-3. All methods utilize
a linear learning rate schedule.

Hyperparameter setup for image classification.
Tab. 12 outlines the hyperparameter configurations
used for fine-tuning on the CIFAR100, DTD, Eu-
roSAT, and OxfordPets datasets for image clas-
sification tasks. The table provides the common
settings applied across all datasets, including the
use of the AdamW optimizer, a linear learning rate
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Hyperparameter CIFAR100 DTD EuroSAT OxfordPets

Epochs 10
Optimizer AdamW
LR Schedule Linear
nSSH 2250
nFourierFT 3000
α 300.0
Learning Rate (SSH) 2E-1 3E-1 2E-1 3E-1
Learning Rate (FourierFT) 2E-1 3E-1 2E-1 3E-1
Learning Rate (VeRA) 2E-1 3E-1 2E-1 3E-1
Learning Rate (Head) 7E-4 1E-3 8E-4 1E-3
Weight Decay 1E-4 7E-5 3E-4 8E-4

Table 12: Hyperparameter setup for image classification.

schedule, and a consistent training duration of 10
epochs. The number of frequency components (n)
is set to 2250 for SSH and 3000 for FourierFT
across all datasets.

For both SSH and FourierFT, the learning rate
varies slightly depending on the dataset, ranging
from 2E-1 to 3E-1, while the learning rate for the
classification head lies between 7E-4 and 1E-3.
The weight decay is also tuned per dataset, with
values between 7E-5 and 1E-4 for DTD and CI-
FAR100, and slightly higher at 3E-4 and 8E-4 for
EuroSAT and OxfordPets, respectively.
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