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Abstract

Large language models (LLMs) have replaced
the metaphorical monkeys in the “infinite mon-
keys” thought experiment with machines that
mirror human writing. With LLMs being used
to generate content at an unprecedented scale,
concerns over their misuse and the saturation
of the content space with artificially generated
material are growing. We foresee a point in the
future where a vast majority of all the possible
text in a given language would have already
been generated, leading to a “Plagiarism Singu-
larity". In this paper, we provide predictions on
how far we are from this singularity in the form
of an estimate of the volume of content that
needs to be generated to reach this singularity.
We use an LLM to calculate the probability dis-
tribution of sentences in the English language
collected from a large dataset. We then es-
timate the minimum number of sentences to
be generated to cover different percentiles of
the probability mass of the set of all sentences,
assuming they follow the calculated distribu-
tion, by treating the problem as an instance of
the coupon collector’s problem. We find that
breaching the standard 20% plagiarism limit
would only need around 1030 sentences to be
generated, which we estimate to happen in ap-
proximately 40 years from now.

1 Introduction

Imagine a million monkeys typing randomly on
typewriters for an infinite amount of time. If you
wait long enough, they will produce anything that
we can imagine – a play of Shakespeare’s, ASCII
art of the Mona Lisa, or even the sheet notation for
Mozart’s symphonies. This scenario in its modern
form was first imagined by the French mathemati-
cian Émile Borel in his work on statistical mechan-
ics (Borel, 1913). Since then, the idea has amused
many and even got featured in a range of pop cul-
ture works (Gibbons, 2009) from ‘The Hitchhiker’s
Guide to the Galaxy’ to ‘The Simpsons’.

Figure 1: LLMs have replaced the infinite monkeys with
machines, generating text at scale—fueling concerns of
misuse and a looming ‘Plagiarism Singularity’.

The idea remained as a fun thought experiment
since the imaginary monkeys would need a prac-
tically absurd amount of time to come up with
anything meaningful. However, large language
models (LLMs) have surprised us with a real-life
version of this monkey that is capable of coming
up with textual content that looks indistinguishable
from that written by humans (Mao et al., 2024).
The release of ChatGPT (OpenAI, 2024) has trig-
gered a massive wave of automation in content
generation (Bergman, 2022), with everything from
social media content, news to even research ideas
being generated, and experiments being run auto-
matically (Lu et al., 2024; Yeo et al., 2024; Xu
et al., 2025). While there are advantages that come
with the judicious use of these capabilities, they
are certainly being used to create harm in many
ways including spreading disinformation (Hsu and
Thompson, 2023) and cognitive biases (Mao et al.,
2025).
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The academic domain is also facing a serious
problem with artificially generated works flooding
the public domain, with some of them frequently
making their way into Google Scholar’s search
results (Haider et al., 2024). The amount of content
being generated and the rate at which it is growing
raises questions about the assumed impracticality
of the “infinite monkeys” situation, with LLMs
taking over the typing from monkeys.

We imagine a scenario in the future where most
of the text that humanity would come up with, for
as long as we continue to use a particular language,
has already been generated using LLMs. After
this point, most new content (original or otherwise)
will be marked as plagiarized by a tool that has
access to and is powerful enough to cover all of
this generated text. We predict that we will reach
this Plagiarism Singularity very soon in a world
without limitations on storage and computational
resources. We say that we are k% close to sin-
gularity if any new piece of text written exhibits
on average k% similarity to the already generated
content.

In this work, we estimate using this definition,
how far we are from the singularity by calculating
the amount of text (measured in sentences) that
needs to be generated to reach a certain amount
close to the singularity. To calculate this quantity,
we first estimate the probability distribution of all
the sentences in the English language. We use an
LLM to calculate these probabilities for a sample of
500k sentences (see examples in Table 1), that are
taken from a dataset of sentences from Wikipedia,
and then extrapolate the distribution derived from
the sample to that of the population, i.e., of all the
sentences in the language. We interpret the proba-
bility that a language model assigns to a sentence s
as the probability for a sentence selected at random
from an infinitely large corpus of text to be s. Ad-
ditionally, we use sentence-level exact matches as
our criteria for what counts as plagiarism. With the
above interpretation of sentence probabilities and
plagiarism, we draw a parallel between the problem
of estimating how far we are from the plagiarism
singularity and the coupon collector’s problem -
which deals with the task of calculating the number
of times a collector needs to draw (with replace-
ment) from a finite set of coupons, to have all the
coupons drawn at least once (Feller, 1968).

We develop a method to extend the solution of
the coupon collector’s problem to a set consisting
of an infinite number of coupons drawn from a

Sentence Prob.
As of the 2000 census, its population was
1,637.

1.55e-20

2016 Symetra Tour was a series of profes-
sional women’s golf tournaments held from
February through October 2016 in the United
States.

1.33e-53

A mechanical engineer by trade, Robbie
founded ROK Racing a speedway motor-cycle
building and engine tuning business, in 2010.

5.99e-57

The Market of Alturien is a board game for 2
to 6 players, released in 2007.

2.80e-33

Table 1: Probabilities of some sentences from the
wikisent2 dataset calculated using GPT2, according to
Assumption 2 made in Section 4.1.

non-uniform distribution, and to calculate rough es-
timates of the average number of draws required to
cover different percentiles of the set. Applying this
modified coupon collector’s solution to sentence
distribution provides an estimate of our proximity
to the singularity.

We estimate that generating just 1030 sentences
will be enough to reach the standard 20% plagia-
rism limit set for most academic submissions. This
number was arrived at under the assumption of re-
stricting the definition of plagiarism to only exact
matches at the sentence level. The plagiarism de-
tection methods used in practice are usually much
stricter, which means that we would get closer to
the singularity with far fewer sentences. If we
use Nk to denote the number of sentences to be
generated to reach the k% plagiarism limit, our cal-
culations reveal a broadly exponential relationship
between k and Nk. We predict the values of Nk

for various levels of k as N40 = 1039, N60 = 1048,
N80 = 1061, and N90 = 1074. Using rough esti-
mates of the amount of publicly available text and
the rate at which new content is being generated,
we predict that we will reach the 20% plagiarism
limit in less than 40 years.

The contribution of this work can be summarized
as follows: (1) Through this paper, for the first time,
we provide a quantitative analysis of a practical ver-
sion of the infinite monkeys scenario through the
use of LLMs. We propose the concept of a plagia-
rism singularity as well as provide estimates for
how far we are from it. (2) In the process of calcu-
lating the estimations, we develop a novel method
to get rough estimates for the coupon collector’s
problem for an infinite set of non-uniformly dis-
tributed coupons. The insights drawn in this paper
are important for future discussions on AI content
generation, copyright as well as content originality.
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2 Related Works

The infinite monkey thought experiment of Borel
(1913) was used to illustrate the power of the laws
of statistical mechanics, highlighting the extreme
low probability of these laws failing for a signifi-
cant amount of time and over a significant amount
of space. However, over time, the thought experi-
ment turned into a theorem that highlights the non-
zero probability for the hypothetical situation to
actually occur. The idea has been traced back by
some authors (Borges and Weinberger, 2001) to
Aristotle’s Metaphysics (Cohen and Reeve, 2021),
to his explanation of a theory about the universe
being made up of random combinations of atoms.

Empirical studies on the theorem, assuming
a uniform distribution of characters, yield astro-
nomically large estimates for the time required to
generate specific phrases. For example, Christo-
pher Lutsko’s conjecture, based on Martingale the-
ory, estimates the time for a single monkey on a
typewriter to produce a given word like “ABRA-
CADABRA” (Lutsko, 2023). Similarly, Ergon Cu-
gler de Moraes Silva’s work calculates the number
of attempts needed to generate the phrase “to be,
or not to be, that is the question” (de Moraes Silva,
2024). In contrast, language models assign sig-
nificantly higher probabilities to these words and
phrases. To our knowledge, no studies have yet
applied language models to estimate such probabil-
ities in the context of the theorem.

There are ongoing debates on the advantages,
disadvantages and ethical considerations of using
LLMs for content generation and other related
uses. LLMs are be used as paraphrasing tools, and
have made plagiarism detection extremely compli-
cated (Kwon, 2024). However, plagiarism detec-
tors are catching up. On the reviewer front, recent
techniques developed to detect the usage of gen-
erative AI tools in a given text have shown good
detection performance (Liu et al., 2024; ?). On the
model owner front, tools are being developed to
include a hidden signature in the content generated
using specific LLMs that can only be detected al-
gorithmically (Kirchenbauer et al., 2024). On the
other hand, discussions about the ethical implica-
tions of using LLMs for content generation are still
going on (Malinka et al., 2023) and strong argu-
ments in the favour of their use have been made as
well (Anders, 2023). It is to be seen to what extent
their use will be allowed for content generation in
various fields.

3 Preliminaries

The coupon collector’s problem is a classic prob-
lem of probability theory and is defined as follows:
There is a set C of n distinct coupons, with each
coupon ci having a probability pi of being issued.
What is the average number of coupons N that a
collector needs to draw from C (with replacement)
to collect all the n coupons. This quantity, also
known as waiting time, is given by Nath (1973):

N =
∑

i

1

pi
−
∑

i<j

1

pi + pj
+

∑

i<j<k

1

pi + pj + pk

− ...+ (−1)n−1 1

p1 + ...+ pn
(1)

The ith summation term in Eq. 1 has
(
n
i

)
terms in

it. Thus, if all the coupons are issued with the same
probability p = 1

n , then Eq. 1 will take the form:

N =
1

p
[

(
n

1

)
− 1

2

(
n

2

)
+ ...+ (−1)n−1 1

n

(
n

n

)
]

(2)

For the equiprobable coupons case, an asymp-
totic estimate was given by Newman (1960) and
refined by Erdős and Rényi (1961) as:

N = n ln(n) + γn+
1

2
+O(

1

n
), (3)

where γ ≈ 0.5772, known as the Euler-Mascheroni
constant. For very large values of n, Eq. 3 can be
approximated to:

N ≈ n ln(n) (4)

Comparing Eq. 2 and Eq. 4, we can say that for
large values of n:
(
n

1

)
− 1

2

(
n

2

)
+ ...+(−1)n−1 1

n

(
n

n

)
≈ ln(n)

(5)

Eq. 5 will be used later to perform an approxi-
mate calculation of N for coupons drawn from
non-uniform distributions.

4 Methodology

The infinite monkeys thought experiment imagines
the probability of finding a piece of text of inter-
est in a large list of randomly typed texts. The
probability of finding any meaningful content of
considerable length, let alone a specific one, in
these randomly typed texts is extremely tiny.

10247



Detection level Text caught as plagiarised
Reference text The naughty cat broke the vase.
Character preserving The naughty cat broke the vase.
Character preserving
(at edit distance=4)

The notty cat broke the vase.

Syntax preserving The mischievous cat broke the
vase.

Semantics preserving The vase was broken by the
naught cat.

Idea preserving The cat is such a mischievous one,
it shattered the vase into pieces.

Table 2: Examples of sentences caught as plagiarizing
the reference sentence at different levels of plagiarism
detection. Note that a tool at a particular level catches
all the versions of the reference text at previous levels
too.

However, with LLMs, it is almost certain that
anything they generate belongs to the language(s)
they are trained on. We imagine a scenario where
LLMs are exploited to generate such large amounts
of textual content that it becomes difficult to come
up with anything new that does not show significant
levels of similarity to the already generated ones.
This scenario of a plagiarism singularity can be
formally defined as follows:

Definition 1: Plagiarism Singularity. Let a lan-
guage model M , which describes a probability dis-
tribution pM , be used to generate a large amount
of textual content, amounting to a total of N sen-
tences. If the model M is now used to generate new
pieces of text and on average k% of the sentences
in them are present in the N previously generated
sentences, we say that we are k% close to the pla-
giarism singularity.

The goal of the paper is to find out the minimum
value Nk that N needs to take so that we can expect
to be k% close to singularity. The problem setup
and our analysis are based on two major assump-
tions, which are discussed in detail in Section 4.1.
Following the assumptions, we first use the model
M to calculate the probability distribution of the
sentences in the English language in Section 4.2.

We start out with a dataset of sentences extracted
from the Wikipedia dump to calculate the sample
probability distribution and extrapolate it to esti-
mate that of the population, i.e., all possible sen-
tences in the language. From this distribution, we
estimate the value of Nk for various values of k in
Section 4.3 by modeling the problem as the coupon
collector’s problem.

Figure 2: Various levels of plagiarism detection. As
we move from the character preserving level to higher
levels, more complex cases of plagiarism are detected
and the plagiarism score for a given piece of content
increases.

4.1 Assumptions
We make two important assumptions to enable us to
model the plagiarism singularity estimation prob-
lem as the coupon collector’s problem. In this
section, these assumptions are discussed in detail.

4.1.1 Definition of plagiarism
Assumption 1: We consider only exact matches
at the sentence level under our definition of plagia-
rism.

Plagiarism checkers can be used to measure var-
ious levels of similarity (Foltýnek et al., 2019;
Alzahrani et al., 2012) (see Fig. 2): idea preserving
- that considers similarities at a conceptual level;
semantics preserving - that catches translated and
well as paraphrased content; syntax preserving -
that catches substitutions of words with synonyms;
and character preserving - that only measures and
catches similarities at the literal text level. Table 2
shows a few examples.

Although tools are available for all the afore-
mentioned levels, character preserving plagiarism
detection tools are the ones that are most commonly
used in practice, as they strike an effective balance
between detection accuracy and processing speed.
At the character level, detection tools work as n-
gram models, catching matching n-grams which
include those that are at a certain edit distance from
each other. More matches are found for smaller
values of n and for larger settings of edit distances.

For fitting the coupon collector’s problem to our
task of estimating plagiarism singularity, we need
to divide the text into non-overlapping units in or-
der to be able to treat them as made up of coupons.
Sentences serve as the ideal choice as they contain
more semantic information than smaller choices of
units like words or characters.
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Figure 3: A histogram of 500k sentences sampled from
the dataset, grouped by their log likelihoods.

Additionally, allowing the relaxation of an edit
distance will introduce the difficulty of having to
consider all possible texts at the given edit distance
from a sentence s for calculating the probability
for s. Therefore, we choose to only consider exact
matches at the sentence level under our definition
of plagiarism and simplify our analysis. Thus, our
estimates should be treated as upper bounds for the
actual quantities.

4.1.2 Probability of a sentence
Assumption 2: We interpret the probability pM (s)
that the model M assigns to a sentence s as the
probability that a sentence picked at random from
an infinitely large corpus of text generated using
M is s.

Language models are auto-regressive models
trained for the next token (sub-word) prediction.
The probability pM (s) that the model outputs for
a given sentence s actually describes the probabil-
ity that any piece of text starts with s. The above
probability (Assumption 2) might not be possible
to be computed directly from the language model.
This is because we would have to account for all
possible texts and evaluate the likelihood of the
occurrence of sentence s within each text, which
is computationally infeasible. A direct density es-
timate for sentences would be ideal for the task.
However, since no such estimate exists (as per our
knowledge), we are using the probabilities given
by a generative model as estimates of the actual
quantities. The estimates for sentences like “As we
have seen in the earlier paragraph ..." might be off,
as it is not as likely that a piece of text starts with
it, as it is that it’s present somewhere in the text,
but we believe that the overall distribution over all
possible sentences would be similar.

Another thing to consider is that, for text gener-
ation using LLMs, different values for parameters
like temperature (which controls how creatively an
LLM responds to a question) and sampling strate-
gies like beam search, and nucleus sampling (which
restrict the text to a few high-probability occur-
rences) are used in practice. These can alter the
output probability distribution of the generated text,
but for our analysis we assume that the default tem-
perature (1.0) and the random sampling strategy
are used.

4.2 Probability Distribution Estimation
Given an alphabet A made up of α characters, let
the language L be the set consisting of all the possi-
ble finite strings (sentences) that can be built from
the characters of A. Note that L is an infinite
set, since there are no restrictions on the length
of strings in L. Consider the language model M
describing the probability mass function pM . As-
sume that M uses a set of tokens W to tokenize
strings from L. Being an auto-regressive model, it
is trained to predict the probability of each token
w ∈ W to be the next one of a given sequence of
tokens (x1, x2, ..., xn−1):

pM (xn = w|x1, x2, ..., xn−1) ∀w ∈ W

The probability of interest (as per the Assump-
tion 2) for a given sentence s that is tokenized
as (x1, x2, ..., xn−1, xn) can be therefore be calcu-
lated using the chain rule of probability as:

pM (s) = pM (x1, x2, ..., xn−1, xn)

= pM (x1) · pM (x2|x1) · ... · pM (xn|x1, ..., xn−1)

We can calculate pM (s) for any sentence in this
manner. Performing the calculation for all possible
sentences would give us our required distribution,
but the space of all possible sentences is infinite.
Even with a short length limit of 100 characters,
the population size (α100) turns out to be extremely
large (10200 for α = 100). Therefore, we need to
resort to a suitable sampling method. We take the
approach of using a corpus of human-written text
as our sample. The probabilities of around 500k
sentences from the wikisent21 dataset have been
calculated using the GPT-2 model and a histogram
of the sentences grouped according to their log
probabilities was calculated (Fig. 3).

1https://www.kaggle.com/datasets/mikeortman/
wikipedia-sentences/data
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To extrapolate this sample distribution to the
population, we assume that the total probability
mass occupied by all the sentences in the English
language sums up to 1. As we can see in Fig. 4
and Fig. 5, a small non-zero probability is occupied
by random character sequences, but we ignore this
mass in our calculations. This will lead to a slight
over estimation of the number of meaningful sen-
tences in the population, thus resulting in a larger
than real estimates for singularity. Therefore, we
reiterate that the estimates given here should be
treated as upper bounds for the actual quantities.

The histogram obtained from the sample is then
used to calculate the number of sentences in the
population in each band of log probabilities. Let
n be the total number of sentences in the sample.
We sort the sentences in the increasing order of
their log probabilities and divide them into b bins
by choosing the value of b such that range of proba-
bilities within a bin is small. Let ni be the number
of sentences in bin i and the average probability
of sentences in it be pi. The fraction of sentences
in bin i is given by ni

n , while the probability mass
occupied by all of them is nipi. To get the num-
ber of sentences in the population npop

i in bin i,
we assume that the total probability mass occupied
by all the npop

i for each bin i follows the sample’s
histogram, i.e npop

i pi = ni
n . Therefore, the total

number of sentences of the population that are in
bin i is given by:

npop
i =

ni

npi
(6)

A disadvantage that comes with using GPT-2
as our probability estimation model is that its tok-
enizer relies on Byte Pair Encoding (BPE). BPE to-
kenization (proposed initially by Gage (1994) as a
compression algorithm) uses a vocabulary in which
some tokens are built by combining other smaller
and frequently co-occurring tokens. Although the
tokenizer is usually implemented in such a way
that it deterministically tokenizes a given string
into a unique sequence of tokens consistently, we
need to consider all possible ways of tokenizing
a sentence s to calculate its assigned probability
pM (s). The total number of ways to tokenize a
given string can be huge. The partition function,
which was shown to be exponential in the length of
the string by Hardy and Ramanujan (1918), can be
considered as an upper bound for this number.

Figure 4: Average per character log probabilities (base
10) for meaningful sentences from the dataset vs random
character sequences. Observe that random character
sequences have (per character) probabilities multiple
orders of magnitude smaller than meaningful sentences.

Figure 5: Correlation between length and probability of
sentences/character sequences. It can be observed that
a clear separation can be drawn between meaningful
sentences and random character sequences.

However, we observed empirically that the prob-
abilities for non-default token sequences for a sen-
tence s are a large number of orders of magnitude
smaller compared to the default one for the same
sentence. Therefore, in this work, we approximate
pM (s) to that of the default tokenization of s. Note
that actual probabilities would be slightly higher,
but our estimates of npop

i still hold as upper bounds
for their true values. The next question is, how
many sentences Nk would one need to generate us-
ing M to expect to cover a given k% of sentences
of a new piece of text generated using M , given the
distribution calculated above. This is given by the
solution to the coupon collector’s problem, which
is discussed in the following section.

4.3 Modified Coupon Collector’s Problem
The coupon collector problem’s deals with the task
of calculating the number of times a collector needs
to draw (with replacement) from a set of equiprob-
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able coupons, to have all the coupons drawn at
least once. Variants include solutions for coupons
that are drawn from a non-uniform distribution.
However, unlike the uniform case, an asymptotic
solution does not exist for a general distribution. In
our case where we are writing sentences instead of
drawing coupons, the distribution pM is far from
uniform, and the number of sentences is infinite.
However, we can deal with these factors and get
rough estimates if we formulate the task as follows.

Consider the sentences grouped into b bins, as
mentioned in the previous section. Let bk be the
bin such that the sentences in bk and all the sen-
tences in bins of probabilities higher than that of
bk constitute k% probability mass of the model
M . bk for a particular value of k can be calcu-
lated using the sample distribution and it results
in a curve as shown in Fig. 6. We assume that if
M is sampled enough times such that it generates
all the sentences in bk, we would have covered all
the sentences in the bins i for all i < bk. We will
revisit this assumption later.

We can now simplify the coupon collector analy-
sis using the following two tricks: (1) Assume uni-
formity within individual bins - all npop

i sentences
within bin i of the population have the probability
pi. (2) Treat all the sentences not in bk as one single
coupon c with a large probability pc and perform
the coupon collector’s analysis considering only
the coupons representing the sentences in bk and
this additional one c.

With the above two simplifications, we can es-
timate Nk using the equations in Section 3. For a
general case, N is given by Eq. 1:

N =
∑

i

1

pi
−
∑

i<j

1

pi + pj
+

∑

i<j<k

1

pi + pj + pk

− ...+ (−1)n−1 1

p1 + ...+ pn

Here, we have npop
bk

+ 1 coupons with all of their
probabilities being equal to the bin probability pi
except for the one pc corresponding to the extra
coupon c. Since pc >> pi, we can approximate
Eq. 1 by ignoring any terms in the summations that
contain pc. The result would be:

Nk =
1

pbk
[

(
npop
bk

1

)
− 1

2

(
npop
bk

2

)
+ ...

+ (−1)
npop
bk

−1 1

npop
bk

(
npop
bk

npop
bk

)
] (7)

Figure 6: Percentage of sentences in the sample cov-
ered as a function of a threshold for probability of the
sentences. This curve can be used to find out bk for
different values of k. For example b20 is 28 and b80 is
59, respectively (points marked by orange ’X’s).

which can further be simplified using Eq. 5 into:

Nk ≈ 1

pbk
ln(npop

bk
) (8)

which implies

log(Nk) ≈ − log(pbk) + log(ln(npop
bk

)) (9)

The double logarithm on npop
bk

and the negative
sign on log(pbk) in Eq. 9 indicate that there must be
a linear relationship between log(Nk) and log(pbk)
(which can be observed in Fig. 7) and an inverse
linear relationship between pbk and Nk (which can
be observed in Table 3), except in the head and tail
regions of the distribution (k < 10% or k > 90%)
where nbk is not large enough for our approxima-
tions to hold true). The calculated estimates of Nk

for various values of k are given in Section 6, which
provide support to our earlier assumption that gen-
erating enough sentences to cover the whole of bin
bk is enough to cover all those in bins i < bk.

5 Experimental setup

Dataset. As mentioned in Section 4.2, we use the
wikisent2 dataset as our sample for the probability
distribution estimation. It contains around 8 million
sentences extracted as raw data from Wikipedia
and parsed into sentences using the SpaCy tool.
Poorly formed sentences such as those that required
citations, etc. were removed. Since wikisent2 is
relatively small compared to world corpora, we
ensure sampling fairness by comparing the word
frequency distribution of wikisent2 with that of
Google n-grams derived from Google Books (a
very large corpus).
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Figure 7: The estimates for the number of sentences in
the population npop

i in each bin i (x-axis) calculated by
extrapolating the sample are shown in the figure. The
curve in blue shows the estimates, and the dotted line in
red (plot of x = y) is given as a reference to highlight
the inverse relationship between Nk and pbk in Eq. 8, 9.

Figure 8: Frequencies of top 20 Google n-gram words
in wikisent2.

We observed that wikisent2 is a diverse dataset
and has more words in it than Google’s n-gram
dataset. Moreover, the frequencies of the top-20
words (according to word count) in both datasets
(see Fig. 8) are fairly similar. Thus, wikisent2,
despite its smaller size, maintains a representative
lexical diversity and distribution pattern, which
makes it a suitable dataset for our analysis.
Model. The GPT-2 model (Radford et al., 2019)
was chosen for calculating the probabilities of sen-
tences from the dataset. The model offers an ad-
vantage over recent alternatives, that unlike newer
models trained also on code, it is trained primarily
on natural language, ensuring that its probability
mass is dedicated to sentences in the language.
Setup. All the experiments were run on an A100
GPU using Singapore’s super-computing service
NSCC. HuggingFace’s transformers library was
used to load and run the model. Sentences were

k bk nbk npop
bk

Nk

5.00% 20 7541 18.75 21.64
10.00% 23 9657 21.85 24.70
15.00% 26 11336 24.92 27.76
20.00% 28 11860 26.94 29.79
25.00% 31 13021 29.98 32.84
30.00% 33 12869 31.97 34.87
40.00% 37 12487 35.96 38.92
50.00% 41 11839 39.94 42.59
60.00% 46 10028 44.86 48.01
70.00% 52 7692 50.74 54.07
80.00% 59 5634 57.61 61.12
85.00% 65 4314 63.49 66.80
90.00% 72 2841 70.31 74.21
95.00% 84 1380 82.00 86.28

Table 3: Estimates for the number of sentences Nk to
be generated to reach k% of plagiarism singularity. k:
% of plagiarism, bk: probability bin (negative logarithm
scale, base 10), nbk : number of sentences in bin bk
(out of 500k sentences in the sample), npop

bk
: number of

sentences in bin bk in the population (power of 10), Nk:
singularity estimate (power of 10).

prefixed with the default bos (beginning of sen-
tence) token <|endoftext|>. The default value
1.00 of the temperature parameter was chosen for
calculating the probabilities. Probabilities were
converted to the log scale to avoid underflow errors
for sentences with very low probabilities.

6 Results

The results of the above experiments and calcula-
tions are described in Table 3. Once the sample dis-
tribution was calculated for all the 500k sentences
in the dataset (Fig. 3), we calculate the cumulative
distribution as in Fig. 6. Bin indices bk correspond-
ing to various value of k were identified from the
cumulative distribution. In each bin bk, the number
of sentences in the population npop

bk
was estimated

from the number of sentences in the sample nbk

using Eq. 6. Finally, the number of sentences to
be generated to reach k% close to the plagiarism
singularity was calculated using Eq. 8.

It would help to put the results in perspective
by looking at what the amount of total data and
text generated so far is. It is estimated that 64
Zettabytes (close to 1023 bytes) of data had been
created globally until 2020 (Statista, 2023). This in-
cludes short lived data and the majority of it might
not be stored anywhere. It is difficult to calculate
the total amount of text in the public domain, but an
estimate can be made by looking at the number of
web pages that search engines like Google discover
each year.
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Extrapolating the numbers shown in (Schwarts,
2016) which reveal a 40% yearly growth rate in the
number of new web pages discovered, we get an
estimate of 3×1015 web pages in total on the Inter-
net as of 2024. Further, an average of 30 sentences
per web page (see Sec. Practical constraints for
more details) gives us a total of 9× 1016 sentences
generated so far.

Therefore, if we start today with the total number
of sentences generated so far as N [0], and assume
that the growth rate is boosted by LLMs from 40%
to 100%, the total number of sentences generated in
x years from now N [x] would be: N [x] = N [0]×2x.
For N [x] to be a desired Nk, i.e., the estimated
number of sentences generated to be k% close to
singularity, the number of years required would be
given by: x = log2(Nk/N

[0]). This reveals that
we will reach the standard 20% plagiarism limit in
around 40 years.

Even with our pre-LLM era growth rates (40%
annual growth or close to 100% in two years), we
will reach the above 20% limit in around 80 years.
These numbers are especially worrisome as all
estimates presented here are calculated using many
relaxations, which means that we could be much
closer to singularity than estimated.

7 Future works

The techniques developed in this work can be ex-
tended to various domains and modalities. While
we provide predictions for the expected level of
plagiarism for the entire distribution of the English
language, it would be practically useful in certain
cases to focus on a specific domain, such as natural
language processing (NLP) research, or a specific
topic, like a particular political campaign.

This could reveal interesting insights about the
nature of plagiarism and the limits of original writ-
ing. Furthermore, it is worth exploring how this
technique can be extended to areas outside the do-
main of natural language where plagiarism remains
a major concern - like software programs and hard-
ware design specifications which use formal lan-
guages, visual art in image/video modalities and
music in audio and structured notation. While it
may not be possible to model these problems in
the same way as we did for plagiarism in natural
language, addressing them could greatly improve
our understanding of plagiarism in these fields.

8 Conclusions

Automation of text generation with LLMs poses a
serious risk of content saturation2. Although get-
ting close to the plagiarism singularity might need
resources beyond what is practically available now,
reaching 20-30% of it seems to need a reasonable
amount of resources. It would be interesting to ex-
plore the applications of this work in other domains
and modalities.

Limitations

The conjecture and its analysis presented in this
paper have two major limitations. The first is about
the practicality of the resources needed to reach
the singularity, and the second is about the aspects
of the analysis and the assumptions it is based on,
which prevent us from giving a tighter upper bound
for the estimate of the singularity.

Practical constraints

In the real world, we might run into other prob-
lems before we reach the conjectured plagiarism
singularity. For example, for larger values of k, the
number of sentences Nk required to be generated
and stored exceeds the theoretical storage limits of
Earth of around 1048 bytes (Cambria et al., 2017)
(derived considering atomic scale storage (Loth
et al., 2012)). Moreover, plagiarism tools are con-
strained by the search engines they are using to find
candidates for matches, which have limits on their
indexing capacity. Google’s index was revealed to
be for 4B websites (400B documents - including
web pages, PDFs, etc.) in 2020 (Shepard, 2024).
It is not clear what Google or any other search en-
gine’s indexing capacity limits are, but creating and
maintaining indices is an expensive affair and even
as storage gets cheaper over the years, the capacity
might not grow above a few orders of magnitude
above this figure. A crude estimate of the amount
of indexed text available on the Internet can be
arrived at by assuming that all these indexed docu-
ments are web pages and that the amount of text in
each page is around 3KB (30KB of HTML per web
page (Archive, 2022) and 10% of it is actual text),
which amounts to 500 words or 30 sentences per
page, and 10T total sentences in all the pages com-
bined (about 104 times smaller than the estimated
number for all publicly available text).

2This paper is an original work, its text is neither gener-
ated by LLMs nor plagiarized from previous works (has an
iThenticate score of 5% excluding the bibliography section).
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Figure 9: The graph (similar to Fig. 6) shows the per-
centage of sentences covered for a particular thresh-
old probability for sentences in the sample (in gray)
compared to the same sentences when rewritten in sim-
pler words conveying the same information (in blue).
Observe that the difference in negative log probability
values for a particular value of percentage covered in-
creases as we go towards 100%.

The available data on search indices shows that
the number had grown with time in the past, but
search engines purposely keep a check on the size
of the indexed web to avoid exposing users to junk
on the Internet.

Factors extending the upper bound

A list of assumptions that help simplify the analysis
but as a result weaken the upper bound estimated is
given below. Justifications for them can be found
in the paper where they are introduced.

1. Definition of plagiarism - restricting to
sentence-level exact matches only. An exper-
iment was carried out to observe the effect
of shifting to a semantics preserving level of
plagiarism by replacing each sentence in the
sample with a simplified version of it with
the help of a Llama model, and the results
show that the difference is not prominent for
low percentage of coverage, but for higher
percentages the deviation was observed to be
quite significant (see Fig. 9).

2. Assumptions about random strings - It was
assumed during the process of extending the
sample distribution to the population that the
model assigns a zero probability to completely
random character sequences. This results in a
slight overestimation of the numbers.

3. Calculating pM (s) using a model which uses
Byte-Pair Encoding - It was assumed that the

probability assigned to the default tokeniza-
tion of a sentence approximates the sum of
probabilities assigned to all possible tokeniza-
tions of the sentence. Empirical observations
on the probabilities for the non-default tok-
enizations of sentences show that they are
many orders of magnitude smaller than that
of the default sentence. Therefore, we expect
the effect of this approximation on the results
to be very small as well.

Another factor to consider is the change in the
probability distribution of the language as it evolves
with time. Popular phrases often become obsolete,
and newer, once rarely used ones take their place.
This might push the singularity further into the
future. It is also important to note that the entire
analysis banks on the accurate modeling of the
language by the language model. We rest our faith
in the density modeling ability of LLMs based on
their incredible performance on generative tasks.
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