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Abstract

Self-reflection for Large Language Models
(LLMs) has gained significant attention. Ex-
isting approaches involve models iterating and
improving their previous responses based on
LLMs’ internal reflection ability or external
feedback. However, recent research has raised
doubts about whether intrinsic self-correction
without external feedback may even degrade
performance. Based on our empirical evidence,
we find that current static reflection methods
may lead to redundant, drift, and stubborn is-
sues. To mitigate this, we introduce Instruct-of-
Reflection (IoRT), a novel and general reflec-
tion framework that leverages dynamic-meta
instruction to enhance the iterative reflection
capability of LLMs. Specifically, we propose
the instructor driven by the meta-thoughts and
self-consistency classifier, generates various
instructions, including refresh, stop, and se-
lect, to guide the next reflection iteration. Our
experiments demonstrate that IoRT achieves
an average improvement of 10.1% over es-
tablished baselines in mathematical and com-
monsense reasoning tasks, highlighting its effi-
cacy and applicability. Our code is available at
https://github.com/llp635/IoRT.

1 Introduction

Large language models (LLMs) (Touvron et al.,
2023; Achiam et al., 2023; Anil et al., 2023; Claude,
2024) have demonstrated remarkable capabilities
across various natural language processing tasks
(Bai et al., 2022a; Wei et al., 2022a; Chu et al.,
2023), particularly when leveraging a range of
prompting strategies such as Chain-of-Thought
(Wei et al., 2022b) which improve the reasoning
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Here's the better answer: Clouded
leopards and pangolins ..., with different
habitats and behaviors.  So the answer
is: false.

The response is relevant ... , accurately
states that they typically do not encounter
each other while awake.

Clouded leopards and pangolins are both
nocturnal, but they inhabit different
spaces, making encounters unlikely. So
the answer is: false.

Question: Would a clouded leopard
encounter an awake pangolin?
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Here's the better answer: While ...., a
computer cannot be entirely programmed
using only Boolean algebra. So the
answer is: false.

The response does not specifically
address whether a computer can be fully
programmed using only Boolean algebra.

Computers operate on binary logic,
represented by Boolean algebra.
Programming languages also use Boolean
logic.., So the answer is: true.

Question: Can a computer be programmed
entirely in Boolean algebra?
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Here's the better answer: Lemon's tangy
and sour taste does not ..., as their
contrasting flavors may clash each other.
So the answer is: false.

The response is relevant ..., states that
lemon's tangy and sour taste does not
enhance the flavor of milk.

Lemon is tangy and sour, whereas milk
is creamy and neutral in flavor. The
flavors  might clash rather than
complement..., So the answer is: false.

Question: Does Lemon enhance the flavor
of milk?
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Figure 1: Prior reflection research is primarily based
on static iterative strategies, which face issues of redun-
dancy, drift, and stubborn.

ability of LLMs without increasing model parame-
ters (Rae et al., 2021; Srivastava et al., 2023; Yin
et al., 2023). Inspired by how humans iteratively
refine their written text (Madaan et al., 2024), the
concept of "self-correction" (Welleck et al., 2023)
has been proposed and garnered extensive atten-
tion where LLMs first generate an initial response,
then gather feedback to refine previous responses
(Ganguli et al., 2023; Xi et al., 2023; Paul et al.,
2024a). However, recent studies (Huang et al.,
2024; Zhang et al., 2024) raise two doubts about the
self-correction capabilities of LLMs: First, (Kim
et al., 2024a; Shinn et al., 2023) use oracle la-
bels regarding the answer correctness to guide the
self-correction process. However, in practice, the
availability of oracle labels seems counter-intuitive
because there seems to be little reason to deploy
LLMs for problem solving if the ground truth is
already known. Second, without any external or
human feedback, the performance after LLMs’ in-
trinsic self-correction even deteriorates.

Our research also focuses on the reflective ca-
pabilities of LLMs. Unlike previous studies that
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primarily investigate performance changes in in-
trinsic reflection, we explore whether the perfor-
mance of LLMs in reflection deteriorates when
external feedback is available. Therefore, in our
exploration experiments, we evaluate the perfor-
mance of CRITIC (Gou et al., 2024), which lever-
ages the results of tool interactions as external feed-
back, enabling a systematic investigation of how
this feedback impacts the performance of reflection.
Our findings (§ 3.1) indicate that neither intrinsic
self-correction nor CRITIC performs satisfactorily.
To investigate the reasons behind that, we compre-
hensively analyze the performance across multiple
iterations of reflection, which is different from prior
research focusing on a single reflection. Figure 1
shows that the ith reflection is derived from the
(i − 1)th response, this static iterative reflection
leads to three issues: 1) Redundant (✓⇒✓): Al-
though it does not alter accuracy in iterations, it
does increase overhead. 2) Drift (✓⇒✗): Self-
correction is highly random, undermining both ac-
curacy and reliability. 3) Stubborn (✗⇒✗): LLMs
consistently persist in errors, failing to properly
identify and correct potential mistakes. Addition-
ally, we found that the prevalence of these three
issues varies across different LLMs and tasks.

As a remedy to these challenges, we propose
Instruct of Reflection (IoRT), an efficient and dy-
namic iterative reflection framework designed to
continuously optimize the reflection process. The
framework including three stages: (i) meta-thinker
generates meta-thoughts, (ii) refreshing to gener-
ate an initial response, and reflector to self-reflect
based on feedback. (iii) instruct the iteration. No-
tably, aiming to mitigate redundant, drift, and stub-
born issues, in the third stage, the instructor, aug-
mented by meta-thought and driven by the self-
consistency classifier, generates refresh, stop, or
select instructions to direct the next reflection itera-
tion. Specifically, when the Instructor determines
that both responses have correctly addressed the
problem, it generates a stop instruction to promptly
halt the reflection process, effectively reducing re-
dundancy. If the instructor assesses that both an-
swers are incorrect, it generates a refresh instruc-
tion, helping the LLMs prevent stubbornness. In
cases where answers are inconsistent, the instructor
selects the more optimal response as the output of
the current iteration and the foundation for the next
reflection, thereby reducing drift and improving
performance accuracy.

We evaluate the performance of IoRT across var-

ious LLMs and two distinct tasks: mathematical
reasoning and commonsense reasoning. The re-
sult demonstrates that IoRT outperforms baselines
on established strong baselines, underscoring the
critical role of the instructor in augmenting the it-
erative reflection capabilities of LLMs. Our main
contributions can be summarized as follows:

• Our exploration experiments reveal that LLMs
struggle to correct previous errors. The static
iterative reflection suffers from redundant, drift,
and stubborn, which may increase overhead or
even deteriorate performance.

• We propose Instruct-of-Reflection (IoRT), a dy-
namic iterative reflection framework that inte-
grates abstract reasoning into the reflection pro-
cess, adaptively generating different instruction
to regulate the reflection process.

• Experimental results on three datasets and five
different LLMs underscore the efficacy, over-
head efficiency, and generality of IoRT. Addition-
ally, without relying on any oracle labels, IoRT
demonstrates its practicality.

2 Related Works

2.1 Prompt-based Reasoning
To exploit the reasoning ability in LLMs, (Wei
et al., 2022b) proposes Chain-of-Thought (CoT)
prompting which guides the model to generate a
series of text describing reasoning steps before
reaching the final answer. Subsequently, (Chen
et al., 2023) introduces Program-of-Thoughts (PoT)
prompting which uses llms to generate program-
ming language statements. In recent years, the
self-correction capabilities of LLMs have garnered
significant attention, with LLMs expected to iter-
atively improve their previous responses based on
feedback (Bai et al., 2022b). Existing studies on
self-correction can be categorized into two types
based on the feedback source: external feedback
and internal feedback (Pan et al., 2024). Internal
feedback relies on the model’s inherent knowledge
and parameters, while external feedback involves
inputs from humans, other models (Wang et al.,
2023b; Paul et al., 2024b), or external tools and
knowledge sources (Chen et al., 2024; Olausson
et al., 2023; Gao et al., 2023). We comprehensively
evaluate the performance of CRITIC (Gou et al.,
2024), which leverages specialized tools, such as
code executors, to evaluate and reflect on the ex-
ternal feedback obtained through its interactions
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with these tools. However, recent studies (Huang
et al., 2024; Stechly et al., 2023; Valmeekam et al.,
2023; Zhang et al., 2024) cast doubt on the ability
of LLMs to correct previous responses based solely
on their inherent reflection capacity. Additionally,
research on reflection with external feedback (Kim
et al., 2024b; Shinn et al., 2023) have been doubted
on using oracle labels which are are often unavail-
able in practice to determine when to stop the self-
correction loop during the reflection. The improve-
ments vanish when the reflection no longer relies
on oracle labels (Huang et al., 2024). Apart from
these studies questioning the use of oracle in self-
reflection during the iterative reflection process,
we also observe that improvements in (Gou et al.,
2024) stem from using oracle labels to correct only
the incorrect samples during evaluation. Unlike
previous findings, we observe that both intrinsic
self-correction and external feedback can lead to a
deterioration in performance after reflection. Addi-
tionally, our proposed Instruct of Reflection Tool
(IoRT) diverges from existing reflection methods
by emphasizing continuous performance optimiza-
tion through diverse instructional guidance. We
design the instructor to guide the next reflection
iteration without relying on oracle labels.

2.2 Abstract Reasoning

Instead of addressing the problems directly, ab-
stract reasoning relies on higher-level thoughts to
guide thinking (Zheng et al., 2024), making it es-
sential for sophisticated cognitive processing in
artificial intelligence systems (Lake et al., 2017;
Chollet, 2019; Qiu et al., 2024). For example, con-
sider the question "What are the roots of a quadratic
equation?" Abstract reasoning involves extracting
the fundamental principle of "the quadratic equa-
tion root formula" and applying this principle to
this specific question. (Zheng et al., 2024) uses the
concepts and principles to guide reasoning by tak-
ing a step back. (Fu et al., 2024) guides the model
to generate hints such as specific knowledge or key
ideas. (Xiong et al., 2024) designs a preliminary
study to quantify and delve into the abstract reason-
ing abilities of LLMs. (Yang et al., 2024) adapts by
refining or retrieving high-level thought templates
to instantiate specific reasoning structures. In our
research, we build on (Fu et al., 2024) to gener-
ate meta-thoughts, thereby enhancing the abstract
reasoning abilities of the reflective instructor. In
contrast to the above works, which obtain an initial
response through abstract reasoning, we incorpo-
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Figure 2: Compare the performance changes of self-
correct and CRITIC during iterative reflection across
two datasets, evaluating with and without Oracle.

rate abstract reasoning into the reflection process
by designing the instructor within our framework.

3 Empirical Evidence for Iterative
Reflection

Prior research primarily focuses on performance
changes in a single reflection, which fails to fully
capture the potential of reflection for long-term
improvements. To gain deeper insights into how
reflection can gradually refine answers, We com-
prehensively evaluate the performance changes of
self-correct and CRITIC (Gou et al., 2024) across
multiple reflection iterations (Huang et al., 2024).

3.1 Performance of Iterative Reflection
We systematically evaluate the performance of self-
correct (w/o external feedback) and CRITIC (w/
tool interactions as an available external feedback)
across multiple iterative reflections on the GSM8K
and SVAMP datasets with GPT-3.5. Additionally,
we simulate an evaluation method (w/ oracle) that
relies on oracle labels, focusing only on corrections
from incorrect to correct answers in each iteration,
while disregarding instances where correct answers
are modified into incorrect ones.

In Figure 2, evaluating reflection using oracle la-
bels, the accuracy of both self-correct and CRITIC
improves steadily with each iteration. In contrast,
without oracle labels, the performance is unstable
and even deteriorate, regardless of the availability
of external feedback. For instance, on GSM8K
and SVAMP, the performances of self-correct and
CRITIC drop by up to −2.4% and −3.0%, respec-
tively. Notably, compared to self-correct, the per-
formance is more reliable with CRITIC.

3.2 Further Performance Analysis
Why does performance degrade after reflection?
To investigate this question, we further conduct the
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Figure 3: Analyze the different types of iteration of
CRITIC on GSM8K.

following analysis:
Step 1: We classify all samples in GSM8K into

four categories based on the correctness before and
after reflection. Then analyze the performance
changes in each iteration using self-correct and
CRITIC on GPT-3.5. Step 2: We classify all sam-
ples into four categories based on the consistency
and correctness of the answers throughout all iter-
ations: 1) Redundant Iteration means the answers
consistently remain correct. 2) Invalid Consistent
Iteration insists on a consistent wrong answer. 3)
Drift Iteration generates both incorrect and cor-
rect during the iterative reflection. 4) Invalid In-
consistent Iteration continuous changes occur in
iterations without ever converging to the correct
solution. The detailed results are as follows: Re-
flection can not only be beneficial but also detri-
mental. As shown in Table 5, for both self-correct
and CRITIC, the proportion of ✓⇒✗ is often com-
parable to or even exceeds that of ✗⇒✓, which
explains the performance degradation after reflec-
tion. Notably, CRITIC demonstrates a lower ratio
of ✓⇒✗ compared to self-correct, suggesting that
external feedback promotes the stability of the re-
flection.

Models of different sizes yield varying reflec-
tion performance. In Figure 3, significant dif-
ferences in reflection performance are observed
across various LLMs. For instance, GPT-4 shows
a 94.3% share of stable iterations, while 89% of
LLaMA-2 7B’s iterations are unstable. It implies
that larger models like GPT-4, benefiting from
vast training data and substantial computational
resources (Ouyang et al., 2022; Chowdhery et al.,
2023; Chung et al., 2024), exhibit more stable per-
formance compared to smaller models.

Various reflective iterations correspond to
different limitations. As shown in Figure 1,
LLMs often perform the ith reflection based on
the (i − 1)th response, and this static iterative re-
flection highlights the following three limitations:
I. Redundant Iteration⇒ Redundant: Although re-

dundant iterations do not affect accuracy, they con-
tribute to unnecessary costs and delays. II. Drift
Iteration⇒Drift: Especially, ✓⇒✗ indicates that
LLMs often exhibit a high degree of uncertainty,
leading to reflection drift and a decline in accu-
racy. III. Invalid iteration⇒Stubborn: LLMs are
too stubborn to recognize and correct mistakes.
Our method effectively addresses these three issues,
achieving optimization of accuracy and efficiency
in reflection during iterations.

4 Instruct-of-Reflection (IoRT)

Prior sections illustrate the challenges LLMs en-
counter in static iterative reflection such as redun-
dancy, drift and stubborn. How to precisely identify
effective reflections while mitigating the impact of
harmful or redundant reflections? As a remedy, we
innovatively propose Instruct-of-Reflection (IoRT),
a novel framework that implements dynamic-meta
instruction for the iterative reflection process. We
can get an overview of the IoRT framework in
Figure 4. Specifically, IoRT involves three main
steps: generate meta-thoughts, refresh and self-
reflect, and instruct the iteration. As the core mod-
ule, the instructor is augmented by meta-thoughts
and driven by self-consistency classifier, generat-
ing instructions including refresh, stop, and select,
directing the next reflection iteration.

4.1 Generate Meta Thoughts

Human often summarize and abstract higher-level
ideas when solving problems (Yang et al., 2024).
Inspired by Hint-before-Solving Prompting (HSP)
(Fu et al., 2024) and Meta-Reasoning (Zeng et al.,
2024), we propose meta-thinker which enables
LLMs to explicitly generate meta-thoughts through
a few-shot learning for problem solving. Meta-
thoughts are high-level knowledge based on ab-
stract reasoning, encompassing analytical methods
and fundamental overall strategies. They enhance
the instructor’s role as a teacher by providing a
comprehensive overview of the reflection process.
For instance, for the question "Can a honey bee
sting a human more than once?", since the bee’s
stinger is closely related to its ability to sting, the
meta-thought for this question primarily focuses on
the basic principle of the "changes in the stinger".
The meta memory module stores meta-thoughts,
distilled from various tasks, recorded in the form of
E = {(qi,mi)}, expressing them as a pair relation-
ship ei = (qi, mi), where qi represents the question
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Figure 4: IoRT comprises three steps: (1) generate meta-thoughts, (2) refresh and self-reflect, and (3) instruct the
iteration. Repeat steps 8⃝ to 14⃝ after each iteration until the instructor signals to stop or the maximum
iterations N is reached.

statement and mi represents the meta-thought as-
sociated with solving question qi.

Specifically, meta-thoughts construction in-
cludes 4 steps. Initialization: for each dataset,
we randomly select k questions and manually de-
fine their meta-thoughts as shown in Table 6 to
initialize the meta-thought module. Retrieval: For
the input question x, meta-thinker retrieves the k
most relevant prompt examples by applying the
cosine similarity function S(qi, x) to calculate the
embedding similarity between the questions qi and
x, the top k questions and their corresponding meta-
thoughts set are identified:

{e1sim, e
2
sim, . . . , e

k
sim} = argmax

qi∈M
S(qi, x) (1)

S(qi, x) =
qi · x
∥qi∥∥x∥

(2)

Generation: Based on these k similar ques-
tions and their corresponding meta-thoughts, meta-
thinker employs a model f(·) to generate meta-
thought mx for the question x through few-shot
learning, which can be expressed as:

mx = f
(
e1sim, e

2
sim, . . . , e

k
sim, x

)
(3)

Updating: The new meta-thought mx not only
enhances the instructor’s abstract reasoning capa-

bilities but also facilitates the updating of the meta-
memory module, which continuously evolves by
accumulating meta-thoughts for problem solving,
thereby enabling more efficient and intelligent rea-
soning. In this context, the update of E can be
formulated as:

E ← E ∪ {(x,mx)} (4)

4.2 Refresh and Self-Reflect
In the refresh process, given a black-box LLM g(·)
and a question x, the LLM utilizes its few-shot con-
textual learning ability to generate an initial output
response R0

o. In the ith iteration, we extracted the
basic answer Ai

b from the basic response Ri
b. The

specifics of answer extraction from the response are
elaborated in Appendix A. The reflector assesses
the quality of Ri

b using evaluation metrics such as
plausibility and correctness, and provides feedback
accordingly. Based on the input question x, the
basic response Ri

b, the basic answer Ai
b and the

evaluation feedback fi, a reflective response Ri
r is

generated as follows:

Ri
r = g(x,Ri

b, A
i
b, fi) (5)

4.3 Instruct the Iteration
As analyzed in (§ 3), the answers after reflec-
tion may improve, degrade, or remain unchanged.
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Therefore, we design the instructor to manage the
reflection process, ensuring stable performance im-
provement throughout the iterative reflection.

Meta-Thought Augment Instructor We incor-
porate the meta-thought mx into the instructor’s
prompt. During decision-making, the instructor
treats the meta-thought as a critical evaluation crite-
rion. By emphasizing abstract reasoning, the meta-
thought elevates the LLMs from simply solving
problems to instructing the process. This approach
enables a more holistic evaluation of responses dur-
ing each iteration, ensuring that the instructor’s
decisions not only satisfy problem-specific require-
ments but also undergo rigorous analysis.

Self-Consistency Classifier Does not use any
LLM, self-consistency classifier determines con-
sistency by comparing whether the basic answer
Ai

b and the reflective answer Ai
r are equal. We

implement a self-consistency classifier to evaluate
the quality of responses, providing feedback to the
instructor to guide decision-making. Based on the
following three scenarios, the instructor generates
a select, stop or refresh instruction:

• Select Instruction If Ai
b ̸= Ai

r, it suggests that
at least one of the responses is incorrect. The
instructor carefully evaluates both Ri

b and Ri
r

based on the meta-thought mx, and then selects
the better response from them as Ri

o represented
as the output for the ith iteration. Concurrently,
Ri+1

b is updated to Ri
o, represented as:

Ri
o = Instructor(Ri

b, A
i
b, R

i
r, A

i
r,mx, x) (6)

If Ri
b = Ri

r, it indicates that the reflection did
not change the output, we designate Ri

b as the
output for the ith iteration Ri

o. The Instructor will
evaluates both Ri

b and Ri
r to determine whether

to issue a stop or refresh instruction:

• Stop Instruction If the Instructor deems both
Ri

b and Ri
r reasonable for solving the problem, a

stop instruction is issued, and the iteration con-
cludes at the ith round. In our experiments, we
set the maximum number of iterations to N . To
ensure comprehensive evaluation, all subsequent
iterations are set equal to the response from the
ith iteration, represented as:

RN
o , R(N−1)

o , . . . , R(i+1)
o = Ri

o (7)

• Refresh Instruction If Ri
b and Ri

r fail to resolve
the problem, in the (i + 1)th iteration, a black-
box LLM g(·) will generate a new response to

update R
(i+1)
r . R(i+1)

b is set equal to Ri
b. IoRT

will then compare R
(i+1)
b and R

(i+1)
r once again.

Such invalid iterations can trap the model in a
resource-intensive loop. By refreshing, we break
this deadlock and introduce new ideas, enabling
the model to generate more effective solutions.

5 Experiments

5.1 Experimental Setup

Benchmark We evaluated our method in two rea-
soning scenarios: mathematical reasoning and com-
monsense reasoning. Specifically, for common-
sense reasoning, we use the StrategyQA (Geva
et al., 2021), while for mathematical reasoning,
we use GSM8K (Cobbe et al., 2021) and SVAMP
(Patel et al., 2021). These three datasets are widely
adopted in existing research, serving as standard
benchmarks for evaluating reasoning capabilities.

Baselines We compare IoRT with the following
strong baselines: 1. Chain-of-Thought prompting
(CoT) (Wei et al., 2022b); 2. Self-Consistency (SC)
(Wang et al., 2023c); 3. Plan-and-Solve Prompt-
ing (PS) (Wang et al., 2023a); 4. Multi-Agent
Debate (Du et al., 2023; Liang et al., 2023); 5.
Self-Contrast (Zhang et al., 2024); 6. Program-
of-thought (PoT) (Chen et al., 2023); 7. Hint-
before-Solving Prompting (Fu et al., 2024); 8. Self-
Reflection (Shinn et al., 2023); 9. Self-Correcting
with Tool-Interactive Critiquing (CRITIC) (Gou
et al., 2024). For simplicity in notation, we use
"CoT-SC(8)" and "PoT-SC(8)" to denote the ap-
proach that retrieves eight CoT or PoT reasoning
chains to make majority vote.

Implementation Details In Figure 4, we use the
GPT-3.5-Turbo-0613, GPT-4-0613, and Llama2-
Chat models at three parameter scales (7B, 13B,
and 70B) for black-box LLM and the reflector.
Throughout the experiment, GPT-3.5-Turbo-0613
serves as both the meta-thinker and the instructor.
We uniformly set the temperature to 0.3 and the
maximum number of iterations to 4. To ensure the
reliability of the results, we conduct five rounds of
experiments for each dataset and report the average
scores as the final evaluation results. For evaluation
metrics, we report accuracy. To evaluate the com-
putational cost, we also report the average number
of API/LLM calls (#Calls Avgs.) (Zhang et al.,
2024) across three datasets, as well as the average
number of tokens consumed per question (#Tokens
Num.) for commonsense reasoning tasks.
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Methods GSM8K SVAMP #Calls
Avg.GPT-3.5 GPT-4 L-7B L-13B L-70B GPT-3.5 GPT-4 L-7B L-13B L-70B

Text Describing Reasoning
CoT 76.6 93.9 19.8 28.3 52.6 79.8 93.0 37.5 40.2 66.0 1
PS 75.7 94.1 20.3 30.4 57.8 83.6 93.3 45.2 53.7 70.9 1
CoT+HSP 80.1 94.0 20.7 32.3 58.9 83.7 92.9 40.4 50.3 72.5 2
Self-Contrast 84.4 95.4 20.5 42.3 64.2 89.0 94.0 44.5 54.6 75.3 7.8
CoT-SC(8) 83.5 94.2 21.4 37.6 61.1 84.6 92.5 45.2 53.7 72.0 8
Multi-Agent 83.8 93.5 23.8 34.9 59.6 84.1 93.2 42.5 49.2 70.1 9
Self-Reflection 75.8 95.1 17.0 31.8 49.3 80.5 91.5 36.1 42.5 63.0 9

Programming Language Reasoning
PoT 78.3 94.0 19.5 30.5 58.6 82.9 93.4 43.5 53.0 75.2 1
PoT+HSP 84.0 94.9 17.0 35.1 64.9 86.3 94.7 43.6 55.1 78.4 2
PoT-SC(8) 83.7 94.4 22.5 37.7 64.3 87.0 93.8 45.3 56.0 77.8 8
Self-Reflection 75.8 94.5 15.7 25.6 55.5 82.5 90.1 33.8 47.9 70.7 9
CRITIC 77.3 93.7 14.3 26.8 56.7 84.2 93.9 38.2 45.6 72.0 9
IoRT 84.6 95.4 24.0 40.8 66.0 88.1 95.3 45.7 57.5 80.1 7.3

Table 1: The performance of IoRT on mathematical reasoning. IoRT employs PoT to generate the initial responses.
The best results are highlighted in bold. The text describing reasoning experimental results for CoT, CoT-SC(8),
Multi-Agent, Self-Contrast, and Self-Reflection were sourced from (Zhang et al., 2024). L- denotes Llama2-chat.

Methods GPT-3.5 GPT-4 L-7B L-13B L-70B #Token Num.
CoT 66.8 75.4 47.3 54.2 62.0 514
CoT-SC(8) 69.1 77.0 49.4 57.1 63.6 4145
CoT+HSP 71.5 77.9 50.5 56.3 65.2 1018
PS 68.2 76.1 48.3 57.5 64.9 1090
Multi-Agent 68.5 76.6 50.8 56.8 65.7 3922
Self-Reflection 60.7 76.9 36.8 47.0 54.3 5944
IoRT 71.9 78.8 53.1 60.1 67.9 3877

Table 2: The performance in the final iteration on com-
monsense reasoning. We utilize CoT to produce the
initial responses. For the Multi-Agent, we configure
three agents to engage in a three-round debate.

5.2 Main Results

Mathematical Reasoning. According to the re-
sults presented in Table 1, IoRT demonstrates su-
perior performance improvement compared to the
current strong baselines. Our method achieves an
average improvement of f approximately +4.4%
compared to PoT. In contrast, CRITIC, which also
generate initial responses based on PoT, results in
performance decreases of −2.6%. Besides, com-
pared to the text describing reasoning baselines
such as CoT, our method also achieve significant
improvements of +8.9%. It is worth noting that
IoRT achieves an average performance improve-
ment of +2.4% compared to PoT+HSP directly
incorporating abstract reasoning to generate an ini-
tial response. This indicates that integrating meta-
thought into the instructor optimizes reflecting con-

tinuously. Moreover, IoRT reduces average call
overhead by approximately 27.6% compared to it-
erative reflection, demonstrating that our approach
effectively balances accuracy and call overhead.
Although self-contrast outperforms our method on
GSM8K with Llama27B and on SVAMP with
GPT-3.5, this improvement comes at the cost of
increased call overheads. Specifically, self-contrast
incurs 7.0% higher overhead compared to IoRT.

Commonsense Reasoning. Table 2 compares
the performance of IoRT on commonsense reason-
ing tasks. We observe that IoRT outperforms the
baseline across all models on StrategyQA. Specif-
ically, our method gains +5.2% performance in-
crease over CoT, whereas self-reflection results in
a decrease of −6.0%. IoRT also achieves an aver-
age performance improvement of 2.1% compared
to CoT+HSP on StrategyQA, demonstrating the ef-
ficacy of incorporating meta-thought into the reflec-
tion process. Additionally, with a token consump-
tion of 3877, IoRT significantly reduces overhead
compared to high-cost methods like self-reflection
(5944) and CoT-SC(8) (4145) while maintaining
competitive reasoning performance.

5.3 Ablation Study
We perform an ablation study to assess the impact
of each steps on model performance:

• IoRT*: This setting indicates the result of the ith
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Model Datasets Initial IoRT* IoRT IoRT IoRT
(w/o SC) (w/o MT)

GPT-3.5
GMS8K 78.3 80.6 84.4 83.0 84.6
SVAMP 82.9 83.8 89.0 86.4 88.1
StrategyQA 66.8 65.9 71.6 70.5 71.9

GPT-4
GMS8K 94.0 94.1 94.6 94.3 95.4
SVAMP 93.4 93.8 93.9 93.7 95.3
StrategyQA 75.4 77.0 77.7 76.6 78.8

L-7B
GMS8K 19.5 16.3 23.5 21.5 24.0
SVAMP 43.5 43.4 45.1 44.2 45.7
StrategyQA 47.3 47.7 51.3 49.7 53.1

L-13B
GMS8K 30.5 33.2 39.5 36.6 40.8
SVAMP 53.0 53.7 56.9 55.4 57.5
StrategyQA 54.2 52.2 60.5 58.7 60.1

L-70B
GMS8K 58.6 61.8 66.3 64.1 66.0
SVAMP 75.2 76.1 78.8 77.9 80.1
StrategyQA 62.0 63.2 68.5 65.6 67.9

Table 3: Performance comparisons upon different com-
ponents and settings under instructing reflection strategy.
Evaluation on the final iteration. Initial indicates the
performance of generating the initial response.

iteration Ri
o is modified as Ri

r.

• IoRT(w/o SC): It indicates that regardless of
whether the responses Ri

b and Ri
r are consistent,

the instructor only selects until reaches the maxi-
mum number of iterations N .

• IoRT (w/o MT): It implies that meta-thoughts are
not provided and instructor relies solely on its
own capacity to generate instructions.

As shown in Table 3, we find that modules and
settings of IoRT positively impact accuracy and
efficiency improvements.

Select instruction effectively mitigates drift
in reflections. IoRT* exhibits a performance de-
crease of -4.4% compared to IoRT, emphasizing
that LLMs frequently struggle with generation sta-
bility during reflection. Thus, selecting instruction
is essential for successful iterative reflection.

Self-consistency has minimal impact on ac-
curacy but significantly improves efficiency.
IoRT(w/o SC) results in no clear change(-0.51%)
in accuracy compared to IoRT, indicating that the
instructor enables accurately identifying the better
response during the iterations. However, in the ex-
periment, IoRT (w/o SC) requires four iterations
to stop, while the average number of iterations for
IoRT is just 2.2, indicating that self-consistency
can reduce overhead.

Meta-thought enhances the reasoning capa-
bilities of the Instructor. IoRT (w/o MT) shows a
−2.1% decline compared to IoRT but still achieves
a +2.9% improvement over the initial response.
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Figure 5: Left: Comparison of the average number
of API/LLM calls across various datasets on IoRT.
Right: The performance of GPT and Llama-2 models
on GSM8K with IoRT.

This highlights the positive impact of our dy-
namic iterative framework on reflection, with meta-
thoughts further enhancing the instructor’s ability
to accurately identify correct reflections.

6 Discussions

Performance Analysis. In § 3, our experiments in-
dicate that the performance of CRITIC even deteri-
orates. In Figure 5 (right), IoRT achieves stable im-
provements across different LLMs. This is because
CRITIC follows a static reflection pipeline: initial
response → evaluation → revision. In contrast,
IoRT adopts a dynamic iterative pipeline: initial
response → evaluation → revision → instruction.
By comparing Table 5 and Table 4, we observe
that with each iteration of IoRT, the occurrences of
✓⇒✗ and ✗⇒✗ cases significantly reduced. The
results indicate that IoRT can identify ✓ in drifting
iterations through select instructions, or generate a
refresh instruction to promptly terminate stubborn
iterations, effectively ensuring stable improvement
and optimization.

Overheads and Manual Efforts Analysis. In
Figure 5 (left), we investigate the average number
of API/LLM calls across various datasets on IoRT.
In our experiments, we set the maximum number
of iterations to 4. Self-reflection and IoRT (w/o SC)
were configured with a fixed number of iterations,
leading to 9 and 14 call overheads, respectively.
Compared to self-reflection and IoRT (w/o SC),
IoRT achieves substantial improvements, reducing
call overheads by more than 18.8% and 47.9%, re-
spectively. Rather than simply halting reflection
after the maximum number of iterations, IoRT inte-
grates self-consistency checks and meta-thoughts,
enabling the identification of correct responses and
the generation of stop instructions to timely halt
iterations, significantly reducing redundancy and
overhead. Moreover, our method defines only three
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roles: meta-thinker, reflector, and instructor, which
is considerably fewer than multi-agent debate. This
simplification eases the manual effort required for
pre-configuring agent roles.

Model Generality and Differences. As shown
in Table 1, compared to CoT-SC(8), IoRT achieves
significant performance improvements of 2.5% on
GPT-3.5, 1.9% on GPT-4, 2.3% on Llama27B ,
3.3% on Llama213B , and 5.8% on Llama270B ,
with an average improvement across the three
datasets, indicating that IoRT demonstrates robust
generality across both commercial LLMs (GPT)
and open-source models (Llama-2). Moreover,
these results indicate that IoRT often achieves
more significant improvements with smaller-scale
models, indicating its effectiveness in optimizing
the performance of models with fewer parameters.
This could be because larger-scale models produce
more stable outputs, while smaller-scale models are
more likely to generate varied responses through
reflection, resulting in greater diversity in their out-
puts. In prior studies relying on static reflection
methods, performance becomes unstable due to the
influence of such diversity, and the ratio of ✓⇒✗

can lead to performance degradation. However,
IoRT can quickly capture correct answers from
diverse outputs, leading to notable performance im-
provements. The key difference enabling this is
the select instruction in IoRT, which is unaffected
by ✓⇒✗ and ensures stable performance improve-
ment due to ✗⇒✓. Notably, Llama270B demon-
strates a greater ability to generate accurate re-
sponses through reflection compared to Llama27B
and Llama213B . With the smaller parameter sizes,
Llama27B and Llama213B struggle to produce
correct answers, leading to more frequent invalid
and inconsistent iterations.

Analysis of Figure 5 (left) shows differences
in call overheads for IoRT across various models.
GPT averages 1.9 fewer LLM calls than Llama2,
possibly because larger-scale models tend to pro-
duce more redundant iterations, so they often stop
early with self-consistency checks. In contrast,
smaller-scale models have less stable outputs, re-
sulting in more iterations.

7 Conclusion

We conducted a comprehensive analysis of the it-
erative reflection performance of LLMs. The em-
pirical evidence suggests that the performances of
these reflection methods are unsatisfactory, primar-

ily due to the limitations of static iterative reflection,
which leads to redundant, drift, and stubborn issues.
To mitigate this, we propose Instruct-of-Reflection
(IoRT), a dynamic iterative reflection framework
that integrates abstract reasoning into the reflection,
generating adaptive instruction to regulate the iter-
ative reflection. Experimental results demonstrate
that IoRT surpasses a series of strong baselines and
reduces overhead across a variety of scenarios and
with different LLMs.

Limitations

Despite the significant improvements of our
method over a series of strong baselines, it is not
always able to provide perfect guidance during the
reflection process. For instance, as shown in Fig-
ure 2, in experiments on mathematical reasoning
with GPT-3.5, the final iteration performance, when
evaluated using oracle labels, exceeds our method
by 1.6%. This indicates that occasional misjudg-
ments still occur in IoRT, though their frequency
remains relatively low. Additionally, due to the cur-
rent limitations of open-source models (Touvron
et al., 2023) in abstract reasoning and guiding the
reflection process, we did not use them as our meta-
thinker and instructor in this experiment. In future
work, we try to address these limitations by explor-
ing fine-tuning, distillation, or other methods to
enhance open-source models (Achiam et al., 2023),
equipping them with robust abstract reasoning and
instructional capabilities, potentially enabling them
to match or even exceed the performance of com-
mercial models.
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A Datasets and Evaluation Metrics

Datasets Table 6 presents detailed information
about the datasets used in our experiments, includ-
ing the data source, total number of test samples,
task type, answer type, and the number of samples
used to generate meta-thoughts, initial responses
and reflection prompts.

Evaluation Metrics Accuracy is used as the
evaluation metric in our experiments. we use var-
ious methods to generate responses and exact an-
swers in different tasks. For StrategyQA , we uti-
lize Chain of Thought (CoT) to produce the re-
sponse, then use regular expressions to extract the

option following the phrase "so the answer is" and
check if the extracted option matches the correct
answer. For GSM8K and SVAMP, we employ the
Program of Thought (PoT) to generate code for
problem solving, which is then executed using a
code executor to obtain the results. If the code con-
tains errors, the program will raise an error and we
define the results as None. Finally, we utilize the
accuracy based on whether the results match the
standard answers.

B Complementary Experiments Results

GSM8K Iteration ✓⇒✓ ✓⇒✗ ✗⇒✓ ✗⇒✗

IoRT

0⇒1 76.6% 1.7% 5.9% 15.8%

1⇒2 80.7% 1.8% 3.5% 14.0%

2⇒3 82.7% 1.5% 1.7% 14.1%

3⇒4 83.3% 1.1% 1.3% 14.3%

Table 4: Performance of IoRT with GPT-3.5 during
iterations on GSM8K.

GSM8K Iteration ✓⇒✓ ✓⇒✗ ✗⇒✓ ✗⇒✗

Self-Correct

0⇒1 71.2% 7.1% 5.1% 16.6%

1⇒2 71.8% 4.5% 4.9% 18.8%

2⇒3 72.3% 4.4% 3.0% 20.3%

3⇒4 73.0% 2.3% 2.8% 21.9%

CRITIC

0⇒1 71.0% 7.3% 4.9% 16.8%

1⇒2 73.3% 2.6% 4.5% 19.6%

2⇒3 74.3% 3.5% 2.5% 19.7%

3⇒4 75.4% 1.4% 1.9% 21.3%

Table 5: Performance of self-correct and CRITIC with
GPT-3.5 during iterations on GSM8K.

C Prompting Template

C.1 Prompt for Generate Meta Thoughts

Generate Meta Thoughts
You are a meta-thinker, skilled in abstract rea-
soning. Given a question, you should gen-
erate a meta-thought including the necessary
knowledge, analytical methods, and fundamen-
tal strategies for solving the provided question.
Meta-thought Example: [{eisim}]
Question: [Question x]
Meta-thought:

9967

https://doi.org/10.18653/v1/2023.emnlp-main.936
https://doi.org/10.18653/v1/2023.emnlp-main.936
https://doi.org/10.18653/v1/2023.emnlp-main.936
https://arxiv.org/abs/2312.17080
https://arxiv.org/abs/2312.17080
https://arxiv.org/abs/2312.17080
https://doi.org/10.18653/v1/2024.acl-long.197
https://doi.org/10.18653/v1/2024.acl-long.197


Dataset Num. Domain Ans Type # Meta # Refresh # Reflect
GSM8K 1,319 Mathematical Reasoning Number 8 8 4
SVAMP 1,000 Mathematical Reasoning Number 8 8 4

StrategyQA 2,290 Commonsense Reasoning T/F 6 5 3

Table 6: Detailed statistics of the datasets used in our experiment. Num. indicates the number of samples in each
dataset. Ans Type describes the form of the answer. #Meta represents the number of few-shot examples used for
generating meta-thoughts. # Refresh refers to the number of chain-of-thought exemplars used as few-shot prompts
for commonsense reasoning tasks, or program-of-thought exemplars for mathematical reasoning tasks. # Reflect
represents the number of reflection exemplars used as few-shot prompts.

C.2 Prompt for Refresh and Self-Reflect

Refresh (Mathematical Reasoning)

You are a mathematics and programming expert.
Given a question, you should write python code
to solve the following questions. Store your
result as a variable named ’answer’.

Question: [Question x]

Initial Response:

Self-Reflect (Mathematical Reasoning)

You are a mathematics and programming expert.
Given previous responses, including a question,
a python code solution and the output of this
code, you should carefully evaluate these re-
sponses and provide detailed feedback.

Question: [Question x]

Basic Response: [Ri
b]

Basic Answer: [Ai
b]

Evaluation Feedback:

You are a mathematics and programming ex-
pert. Based on evaluation feedback including a
question, a python code solution, the output of
this code, and the code evaluation, you should
generate a better code based on the feedback.

Question: [Question x]

Basic Response: [Ri
b]

Basic Answer: [Ai
b]

Evaluation Feedback: [fi]

Reflect Response:

Refresh (Commonsense Reasoning)

You are a knowledgeable expert in general
knowledge and common sense. Given you a
question, you should think step by step and
then generate the answer.

Question: [Question x]

Initial Response:

Self-Reflect (Commonsense Reasoning)

You are a general knowledge and common
sense expert. Given previous responses, which
include a question, a reasoning chain and the
answer, you should carefully evaluate these re-
sponses and provide detailed feedback.

Question: [Question x]

Basic Response: [Ri
b]

Basic Answer: [Ai
b]

Evaluation Feedback:

You are a general knowledge and common
sense expert. Based on evaluation feedback
including a question, a reasoning chain, a an-
swer and the evaluation feedback, you should
generate a better reasoning chain based on the
feedback.

Question: [Question x]

Basic Response: [Ri
b]

Basic Answer: [Ai
b]

Evaluation Feedback: [fi]

Reflect Response:
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C.3 Prompt for Instruct the Iteration

Select instruction

(Mathematical Reasoning)

The outputs from the two codes are dif-
ferent. Evaluate the following two Python
code snippets based on the given question,
output of the code and meta-thought, and
recommend which code is better to solve
this question and explain why.

Question: [Question x]

Meta Thought: [mi]

Basic Response: [Ri
b]

Basic Answer: [Ai
b]

Reflect Response: [Ri
r]

Reflect Answer: [Ai
r]

Better Response:

Select instruction

(Commonsense Reasoning)

Evaluate the following two reasoning
chain based on the given question and
meta though. Recommend which reason-
ing chain is better and explain why.

Question: [Question x]

Meta Thought: [mi]

Basic Response: [Ri
b]

Basic Answer: [Ai
b]

Reflect Response: [Ri
r]

Reflect Answer: [Ai
r]

Better Response:

Refresh or Stop instruction

(Mathematical Reasoning)

The outputs from the two codes are the
same. Please evaluate the following two
Python code snippets based on the ques-
tion, output of the code and meta thought.
Decide whether to refresh a new solution
or to stop.

Question: [Question x]

Meta Thought: [mi]

Basic Response: [Ri
b]

Basic Answer: [Ai
b]

Reflect Response: [Ri
r]

Reflect Answer: [Ai
r]

Decision:

Refresh or Stop instruction

(Commonsense Reasoning)

The answers from the reasoning chains are
the same. Please evaluate these two reason-
ing chains based on the following question
and meta thought. Decide whether to re-
fresh a new solution or to stop.

Question: [Question x]

Meta Thought: [mi]

Basic Response: [Ri
b]

Basic Answer: [Ai
b]

Reflect Response: [Ri
r]

Reflect Answer: [Ai
r]

Better Response:
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D Case Study

To better understand the IoRT working mechanism, we analyze cases in different scenarios.

Iterative Reflection Process Output

Question: Would a veteran of the Phillippine-American War come home craving SPAM?

Iteration 0
False (✓)

Generate Meta-thoughts:
Research when SPAM was introduced to the market and compare that to the timeline of
the Philippine-American War to assess the likelihood of a veteran having access to or
knowledge of SPAM upon returning home.

Initial Response:
Let’s think step by step. The Philippine-American War occurred between 1899 and 1902,
and SPAM was introduced in 1937. There was no direct relationship between these two
events, so it’s unlikely that a veteran of the Philippine-American War would come home
craving SPAM. So the answer is: false.

Extract the Answer: False (✓) CoT 0

Self-Reflect:

Iteration 1
False (✓)

What’s the problem with the above answer?

1. Plausibility: The answer logically explains the lack of a direct relationship between the
Philippine-American War and the introduction of SPAM in 1937, which makes it unlikely
for a veteran of the war to come home craving SPAM. The reasoning is sound and aligns
with historical timelines.

2. Truthfulness: The information provided is accurate. The timeline of the events
mentioned is correct, and there is indeed no direct connection between the Philippine-
American War and the introduction of SPAM in 1937.

Here’s the better answer: Let’s think step by step. The Philippine-American War took
place between 1899 and 1902, while SPAM was introduced in 1937, which means there is
no direct correlation between the two events. Therefore, it is unlikely that a veteran of the
Philippine-American War would come home craving SPAM. So the answer is: false.

Extract the Answer: False (✓) CoT 1

Instruct the Iteration (Stop):
Both COTs provided accurate and logical reasoning based on the question and meta
thought provided. They correctly assessed the timeline of the events and concluded that
there was no direct correlation between the Philippine-American War and the introduction
of SPAM, making it unlikely for a veteran of that war to come home craving SPAM.
Therefore, there is no need to regenerate a new answer as the current responses are
appropriate. Decision: Stop iteration.

Table 7: An illustrative example from StrategyQA demonstrating how IoRT evaluate the quality of responses and
generates a stop instruction when the results before and after reflection are consistent.
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Iterative Reflection Process Output

Question: Can you buy a fair trade laptop?

Iteration 0
False (✗)

Generate Meta-thoughts:
Research the availability of fair trade electronics and the criteria for a product to be
certified as fair trade. Consider the supply chains involved in laptop production and
whether any companies offer laptops that meet fair trade standards.

Initial Response:
Let’s think step by step. Fair trade principles are typically associated with agricultural or
manufactured goods where workers are paid fair wages and operate in safe conditions.
While there aren’t fair trade-certified laptops per se, some companies may adhere to fair
trade practices in the production of their electronics to ensure fair pay and safe working
conditions for workers involved in their supply chain. However, it’s less common in the
electronics industry compared to agricultural products. So the answer is: true.

Extract the Answer: True (✗) CoT 0

Self-Reflect:

Iteration 1
False (✓)

What’s the problem with the above answer?

1. Plausibility:

The answer provides a reasonable explanation of fair trade principles and their application
in the electronics industry. However, it does not definitively state whether fair trade laptops
are available for purchase, leaving room for interpretation.

2. Truthfulness:

The information provided is accurate in explaining fair trade practices and their common
association with agricultural products. While fair trade-certified laptops may not be
prevalent, some companies do indeed prioritize fair trade principles in their electronics
production to ensure ethical practices.

Here’s the better answer:

Fair trade-certified laptops are not commonly available in the market due to the focus of
fair trade principles on agricultural and manufactured goods. While some electronics com-
panies may adhere to fair trade practices in their supply chain, specifically for components
like minerals or labor conditions, the concept of fair trade laptops as a distinct certification
is not widespread. So the answer is: false.

Extract the Answer: False (✓) CoT 1

Instruct the Iteration (Select):
COT 1 provides a more accurate and precise response by directly addressing the question
of fair trade-certified laptops and their availability in the market. It aligns closely with
the meta thought provided and offers a clear ’false’ conclusion based on the information
presented. Better COT after comparison: COT 1

Table 8: An illustrative example of the better response selection of IoRT in StrategyQA. When the results before
and after reflection are inconsistent, a select instruction is triggered automatically and the instructor then chooses
the better response.
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Iterative Reflection Process Output

Question: Can a honey bee sting a human more than once?

Iteration 0
False (✓)

Generate Meta-thoughts:
Research the physical structure of a honey bee’s stinger and how it behaves when the bee
stings a mammalian target. Consider what happens to the bee and its stinger after the
stinging event.

Initial Response:
Let’s think step by step. When a honey bee stings a human, its stinger gets embedded in
the skin and is ripped off from the bee’s body, causing the bee to die shortly after. So,
honey bees can sting a human only once as they cannot survive after stinging. So the
answer is: false.

Extract the Answer: False (✓) CoT 0

Self-Reflect:

Iteration 1
False (✓)

What’s the problem with the above answer?

1. Plausibility:

The answer explains the mechanism of a honey bee’s stinger getting embedded and the
bee dying after stinging. While this information is correct, it does not fully address the
question of whether a honey bee can sting a human more than once.

2. Truthfulness:

The information provided about a honey bee’s stinger getting ripped off and the bee dying
after stinging is accurate. However, the answer fails to consider that not all bees behave
the same way. Honey bees are unique in this aspect, but other types of bees, such as
bumblebees, can sting multiple times without dying.

Here’s the better answer:

Honey bees can sting a human only once as their stinger gets embedded in the skin and is
ripped off, causing the bee to die. However, it’s important to note that not all bees behave
this way. For example, bumblebees can sting multiple times without dying. So the answer
is: true.

Extract the Answer: True (✗) CoT 1

Instruct the Iteration (Select):
Based on the question and meta-thought provided, CoT 0 is recommended as the better
choice because it provides a logical, and directly relevant answer to the question without
introducing unnecessary information about other bee species. It adheres closely to the
meta thought provided and offers a concise response based on the specific behavior of
honey bees. Better COT after comparison: CoT 0

Table 9: An illustrative example of the better response selection of IoRT in StrategyQA. When the results before
and after reflection are inconsistent, a select instruction is triggered automatically and the instructor then chooses
the better response.
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Iterative Reflection Process Output
Question: Is a doctorate required to teach at a SUNY School?

Iteration 0
False (✗)

Generate Meta-thoughts:
Research the general requirements for faculty positions at State University of New
York (SUNY) schools and the typical educational qualifications expected for teaching
at the college level, particularly in the subject area of interest.
Initial Response:
Let’s think step by step. SUNY schools are part of the State University of New
York system. Each SUNY school may have different requirements for their faculty
positions, but generally, a doctorate is a common requirement for teaching at the
university level. So the answer is: true.
Extract the Answer: True (✗) CoT 0
Self-Reflect:

Iteration 1
False (✗)

What’s the problem with the above answer?
1. Plausibility:
The answer logically addresses the question by explaining that while specific SUNY
schools may have varying requirements, having a doctorate is generally a common
requirement for teaching at the university level. This explanation aligns with the
common standards in academia.
2. Truthfulness:
The information provided is accurate. While there may be exceptions based on
specific disciplines or positions within SUNY schools, having a doctorate is indeed a
common requirement for teaching at the university level, including SUNY schools.
Here’s the better answer: Generally, having a doctorate is a common requirement for
teaching at the university level, including SUNY schools. So the answer is: true.
Extract the Answer: True (✗) CoT 1

Instruct the Iteration (Refresh):
Both COTs provide similar answers stating that a doctorate is generally required
to teach at a SUNY school. However, the answers lack depth in addressing the
specific requirements for faculty positions at SUNY schools and the educational
qualifications expected for teaching at the college level. To improve the response, a
more detailed analysis based on the meta thought provided is necessary. Decision:
Refreshing the response.
Refresh

Iteration 2
False (✓)

A doctorate is not always required to teach at a SUNY (State University of New
York) school. While many professors at SUNY schools hold doctorate degrees, some
instructors may have a master’s degree or other qualifications depending on the
specific requirements of the position and the subject being taught. So the answer is:
false.
Extract the Answer: False (✓) CoT 2

Instruct the Iteration (Select):
Based on the question and meta-thought provided, COT 2 provides a more nuanced
and accurate answer by considering the variability in educational qualifications for
teaching at SUNY schools, which aligns better with the research and understanding of
the requirements for faculty positions at SUNY schools.Better COT after comparison:
COT 2

Table 10: An illustrative example from StrategyQA demonstrating how IoRT generates a refresh instruction when
the results before and after reflection are consistent.
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Iterative Reflection Process Output
Question: A candle melts by 2 centimeters every hour that it burns. How many
centimeters shorter will a candle be after burning from 1:00 PM to 5:00 PM?

Iteration 0
8.0 (✓)

Generate Meta-thoughts:
To determine how many centimeters shorter the candle will be after burning for a
certain number of hours, you need to calculate the total time the candle burns and
then multiply that by the rate at which the candle melts per hour.
Initial Response:
burning_hours = 5 - 1
melting_rate_per_hour = 2
answer = burning_hours * melting_rate_per_hour
Extract the Answer: 8.0 (✓) Code 0
Self-Reflect:

Iteration 1
8.0 (✓)

What’s the problem with the above code?
1. The output of 8.0 seems reasonable, as the candle would be 8 centimeters shorter
after burning from 1:00 PM to 5:00 PM.
2. Let’s check the code:
burning_hours = 5 - 1
melting_rate_per_hour = 2
answer = burning_hours * melting_rate_per_hour
The code calculates the total burning hours and the melting rate per hour correctly,
and then calculates the total length the candle would be shorter by multiplying the
burning hours with the melting rate per hour.
Overall, the code correctly calculates the length the candle would be shorter after
burning from 1:00 PM to 5:00 PM.

Here’s a better code:
burning_hours = 4
melting_rate_per_hour = 2
answer = burning_hours * melting_rate_per_hour
Extract the Answer: 8.0 (✓) Code 1
Instruct the Iteration (Stop):
Both code snippets correctly calculate the number of centimeters the candle will
be shorter after burning for the specified hours. The calculations are consistent
with the hint provided, and the outputs match the expected result. There is no need
to regenerate a new answer as the current solution is clear, logical, and directly
addresses the question. Decision: stop iteration.

Table 11: An illustrative example from GSM8K demonstrating how IoRT generates a stop instruction when the
results before and after reflection are consistent.
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Iterative Reflection Process Output
Question: Gloria is shoe shopping when she comes across a pair of boots that fit her
shoe budget. However, she has to choose between the boots and two pairs of high
heels that together cost five dollars less than the boots. If one pair of heels costs $33
and the other costs twice as much, how many dollars are the boots?

Iteration 0
94.0 (✗)

Generate Meta-thoughts:
To determine the cost of the boots, you need to calculate the total cost of the two
pairs of high heels and then add five dollars to that amount.
Initial Response:
cost_of_high_heels_1 = 33
cost_of_high_heels_2 = 2 * cost_of_high_heels_1
total_cost_of_high_heels = cost_of_high_heels_1 + cost_of_high_heels_2
difference = 5
cost_of_boots = total_cost_of_high_heels - difference
answer = cost_of_boots
Extract the Answer: 94.0 (✗) Code 0
Self-Reflect:

Iteration 1
104.0 (✓)

What’s the problem with the above answer?
1. The cost of the boots should be a positive number, 94 > 0, it’s reasonable.
2. Let’s check the code:
cost_of_high_heels_1 = 33
cost_of_high_heels_2 = 2 * cost_of_high_heels_1
total_cost_of_high_heels = cost_of_high_heels_1 + cost_of_high_heels_2
It calculates the total cost of the two pairs of high heels, that’s correct.
difference = 5
cost_of_boots = total_cost_of_high_heels - difference
This calculates the cost of the boots, it’s correct.
In summary, the code correctly calculates the cost of the boots.
The code is correct and provides the expected output.

Here’s a better code:
cost_of_high_heels_1 = 33
cost_of_high_heels_2 = 2 * cost_of_high_heels_1
total_cost_of_high_heels = cost_of_high_heels_1 + cost_of_high_heels_2
cost_of_boots = total_cost_of_high_heels + 5
answer = cost_of_boots
Extract the Answer: 104.0 (✓) Code 1

Instruct the Iteration (Select):
Code 1 is more aligned with the hint provided as it correctly adds 5 dollars to the total
cost of the two pairs of high heels to calculate the cost of the boots. This approach
is consistent with the problem description and the meta thought given. Better Code
after comparison: Code 1

Table 12: An illustrative example of the better response selection of IoRT in GSM8K. When the results before and
after reflection are inconsistent, a select instruction is triggered automatically and the instructor then chooses the
better response.
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Iterative Reflection Process Output
Question: Richard lives in an apartment building with 15 floors. Each floor contains 8
units, and 3/4 of the building is occupied. What’s the total number of unoccupied units In
the building?

Iteration 0
30.0 (✓)

Generate Meta-thoughts:
To calculate the total number of unoccupied units in the building, first determine the total
number of units in the building. Then, find the number of occupied units. Finally, calculate
the number of unoccupied units.
Initial Response:
total_floors = 15
units_per_floor = 8
occupancy_rate = 3/4
total_units = total_floors * units_per_floor
occupied_units = total_units * occupancy_rate
unoccupied_units = total_units - occupied_units
answer = unoccupied_units
Extract the Answer: 30.0 (✓) Code 0
Self-Reflect:

Iteration 1
30.0 (✓)

What’s the problem with the above answer?
1. The total number of unoccupied units should be a whole number, 30.0 is not a whole
number, so the answer is not reasonable.
2. Let’s check the code:
total_floors = 15
units_per_floor = 8
occupancy_rate = 3/4
It calculates the total number of units, the number of occupied units, and then the number
of unoccupied units, which is correct.
answer = unoccupied_units
The code assigns the number of unoccupied units to the variable answer, which is correct.
The code seems to be correct, but the output is not a whole number. This could be due to
the way the division is handled in Python. When dividing integers, Python returns a float
if the result is not a whole number. To ensure we get a whole number as the output, we
can use integer division.
Here’s a better code:
total_floors = 15
units_per_floor = 8
occupancy_rate = 3/4
total_units = total_floors * units_per_floor
occupied_units = total_units * occupancy_rate
unoccupied_units = total_units - occupied_units
answer = unoccupied_units
Extract the Answer: 120.0 (✗) Code 1

Instruct the Iteration (Select):
Code 0 is the recommended choice because it follows the hint accurately by using floating-
point division to calculate the occupancy rate. The output of Code 0 aligns with the
problem statement and the correct calculation methodology provided in the hint. On the
other hand, Code 1 deviates from the correct calculation by using integer division, leading
to an incorrect result for unoccupied units. Better Code after comparison: Code 0

Table 13: An illustrative example of the better response selection of IoRT in GSM8K. When the results before and
after reflection are inconsistent, a select instruction is triggered automatically and the instructor then chooses the
better response.
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Iterative Reflection Process Output
Question: Vincent can buy flowers in packages of 3 for $2.50 or in packages of 2 for $1.
How much money does he save by buying 18 flowers at the better price?

Iteration 0
3.0 (✗)

Generate Meta-thoughts:
To determine the savings Vincent can achieve by buying flowers at the better price, you
need to calculate the cost per flower for each package option and then multiply the cost of
the cheaper option by the total number of flowers to find the total cost.
Initial Response:
num_flowers = 18
price_3_flowers = 2.5
price_2_flowers = 1
total_price_3_flowers = (num_flowers // 3)*price_3_flowers
remaining_flowers = num_flowers % 3
total_price_2_flowers = (remaining_flowers // 2) * price_2_flowers
answer=(num_flowers*price_2_flowers)-(total_price_3_flowers+total_price_2_flowers)
Extract the Answer: 3.0 (✗) Code 0
Self-Reflect:

Iteration 1
3.0 (✗)

What’s the problem with the above answer?
1. The amount of money saved should be a positive number, 3 > 0, it’s reasonable.
2. Let’s check the code:
> num_flowers = 18 > price_3_flowers = 2.5 > price_2_flowers = 1
These lines define the number of flowers and the prices for different packages, that’s
correct.
> total_price_3_flowers = (num_flowers // 3) * price_3_flowers
This line calculates the total cost of buying flowers in packages of 3, it’s correct.
> remaining_flowers = num_flowers % 3 > total_price_2_flowers = (remaining_flowers
// 2) * price_2_flowers
These lines calculate the total cost of buying flowers in packages of 2 for the remaining
flowers, it’s correct.
> answer = (num_flowers*price_2_flowers)-(total_price_3_flowers+total_price_2_flowers)
This line calculates the amount of money saved by buying at the better price, it’s correct.
Overall, the code correctly calculates the amount of money saved by buying 18 flowers at
the better price.
Here’s the better code:
num_flowers = 18
price_3_flowers = 2.5
price_2_flowers = 1
total_price_3_flowers = (num_flowers // 3)*price_3_flowers
remaining_flowers = num_flowers % 3
total_price_2_flowers = (remaining_flowers//2)* price_2_flowers
money_saved = (num_flowers // 3) * price_3_flowers + (num_flowers % 3) *
price_2_flowers - num_flowers * price_2_flowers
answer = abs(money_saved)
Extract the Answer: 3.0 (✗) Code 1

Instruct the Iteration (Refresh):
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The error lies in both code segments not correctly implementing the meta-thought’s
guidance to compare the total costs of each purchasing option, ultimately resulting in
incorrect calculations of Vincent’s savings. Decision: Refreshing the response.
Refresh

Iteration 2
6.0 (✓)

:
num_flowers = 18
price_3_flowers = 2.5
price_2_flowers = 1
cost_using_3_flower_packages = (num_flowers / 3) * price_3_flowers + (num_flowers
mod 3) * price_2_flowers
cost_using_2_flower_packages = (num_flowers / 2) * price_2_flowers + (num_flowers
mod 2) * (price_2_flowers / 2)
money_saved = cost_using_2_flower_packages - cost_using_3_flower_packages
answer = money_saved
Extract the Answer: 6.0 (✓) Code 2

Instruct the Iteration (Select):
COT 2 aligns better with the meta-thought of accurately calculating total costs for each
buying strategy. Code 2 indicates a greater benefit from selecting the optimal option,
ensuring Vincent maximizes his savings on flowers. Better Code after comparison: Code
2

Table 14: An illustrative example from GSM8K demonstrating how IoRT generates a refresh instruction when the
results before and after reflection are consistent.
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