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Abstract

Dead code introduces several challenges in soft-
ware development, such as increased binary
size and maintenance difficulties. It can also
obscure logical errors and be exploited for ob-
fuscation in malware. For LLM-based code-
related tasks, dead code introduces vulnerabili-
ties that can mislead these models, raising secu-
rity concerns. Although modern compilers and
IDEs offer dead code elimination, sophisticated
patterns can bypass these tools. A universal
approach that includes classification, location,
explanation, and correction is needed, yet cur-
rent tools often require significant manual ef-
fort. We present DCE-LLM, a framework for
automated dead code elimination using a small
CodeBERT model with an attribution-based
line selector to efficiently locate suspect code.
LLMs then generate judgments and explana-
tions, fine-tuned on a large-scale, annotated
dead code dataset to provide detailed expla-
nations and patches. DCE-LLM outperforms
existing tools, with advanced unreachability de-
tection, automated correction, and support for
multiple programming languages. Experimen-
tal results show DCE-LLM achieves over 94%
F1 scores for unused and unreachable code,
significantly surpassing GPT-4o by 30%.1

1 Introduction

Dead code, defined as segments of a program that
are never executed or that do not affect program
functionality, can introduce performance bottle-
necks and obscure potential security vulnerabilities.
The presence of dead code increases binary size,
which negatively impacts system performance, par-
ticularly in resource-constrained environments like
web applications (Romano et al., 2020; Malavolta
et al., 2023). Additionally, dead code complicates
software maintenance by cluttering the codebase,

* Corresponding author.
1Our dataset and code are available at https://github.

com/Minkow/Repo4QA

thus consuming developers’ time as they attempt
to comprehend its purpose. In more critical cases,
dead code can serve as a vector for obfuscation
techniques employed in adversarial attacks, com-
plicating code comprehension and analysis.

Though large language models (LLMs) have
achieved impressive results in various code-related
tasks (Wei et al.; Jain et al.; Tang et al., 2024b; Li
et al., 2024; Han et al., 2024), they are particularly
vulnerable when faced with dead code. Dead code,
whether introduced unintentionally or as part of an
attack, can disrupt a model’s ability to accurately
interpret program logic. In particular, dead code in-
jection attacks exploit this vulnerability by adding
redundant or unreachable code, which confuses the
model and leads to incorrect predictions or faulty
analyses. Studies have shown that this can cause a
significant drop in accuracy for tasks like vulnera-
bility detection, with an observed reduction of up
to 12.7% (Khare et al., 2023). These weaknesses
highlight the need for more robust approaches to
handling dead code in LLM-based tasks.

While modern compilers can remove basic dead
variables and IDEs can flag some dead code (Wang
et al., 2017; Romano et al., 2016), effectively elim-
inating all forms of dead code remains a challenge.
Moreover, sophisticated attack patterns using un-
reachable statements can bypass these tools, lead-
ing to potential security vulnerabilities and perfor-
mance issues. These attacks exploit weaknesses
in language models, embedding dead code that re-
mains undetected. Additionally, the pervasiveness
of dead code across different programming lan-
guages complicates the development of a universal
solution, as each language has its own syntax and
semantics. As a result, a robust and versatile dead
code elimination framework is essential, one that
can automate the processes of classification, detec-
tion, explanation, and correction, thereby reducing
the need for manual intervention.

LLMs face several key challenges when it comes
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to dead code elimination. First, LLMs are trained
on publicly available code datasets, many of which
contain dead code. However, these datasets lack
specific labels for dead code, meaning LLMs do
not explicitly learn to identify or handle it during
training. For example, we find that over 45.3% of
Java code in the CodeNet (Puri et al., 2021) dataset
contains dead code, but this is not filtered or anno-
tated, leading to gaps in the models’ understanding.
Second, LLMs struggle to locate dead code in long
inputs. Dead code can appear in various parts of
a program, often scattered across lines of code.
LLMs have difficulty maintaining robust context
over long inputs, making it challenging to accu-
rately detect and address dead code in complex or
extended codebases. Third, while LLMs excel at
tasks like code generation and refactoring, explain-
ing and correcting dead code presents a different
challenge. Properly addressing dead code requires
a deep understanding of the intended functional-
ity and context of the program, which LLMs may
fail to grasp. Additionally, generating semantically
correct patches for dead code requires advanced
reasoning capabilities that go beyond simple code
completion or modification tasks.

To address these challenges, we present DCE-
LLM, an LLM-empowered framework for com-
prehensive dead code elimination. We leverage
a relatively small CodeBERT model with a novel
attribution-value-based line selector to effectively
and accurately locate suspect dead code snippets in
long code inputs. This step filters out most normal
code, reducing the call time for LLMs. Subse-
quently, LLMs generate final judgments and expla-
nations for dead code, focusing on the highlighted
suspect lines. Furthermore, we fine-tune LLMs
on the first large-scale dead code dataset, which is
automatically annotated, equipping them with the
capability to generate explanations and patches for
dead code. As the first neural-based framework for
dead code elimination, DCE-LLM demonstrates
several advantages over existing tools:

Unreachability Checking. DCE-LLM effectively
detects complex unreachable dead code that can
bypass compilers and IDEs, addressing vulnerabili-
ties used in adversarial attacks.

Explanation and Correction. DCE-LLM auto-
matically provides explanations and patches for
dead code, significantly reducing the manual ef-
fort required by developers and enhancing overall
development efficiency.

Programming Language Support. DCE-LLM

leverages the natural ability of LLMs to under-
stand and generate code in multiple programming
languages. It supports multiple programming lan-
guages, including Python and Java, making it ap-
plicable across diverse development environments.

Our experimental results demonstrate that DCE-
LLM achieves F1 scores over 94% for both unused
and unreachable code, along with F1 scores sig-
nificantly surpassing those of existing LLMs and
IDEs. Moreover, in terms of the quality of gener-
ated content, including explanations and repaired
code, DCE-LLM outperformed baseline models in
arena-style human evaluations.

We highlight our contributions as follows:

• We propose a novel framework, DCE-LLM,
for leveraging LLMs to tackle the dead code
elimination task, encompassing classification,
location, exploration, and patching. To our
knowledge, this is the first application of
LLMs for dead code elimination, offering so-
phisticated unreachability checking, detailed
explanations, and effective code repair.

• We employ a small CodeBERT model with an
innovative attribution technique to accurately
locate suspect lines, augmenting LLMs with
extra those hints.

• We introduce the first large-scale dead
code dataset, demonstrating that DCE-LLM
achieves over 94% F1 scores in detecting un-
used and unreachable code across multiple
programming languages, surpassing GPT-4o
with over 30% F1.

2 Related Work

Dead Code Elimination. Researchers have pro-
posed various approaches for detecting dead codes.
Chen et al. (Chen et al., 1998) introduced a data
model serving reachability analysis and dead code
detection for C++ repositories. Boomsma et
al. (Boomsma et al., 2012) leverages a dynamic
framework for extracting dead files in PHP web
apps by monitoring file usage. Several works focus
on call graph analysis (Romano et al., 2016; Ro-
mano and Scanniello, 2018) while program slicing
is also adopted to build generic frameworks (Al-
Abwaini et al., 2018; Wang et al., 2017) . Very
recently, Lacuna (Malavolta et al., 2023) has pre-
sented to integrate third-party analysis techniques
for JavaScript dead code detection.
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Our proposed DCE-LLM takes a fundamentally
different approach. As a learning-based method, it
avoids reliance on specific programming languages
or external code analysis tools like LLVM (Wang
et al., 2017), or hand-crafted rules. This allows
DCE-LLM to generalize across multiple languages
and handle incomplete or even non-compilable
code, making it both versatile and robust. Criti-
cally, our method effectively addresses the chal-
lenge of adversarial unreachable code and offers
practical solutions for dead code repair, completing
the dead code elimination pipeline rather than just
performing detection.

LLMs for Code. LLMs have demonstrated re-
markable capabilities in various code-related tasks
beyond generation and completion. Recent re-
search highlights their effectiveness in areas like
bug detection (Wang et al., 2024), code transpila-
tion (Bhatia et al., 2024), and code repair (Tang
et al., 2024a; Zhao et al., 2024). For example, NS-
Slicer (Yadavally et al., 2024) fine-tuned an LLM
to predict static program slices for both complete
and partial code, subsequently using these predic-
tions to enhance vulnerability detection. These ad-
vancements showcase the code reasoning abilities
of LLMs in diverse scenarios and provide a strong
foundation for the effectiveness of DCE-LLM.

3 Background

As illustrated in Figure 1, Python method
fill_str contains several issues about two pri-
mary types of dead code. Unused code refers to
code defined or executed but whose result is never
used in any other computation. The execution of
dead code wastes computation time and memory.
In our example, The author of this method has acci-
dentally put quotes around s3 in line 11, resulting
in an unused variable s3 in the fourth line in light

1 def fill_str(Data):
2 s1 = input()
3 s2 = s1 + '<PAD >'
4 s3 = s1 + '<EOS >' # Unused Variable
5 if len(s2) == 0: # Unreachable Code
6 print('Empty␣string ')
7 Data.pad_str = None
8 Data.eos_str = None
9 else:
10 Data.pad_str = s2
11 Data.eos_str = 's3'

Figure 1: An illustrative Python method with dead code.

yellow. Unreachable code, defined as code that
can never be executed. Line 5 in light pink is the
start of an unreachable code snippet. It introduces
an unreachable case caused by an always-false con-
dition. Thus, code in lines 6-8 cannot be executed
whatever user input in line 2.

Modern compilers and IDEs offer extensive sup-
port for dead code elimination, especially for un-
used code. However, detecting unreachable code is
inherently challenging, especially those designed
for obfuscation or adversarial attacks as illustrated
in Figure 1. Static analysis tools might not catch
this unreachable code if len(s2) == 0: if the
condition requires to be evaluated with a satisfia-
bility check. Moreover, several attack patterns are
introduced (Gao et al., 2023) for producing com-
plex unreachable code branches which are imper-
ceptible to compilers and IDEs. They successfully
mislead the output result of language models such
as CodeBERT. Even powerful LLMs like GPT-4o
are occasionally affected, without realizing that
the dead branch is unreachable in the vulnerability
detection task (Khare et al., 2023).

4 Methodology

This section introduces DCE-LLM (Figure 2), our
novel approach for automated dead code elim-
ination, comprising training (yellow) and infer-
ence (green) phases. In training, we first train a
CodeBERT-based pivot model for high recall on
a constructed dead code dataset. We then lever-
age GPT-4o to generate high-quality annotations,
including explanations and improved code, for fine-
tuning an LLM to enhance detection accuracy and
code suggestion quality. Inference begins with
the pivot model filtering suspect code. Our novel
dead code attribution technique then precisely lo-
cates and incorporates potential dead code lines
into LLM prompts. Finally, the LLM uses pivot
model predictions as hints to generate practical
dead code removal suggestions.

4.1 Training Phase

4.1.1 Data Collection
Systematically gathering a comprehensive dataset
of both normal and dead code snippets is essential
for our approach. This enables the model to learn
the intricate details of code structure and function-
ality, improving its ability to detect and eliminate
dead code precisely.

Unluckily, there are no large-scale datasets avail-
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Def fill_str(Data): 
s1 = input() 
s2 = s1 + ' <PAD>' 
s3 = s1 + ' <EOS>' 
if len(s2) == 0: 

print(' Empty string' ) 
Data.pad_str = None 
Data.eos_str = None 

else: 
Data.pad_str = s2 
Data.eos_str = 's3'

Dead Code Attribution

(B)Dead Code Locating

s3 = s1 + '<EOS>'
if len(s2) == 0:

Is_Deadcode

(C)Explaining & Eliminating

Def fill_str(Data): 
s1 = input() 
s2 = s1 + ' <PAD>' 
s3 = s1 + ' <EOS>' 
Data.pad_str = s2 
Data.eos_str = s3

Output

Line 4 is unused. 
<REASON>

Line 5 is unreachable. 
<REASON>

Improved code:

Training Phase Inference Phase

Figure 2: Overview of the DCE-LLM approach. The yellow labels highlight the training step while the green labels
introduce the inference step.

able specifically for dead code. Thus, we create a
novel dataset, AIDCE, aimed at providing a com-
prehensive collection of annotated both unused and
unreachable dead code samples.

In practice, we selected CodeNet (Puri et al.,
2021) as our data source. CodeNet collects data
from online judge websites, consisting of submis-
sions to various programming problems. This
dataset offers a rich collection of code snippets
in various languages including C++, Python, and
Java. Since no code review process is conducted
on online judge platforms, the code submissions
often contain more dead code fragments written by
programmers. From this corpus, we select code
snippets written in Python and Java, resulting in
about 300K code files.

We then leverage existing tools to annotate un-
used code. For Python, we use Vulture (Seipp), an
open-source static code analyzer that detects un-
used functions, imports, and variables. Vulture can
also identify unreachable code, but its capabilities
are limited to code following a return statement and
simple conditions tested with the eval() method in
Python. For Java, we utilize IntelliJ IDEA from
JetBrains (IntelliJ, 2011). IntelliJ IDEA offers a
command-line inspector that operates in the back-
ground to perform inspections and highlight unused
code. By harnessing the power of static analysis,
we treat the unused code identified by these tools
as gold-standard labels for our dataset.

However, static analysis tools demonstrate vul-
nerabilities when encountering unreachable branch
insertion attacks, as shown in Table 1. These
branches or loops contain conditions that always
evaluate to false, yet are often complex enough to
evade detection by compilers and analysis tools. In

Name Code Python Java

After
return

return
{deadcode}

✓ ✓ ✓ ✓

Covered
branch

if a>b: {...}
elif a<=b: {...}
else: {deadcode}

✗ ✗ ✗ ✓

Floor b = math.floor(a)
if a<b: {deadcode}

✗ ✗ ✗ ✗

After
assert

assert a>0
if a<0: {deadcode}

✗ ✗ ✗ ✗

Sorted
array

a = sorted ([...])
if a[0]>a[-1]:

{deadcode}
✗ ✗ ✗ ✗

· · ·
Vulture: 1/62 PyCharm: 1/62 JIT: 1/62 IDEA: 18/62

Table 1: Examples of unreachable patterns

addition to attack patterns that deceive nearly all
compilers and checkers, as illustrated by DaK (Gao
et al., 2023), we have expanded the range of such
patterns to 62, most of which successfully bypass
both IDEs and compilers.2

We perform unreachable code insertion for ran-
domly selected files in our code corpus while pre-
serving the original function of those snippets. The
inserted dead code blocks are also randomly gen-
erated. To mitigate label leakage and overfitting,
we only use 32 out of the 62 patterns for training,
reserving the remaining 30 patterns exclusively for
testing. Additionally, we keep the original code
snippets in the training corpus as hard negatives.

After combining samples of both unused and un-
reachable code, we construct the AIDCE dataset,

2More details can be found in the experienment part.5.2
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which comprises Python and Java code. The
AIDCE dataset supports a 3-type classification
of dead code and provides auxiliary information
such as the specific lines of dead code. The
statistics of the AIDCE dataset are presented in 2.
The train/test/dev sets are split into approximately
80%/10%/10% respectively.

Table 2: AIDCE dataset statistics

Java Python Total

Normal 4427 8201 12628
Unused 1853 2642 4495
Unreachable 207 2309 2516
Total 6487 13152 19639

Since we require a model that is not just a clas-
sifier, but also a powerful model that locates, ex-
plains, and removes dead code, we turn to LLMs to
generate human-readable content that facilitates
dead code elimination with minimal human ef-
fort. To achieve this, we construct a more detailed
and complex training set for LLM fine-tuning. To
be more specific, different from directly querying
GPT-4, we provide it with accurate signals includ-
ing the classification labels and location of dead
code, ensuring the output quality of explanations
and fixed code.

4.1.2 Model Training
We train a pivot model to function as a quick filter
and dead code locator, and an LLM as a robust
and effective model for double-checking suspect
code snippets. The LLM is also trained to generate
detailed explanations for dead code and provide
practical patches for its elimination.

Pivot Model. We expect the pivot model to
be slim but effective, with a high recall rate in
classifying dead code. This ensures that it success-
fully detects nearly all dead code snippets. While
false positives (normal code misclassified as dead
code) may occur, the LLMs deployed afterward
will perform a double-check mechanism to mini-
mize this. In practice, we choose CodeBERT (Feng
et al., 2020), an encoder-only transformer-based
pre-trained model, as the backbone.

LLMs. Existing powerful LLMs, such as GPT-
4o, can accomplish most of our tasks. However,
even state-of-the-art LLMs may struggle with dead
code detection due to a lack of extensive training
samples specifically for dead code. Additionally,
larger LLMs require more computational resources
and incur higher API costs. To address these issues,

we select Qwen2-7B-Instruct as our base model
and utilize our curated synthetic data for supervised
fine-tuning (SFT). Our synthetic data is comprised
mostly of gold labels from the AIDCE dataset, en-
suring accuracy, while silver labels generated by
GPT-4o enhance patch generation quality. We em-
ploy the LLaMA-Factory (Zheng et al., 2024) li-
brary to train a LoRA (Hu et al., 2022) adapter.

4.2 Inference Phase

4.2.1 Dead Code Attribution

Previous work on leveraging language models for
per-line code analysis, such as static program slic-
ing (Yadavally et al., 2024) and fault localiza-
tion (Yang et al., 2024), typically uses line-level
encoders to represent each line as an embedding
vector. These models predict each line individu-
ally, ignoring the broader code context. However,
dead code elimination requires a global understand-
ing of the code, including tracking variable ref-
erences and analyzing conditions across multiple
lines. To address this, we designed the pivot model
as a three-class classifier that processes the entire
code snippet, providing a global context for dead
code detection but lacking the capability to pinpoint
the exact lines.

To empower the pivot model with dead code
localization, we introduce a novel method, dead
code attribution, which measures the effect of each
line on the classification task. Adapting the con-
cept of attribution value (or Shapley value) widely
used in model interpretation (Mosca et al., 2022;
Nguyen et al., 2021), we apply it to code analysis,
marking the first use of attribution value in a code-
related task to assess the contribution of each line
to the model’s prediction values instead of single
token (Li et al., 2016; Kim et al., 2020).

To be specific, we train a pivot classifier f receiv-
ing an n-line code snippet C = {l1, l2, · · · , ln} as
input, where li = {ci1, ci2, · · · , cimi

} represents the
tokens of the i-th line, containing a total of mi to-
kens. The classifier f predicts among 3 possible
classes: normal, unused, or unreachable, resulting
in a probability vector f(C) ∈ [0, 1]3.

Before assessing the attribution of each code line
li ∈ C, it is essential to understand a crucial char-
acteristic in dead code elimination: removing dead
code does not affect the program’s functionality,
whereas removing functional code can create new
dead code by eliminating references to variables or
methods, causing other lines to become dead code.
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Thus, if we delete a specific code line li, the change
in the dead code prediction can indicate whether
li contains dead code. If the prediction value for
the dead code class decreases, the deleted li was
likely dead code, and vice versa. We must point
out that, the removal of dead code perfectly fits the
motivation for evaluating the importance of each
line in classification.

We classify dead code into two types. For non-
condition code lines, such as assignment and com-
putation statements, we use the Leave-One-Out
(LOO) strategy that removes each line of code:

C−i = C − {li} (1)

For condition-type code lines that can be clas-
sified into unreachable, like if(condition) or
while(condition), directly deleting them will signif-
icantly alter the code’s execution logic and poten-
tially create new dead code. Instead, we replace the
conditions with a mask token from the CodeBERT
model, [mask], making it impossible to determine
the value of conditions as always true or false:

C−i = mask(C, li) (2)

By masking the condition, if the original condition
was unreachable, masking it will prevent it from
being classified as unreachable. If the condition
is normal and functional, masking it will obscure
its true behavior and increase the probability of
misclassification as unused or unreachable. How-
ever, we only need to focus on the decrease of
probabilities on unused and unreachable classes as
mentioned above.

Thus, we define the attribution value as:

ai = max(f(C)− f(C−i), 0) (3)

which denotes the probability difference before
and after eliminating the assumed dead code line.
It is clear that this value reflects the attribution of
the line about being classified as dead code.

We focus on the attribution value of unused and
unreachable code. Hence, ai is regarded as a 2-
dimensional vector ai ∈ [0, 1]2. The greater the
value of ai, the higher the likelihood that line ci
contains dead code. This approach allows us to
distribute the prediction score f(C) across all lines
of code in a mini-batch, enabling us to locate dead
code lines without specifically training a line-level
classifier. Figure 3 presents an example of our dead
code attribution algorithm.

Figure 3: An illustrative Python method with dead code.

4.2.2 Pipeline Overview

By enabling the precise location of dead code with
our proposed dead code attribution approach, we
can complete the pipeline for dead code elimina-
tion, encompassing classification, location, explo-
ration, and patching. Specifically, our approach
involves three key steps, as illustrated in Figure 2:

Pivot Model Filtering. We initiate the process
with a series of tokens representing the code snip-
pet C = l1, l2, · · · , ln. This snippet is input into
our pivot model f , which predicts one of three cate-
gories: normal, unused, or unreachable. To reduce
computational overhead for subsequent steps, we
filter out samples classified as normal. During the
training phase, we ensure the model achieves a high
recall rate for the unused and unreachable classes,
thereby ensuring that nearly all potential dead code
advances to the following stages.

Dead Code Locating. In this phase, we pro-
cess each snippet C identified as containing po-
tential dead code. Utilizing our dead code attribu-
tion approach, we evaluate each line of code in an
n-size mini-batch, resulting in attribution scores
a = a1, a2, · · · , an. We focus on the probability
differences for unused (the first dimension) and
unreachable (the second dimension) lines, ranking
them separately in descending order. For instance,
when addressing unused code, we sort the first di-
mension of a to produce a ranked list. Instead of
merely returning the top-k results, we employ a
scaling factor τ , using maxa1

τ as a soft threshold
to filter out values closer to the maximum, thereby
forming a smaller but more accurate candidate set
of lines likely to contain dead code.

Explaining & Eliminating. Through the pre-
ceding steps, we provide large language models
(LLMs) with enriched prompts regarding dead
code, particularly in identifying specific dead code
lines. This enables the LLMs to more accurately
identify and understand dead code within code snip-
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pets, thereby enhancing the explanation and elimi-
nation process. Specifically, we input the candidate
set of suspect lines as auxiliary information into a
fine-tuned LLM, instructing it to output detailed
information . Notably, our explanations are more
comprehensive and user-friendly compared to those
offered by traditional IDEs and checkers. Follow-
ing this step, developers can utilize the explanation
information to verify the accuracy of the detected
dead code and review the generated corrections.
Leveraging the detailed insights provided by the
LLM, our DCE-LLM pipeline significantly reduces
human effort in the dead code elimination process.

5 Evaluation

5.1 Evaluation Setup

Dataset. We evaluate the performance of DCE-
LLM against various baselines using the test split
of our proposed AIDCE dataset. Note that, for
unused code, we use the reports from IDEs as the
gold standard labels, assuming their accuracy to
be 100%. The test set is divided into Python and
Java subsets, each further split into unused code
and unreachable code categories.
Baselines. Considering that DCE-LLM is testing-
free and light-weight which does not require any
program running time, we only focus on static ana-
lyzing methods or compilers. IDEs and checkers
serve as the gold standard for unused code, so we
only evaluate them in the context of unreachable
code detection. For Java, we select IntelliJ IDEA
Java IDE and the Java Just-In-Time (JIT) compiler,
which can eliminate dead code during execution.
Considering Python is an interpreted programming
language with dynamic semantics, we adopt Py-
Charm IDE and Vulture as baselines.

The second type of baseline involves using Large
Language Models (LLMs). Our evaluation in-
cludes several leading models, such as API calls to
GPT-4o and GPT-3.5-turbo, as well as open-source
LLMs like Llama3-8b-instruct and Qwen2-7B-
instruct. Code-specific LLMs such as Deepseek-
coder-6.7B and Mamba-Codestral-7B are also eval-
uated. Due to our limited computing resources, we
only assess LLMs up to a maximum size of 8B
parameters. For GPT-4o, we also evaluate it with
few-shot prompt.
Metrics. We first assess the classification perfor-
mance of different methods with standard multi-
task classification metrics, including accuracy, pre-
cision, recall, and F1-Score for the unused and un-

reachable classes. Moreover, we assess the quality
of generated content from LLMs with human eval-
uation, including explanations and repaired code
because of the absence of gold standard of gener-
ated contents.

5.2 Classification Performance
Despite their effectiveness in detecting unused
code, IDEs, checkers, and compilers perform
poorly when faced with unreachable adversarial
attacks. In addition to the patterns designed in
DaK (Gao et al., 2023), we have expanded the
number of patterns to 62. Table 1 presents several
of these patterns. We use PyCharm and IntelliJ
IDEA as IDEs for checking unreachable code, de-
noted by brown ✓/✗ symbols for Python and Java,
respectively. Additionally, we employ the Vulture
checker (for Python) and the JIT compiler (for
Java) to evaluate the same pattern set, with their
results indicated by blue ✓/✗ symbols. Remark-
ably, even IntelliJ IDEA, one of the most advanced
and widely used IDEs, successfully identifies only
18 out of the 62 patterns, which is less than 30%.
Other static analysis tools such as UCDetector and
J2ObjC show weaker detection capabilities com-
pared to IntelliJ IDEA. The UCDetector detected
22 out of 100 unused code cases but failed to detect
any of the 62 unreachable patterns. Considering
that those tools are based on rules, we can assume
that the precision value P for unreachable code de-
tection is 1, and the recall rate equals the checked
ratio as we randomly select inserted patterns.

For learning-based approaches, Table 3 details
the experimental results comparing DCE-LLM
with other LLMs. IDEs for different languages are
ensembled into a powerful baseline. Four founda-
tion LLMs and 3 code-specific LLMs are evaluated
alongside our method. Except for the unused split
where IDEs serve as gold labels, we observe that
DCE-LLM achieves the highest scores across all
metrics in Python and Java code corpus 3 , includ-
ing foundation LLMs and code-specific LLMs.

Due to the unbalanced label distribution, a model
can easily achieve high accuracy by predicting all
code as normal. Even GPT-4o exhibits relatively
lower accuracy compared to GPT-3.5. Thus, fo-
cusing on the detection of dead code, the recall
and F1 scores for unused and unreachable sam-
ples are more critical metrics. All LLMs strug-
gle to detect unused code, with recall rates below

3Detailed performance in Python/Java split are provided
in Appendix.
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Approach Unused Unreachable Normal Accuracy
R P F1 R P F1 R P F1

IDEs 100.0 100.0 100.0 5.98 100.0 9.48 100.0 77.36 87.24 87.89

Llama-3-8B 39.78 20.97 27.46 44.40 29.89 35.73 40.39 75.33 52.58 38.34

Qwen2-8B 8.31 41.57 13.86 68.46 80.88 74.16 98.29 75.00 85.08 71.55

GPT-3.5 7.64 38.20 12.73 59.75 70.59 64.72 94.24 74.80 83.40 69.59

GPT-4o 47.19 36.21 40.98 82.99 52.08 64.00 70.97 84.06 76.96 60.97

GPT-4o (3-shot) 28.31 45.48 34.90 36.51 58.66 45.01 86.69 76.30 81.16 67.79

Codellama-7B 96.40 23.87 38.26 45.22 17.44 25.17 2.33 75.00 4.52 16.07

Deepseek-coder-6.7B 0.0 0.0 0.0 2.85 9.09 4.34 95.71 70.27 81.04 67.67

Mamba-Codestral-7B 7.19 40.00 12.19 6.22 83.33 11.58 98.91 70.29 82.18 67.53

Qwen-2.5-coder-32B 13.71 36.75 19.97 80.50 74.90 77.60 93.70 77.28 84.97 70.44

DCE-LLM (Ours) 93.71 94.34 94.02 95.85 97.47 96.65 99.69 99.07 99.38 96.40

Table 3: Comparison of various baselines

50%. The global characteristics of unused code
detection challenge the long-form memorization
ability of LLMs, which remains an active area of
research. DCE-LLM, however, achieves a recall
rate of 93.71%, marking a substantial improvement
over other baselines.

For unreachable code detection, LLMs demon-
strate an advantage in analyzing and computing
representations in conditional statements. While
IDEs rarely detect unreachable conditions, GPT-4o
identifies unreachable code with a recall rate of
82.99%, and Qwen2-8B achieves a precision of
80.88%. Our proposed DCE-LLM surpasses these
models, with a leading recall rate of 95.85% and a
precision rate of 97.47%.

From our study, the most challenging pattern for
Python involves type-based unreachable conditions
(e.g., isInstance(int(a))). Additionally, the
model occasionally misses several dead code lines
when multiple dead code lines appear together.

0% 20% 40% 60% 80% 100%

DCE-LLM
vs ChatGPT-4o

DCE-LLM
 vs IDEs

22.50%

70.33%

58.33%

17.50%

19.17%

12.17%

Win Tie Loss

Figure 4: Human evaluation on explanation generation.

5.3 Generation Quality

To measure the quality of generated contents from
DCE-LLM, we conduct a human evaluation of both
explanations and repaired code. Three experienced
programmers serve as voluntary annotators on 20

50% 55% 60% 65% 70% 75% 80%

Unused

Unreachable Qwen
ChatGPT 4o
DCE LLM

Figure 5: Human evaluation on code repairing.

unused codes and 20 unreachable codes.
For explanation, annotators rate each output as

worse, similar, or better than the baseline. As de-
picted in Figure 4, our method outperformed the
baseline methods in explanation.

For code repairing, we focus on two major
points: (1) if the code maintains the same func-
tion and (2) if all dead code is removed. Only
samples satisfying both two conditions are positive.
As shown in Figure 5, DCE-LLM surpasses both
Qwen and GPT-4o in the evaluation.

Our study revealed that IDEs provide only
template-based explanations for unused code,
whereas our model generates more diverse explana-
tions. Furthermore, due to the high-quality syn-
thetic data and attribution techniques used, our
model can accurately locate and explain dead code
lines, leading to more applicable code patches.

5.4 Ablation Study

To understand the impact of the major components
in DCE-LLM, we separate our pivot model and
generation model to test them as individual classi-
fiers. Additionally, we explore minor modifications
of the pipeline. Our ablation results are presented
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in Table 4, demonstrating the effectiveness of the
essentials in our pipeline.

Approach Unused Unreachable

R P F1 R P F1

DCE-LLM 93.71 94.34 94.02 95.85 97.47 96.65
- Pivot Model 51.46 87.07 64.69 84.65 99.02 91.28
- LLM 94.61 92.32 93.45 94.19 99.13 96.60
- SFT 48.52 96.57 64.59 98.58 50.73 66.99
- Attribution 83.37 98.40 90.27 91.30 95.85 93.52

Table 4: Ablation study results of DCE-LLM

Without Pivot Model, we directly prompt our
fine-tuned LLM to perform dead code elimination.
This results in a significant decline in performance,
with a drop of about 30% in the F1 score for unused
code detection and a slight decrease for unreach-
able code. The pivot model plays a crucial role in
retrieving most dead code snippets from the corpus.

Without LLM, the classification results show only
minor changes. However, the ability to generate
explanations and repair code is completely lost.

Without SFT, we replace our fine-tuned LLM
with Qwen2-7B-instruct model. This substitution
results in a 30% drop in the F1 score for both
splits. Without the specialized training on our well-
annotated corpus, the LLM cannot neither main-
taining high classification performance or generate
high-quality contents.

Without Dead Code Attribution, the LLM loses
precise guidance on where dead code is located,
leading to confusion in the dead code elimination
process. In this configuration, all metrics decrease
by approximately 3%.

5.5 Programming Language Generalization

To test the cross-language generalization of DCE-
LLM, we annotated 275 Golang files as a test set.
We applied a unreachable pattern attack on this set,
resulting in 100 unused and 98 unreachable sam-
ples (some of which overlap). The Golang dataset
is simpler than Java/Python with less random gener-
ated variables and obfuscations. We then leveraged
DCE-LLM for dead code detection on this corpus,
and the results are reported in Table 5. From the
table, we can observe that even when facing an un-
seen programming language, DCE-LLM still show-
cases strong performance in detecting unused code.
For unreachable code, the performance remains ro-
bust, although slightly lower compared to unused
code detection. This indicates that while DCE-
LLM effectively generalizes to new programming

languages, there is still room for improvement in
handling more complex unreachable code scenar-
ios. Performance on both unused and unreachable
code outperforms GPT-4o.

Approach Unused Unreachable

R P F1 R P F1

GPT-4o 73.00 62.93 67.59 80.61 83.16 81.87
DCE-LLM 85.00 96.59 90.42 90.00 91.84 90.91

Table 5: Performance of DCE-LLM on Golang

6 Conclusion

In this paper, we proposed DCE-LLM, the first
learning-based solution for the dead code elimina-
tion task that leverages a pivot model for filtering
and recall, and an LLM for explanation and code
fixing. The LLM is empowered with location in-
formation provided by the dead code attribution
technique. By fine-tuning both the pivot model
and LLM on the first large-scale dead code dataset,
we successfully constructed a complete pipeline
for dead code elimination, encompassing classi-
fication, location, explanation, and repair. Our
proposed framework demonstrates superior perfor-
mance in both classification and generation tasks.
Additionally, the versatility of DCE-LLM enables
generalization on other programming languages.

Limitation

Firstly, the pivot model introduces a relatively lim-
ited input length. The input length is 512 for Code-
BERT, while programs can easily exceed. Thus,
this work focus on line-level dead code elimination
instead of method-level. We plan to support longer
contexts and complex control flows in the future.

Secondly, the study of prompting techniques can
be insufficient. We only compares the standard
CoT prompt with ours. We did not studied prompt
engineering and devising more sophisticated in-
context examples which is beyond the scope of this
work. We also believe that no prompting method
can bridge the over 30% F1 performance gap.

Lastly, as a learning-based method, DCE-LLM
is not a complete that detects all dead code. We
plan to conduct case study on failure cases to im-
prove our model in the future.
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A Dataset Details

The AIDCE dataset is divided into training, val-
idation, and test subsets with 15,043, 1,889, and
1,891 samples, respectively. To accurately repre-
sent the dead code rate from the original CodeNet
dataset while including unreachable codes, we set
the ratio of normal to unused to unreachable code
at around 4:1:1. Some overlapped samples (around
5%) that contain both unused and unreachable code
also exist.

Fields Source

Input
Source code Dataset
Suspect lines Pivot Model

Output

Dead code Dataset
Line number Dataset

Type Dataset
Explanation Dataset & GPT-4o

Fixed code
Source Code &

GPT-4o

Table 6: Source of fields in SFT data for training LLMs

For SFT dataset, We collect 1,500 samples with
a ratio of normal to unused to unreachable code
at about 1:1:1 as our pivot model can filter out
most normal code snippets before passing them
into LLMs. Table 6 provides details of source of
the fields for SFT data.

B Model Training

For CodeBERT model, we a classification head
on top of CodeBERT. The model is fine-tuned to
predict the class of code snippets among three cate-
gories. We set the batch size to 16 and the learning
rate to 5e-5. The model is fine-tuned using the
Adam optimizer for up to 3 epochs, with an early
stopping mechanism to prevent overfitting.

For LLM training, we employ the LLaMA-
Factory (Zheng et al., 2024) WEB GUI, we fine-
tuned a LoRA (Hu et al., 2022) for the Qwen2-7B
model with the following settings: learning rate of
5e-5, 10 epochs, a cosine learning rate scheduler,
LoRA rank of 8, and alpha of 16. Additionally, we
used DeepSpeed ZeRO-2 for efficient GPU mem-
ory management.

C Experimental Environment

The entire training and inference phases are con-
ducted using an AMD Ryzen 9 5950X CPU run-

ning Ubuntu 23.04 with 128GB RAM and 2
NVIDIA RTX 4090 24GB GPUs. VLLM frame-
work (Kwon et al., 2023) is applied for serving
our local LLMs. For relatively stable and consis-
tent generation results, we set temperature = 0.1.
The max_token value is aligned with the default
value of backbone LLMs. In our experiments, ad-
justing τ allows us to extract a small number of
code lines while maintaining a high recall rate for
dead code location. We set the soft threshold pa-
rameter τ = 2.

D Detailed Performance

We present the detailed performance in Tab. 7.

E Example Prompts

E.1 Base Prompt

Input:
You are an experienced programmer expert in detecting dead
code such as unused code and unreachable code. Given the
following code, respond in the following format:
Dead code: Yes or No
For each dead code,
Line Number: Line number
Type: Unused or Unreachable
Explanation: Explanation for prediction

Finally, fix the code with:
Fixed Code: Fixed code

Code: [Code in Figure 1]

Output:
Dead code: Yes
Line Number: 4
Type: Unused
Explanation: The variable s3 is defined but never used in any
subsequent code. Instead of using s3, the code mistakenly
uses the literal string ‘s3’.

Fixed Code: [Code in Figure 1 after fix line 11]

E.2 Prompt with Suspect Lines
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Table 7: Comparison of various baselines (detailed)

Approach Language Unused Unreachable Normal Accuracy
R P F1 R P F1 R P F1

IDEs
Python 100.0 100.0 100.0 0 100.0 0 100.0 81.40 89.73 84.28

Java 100.0 100.0 100.0 23.08 100.0 35.49 100.0 91.98 95.82 94.19
Overall 100.0 100.0 100.0 5.98 100.0 9.48 100.0 77.36 87.24 87.89

Llama-3-8B
Python 43.06 15.02 22.28 34.39 29.02 31.48 31.96 73.54 44.56 32.70

Java 36.68 37.33 37.00 80.77 31.34 45.16 55.56 77.27 64.64 48.19
Overall 39.78 20.97 27.46 44.40 29.89 35.73 40.39 75.33 52.58 38.34

Qwen2-8B
Python 10.65 32.39 16.03 68.25 83.23 75.00 98.18 77.68 86.74 73.88

Java 6.11 77.78 11.34 69.23 73.47 71.29 98.47 70.63 82.26 67.49
Overall 8.31 41.57 13.86 68.46 80.88 74.16 98.29 75.00 85.08 71.55

GPT-3.5
Python 12.04 36.62 18.12 56.08 70.20 62.35 93.46 77.35 84.65 72.55

Java 3.49 44.44 6.48 73.08 71.70 72.38 95.64 70.69 81.30 64.44
Overall 7.64 38.20 12.73 59.75 70.59 64.72 94.24 74.80 83.40 69.59

GPT-4o
Python 68.06 33.26 44.68 84.66 57.97 68.82 68.77 91.47 78.51 62.90

Java 27.51 45.65 34.33 76.92 37.04 50.00 74.95 74.14 74.54 57.62
Overall 47.19 36.21 40.98 82.99 52.08 64.00 70.97 84.06 76.96 60.97

GPT-4o (3-shot)
Python 41.20 44.05 42.58 37.56 61.20 46.55 85.47 80.13 82.71 70.13

Java 16.15 49.33 24.34 32.69 50.00 39.53 88.88 70.46 78.61 63.71
Overall 28.31 45.48 34.90 36.51 58.66 45.01 86.69 76.30 81.16 67.79

Codellama-7B
Python 97.68 18.31 30.84 55.02 19.29 28.57 0.84 63.63 1.67 10.89

Java 95.19 33.79 49.88 9.61 5.81 7.24 5.01 79.31 9.42 25.10
Overall 96.40 23.87 38.26 45.22 17.44 25.17 2.33 75.00 4.52 16.07

Deepseek-coder-6.7B
Python 0.0 0.0 0.0 4.16 16.66 6.66 96.40 72.82 82.97 70.52

Java 0.0 0.0 0.0 0.0 0.0 0.0 94.36 65.68 77.45 62.61
Overall 0.0 0.0 0.0 2.85 9.09 4.34 95.71 70.27 81.04 67.67

Mamba-Codestral-7B
Python 6.48 24.13 10.21 7.40 82.35 13.59 98.66 71.36 82.82 68.30

Java 7.86 81.81 14.34 1.92 100.0 3.77 99.34 68.46 81.06 66.18
Overall 7.19 40.00 12.19 6.22 83.33 11.58 98.91 70.29 82.18 67.53

Qwen-2.5-coder-32B
Python 17.59 27.74 21.53 80.95 74.63 77.66 91.89 81.61 86.45 72.05

Java 10.04 79.31 17.83 78.85 75.93 77.36 96.95 71.89 82.56 67.63
Overall 13.71 36.75 19.97 80.50 74.90 77.60 93.70 77.28 84.97 70.44

DCE-LLM
Python 98.61 89.50 93.83 97.88 97.37 97.63 99.52 99.16 99.34 97.00

Java 89.08 100.0 94.23 88.46 97.87 92.93 100.00 98.92 99.46 95.36
Overall 93.71 94.34 94.02 95.85 97.47 96.65 99.69 99.07 99.38 96.40
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Input:
You are an experienced programmer expert in detecting dead
code such as unused code and unreachable code. Given the
following code and suspect lines, respond in the following
format:
Dead code: Yes or No
For each dead code,
Line Number: Line number
Type: Unused or Unreachable
Explanation: Explanation for prediction

Finally, fix the code with:
Fixed Code: Fixed code

Code: [Code in Figure 1]
Suspect Lines: [Suspect lines from the pivot model]

Output:
Dead code: Yes
Line Number: 4
Type: Unused
Explanation: The variable s3 is defined but never used in any
subsequent code. Instead of using s3, the code mistakenly
uses the literal string ‘s3’.

Fixed Code: [Code in Figure 1 after fix line 11]
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