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Abstract

Authorship Verification (AV) (do two docu-
ments have the same author?) is essential in
many real-life applications. AV is often used
in privacy-sensitive domains that require an
offline proprietary model that is deployed on
premises, making publicly served online mod-
els (APIs) a suboptimal choice. Current offline
AV models however have lower downstream
utility due to limited accuracy (eg: traditional
stylometry AV systems) and lack of accessible
post-hoc explanations. In this work, we address
the above challenges by developing a trained,
offline model CAVE (Controllable Authorship
Verification Explanations): CAVE generates
free-text AV explanations that are controlled to
be (1) accessible (uniform structure that can be
decomposed into sub-explanations grounded
to relevant linguistic features), and (2) easily
verified for explanation-label consistency. We
generate silver-standard training data grounded
to the desirable linguistic features by a prompt-
based method PROMPT-CAVE. We then filter
the data based on rationale-label consistency
using a novel metric CONS-R-L. Finally, we
fine-tune a small, offline model (LLAMA-3-
8B) with this data to create our model CAVE.
Results on three difficult AV datasets show that
CAVE generates high quality explanations (as
measured by automatic and human evaluation)
as well as competitive task accuracy1.

1 Introduction

Authorship Verification (AV) (Koppel and Winter,
2014) is the NLP task of determining if two input
documents were written by the same author. AV is
used for tasks such as plagiarism detection, foren-
sic analysis (often in support of law enforcement),
analysis of the spread of misinformation. Given the
sensitive nature of this task, it is imperative to de-
velop AV methods that are explainable, accessible
and secure. Explainability ensures that the system’s

1github.com/INK-USC/Controllable-AV-Explanations

Doc-1: excellent until a 
completely unsatisfying end…

Doc-2: A Nutshell Review: 
Oliver Twist “Please sir, may …

Do these two documents have the same author?

❌ Not explainable!llllWithout rationale:  0.6

llllChain-of-Thought,
llllPromptAV
The likelihood that they were 
written by the same author is 
0.7.  Here’s my reasoning: 
. . . .
Overall they may have been 
written by different authors.

Prior
works

CAVE

{
punctuation style: Text1 
uses a variety of  .. whereas 
Text2 uses fewer.. MAYBE, 

sentence structure: Text1 
has complex.. while Text2 
has simple  .. NO,
…
final score: 0.2, 
output: NO
}

1

2

❌  inconsistent 
rationale/label

❌ Unstructured 
rationale 

✅  grounded  JSON 
format (accessible)

✅  intermediate 
labels ⇒ more 

explainable

✅  consistent 
rationale/label 

Figure 1: CAVE generates uniformly structured free-text
explanations grounded in relevant linguistic features,
that can be automatically verified for consistency.

decisions can be understood and trusted by the user.
Accessibility ensures easier downstream usability;
for example, a well-structured free-text explana-
tion with clearly defined topic points is more easily
understood than unstructured explanations such as
long lists of low-level features. Finally, security
is necessary to safely use the AV system for pro-
prietary data; a locally-hosted model on the user’s
server is more secure than an API call to an online
model, which could potentially store the user’s sen-
sitive data. AV is also an extremely difficult task
for humans, in contrast to other NLP tasks such as
machine translation; this further necessitates the
need for automatic, high-quality AV systems.

Early works performed AV by comparing hand-
crafted features such as n-grams (van Dam, 2013),
POS tags (Moreau and Vogel, 2013), LIWC fea-
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{
punctuation style: Both texts use a variety of punctuation, including commas, periods, and quotation marks, but Text 1 uses
more diverse punctuation such as parentheses and hyphens. MAYBE
special characters style, capitalization style: Text 1 uses continuous capitalization for emphasis (e.g., ‘WONDERFUL’,
‘THRILLED’), which is not observed in Text 2. NO ,

acronyms and abbreviations: Neither text makes significant use of acronyms or unusual abbreviations. YES ,
writing style: Text 1 has a more personal, reflective style, sharing personal opinions and feelings about the movie. Text 2
provides a more detached, narrative-style review without personal input. NO ,

expressions and idioms: Both texts avoid colloquial expressions and idioms, opting for a more formal format. YES ,
tone and mood: Text 1 has a more varied tone, from enthusiasm to disappointment, while Text 2 maintains a consistent,
somewhat formal and analytical tone. NO ,
sentence structure: Text 1 features a mix of short and long sentences with more complex structures, while Text 2 tends to use
more uniformly structured, intermediate-length sentences. MAYBE ,
any other relevant aspect: The approach to movie critique is different; Text 1 is more about the impact on the viewer, while
Text 2 focuses on plot summary and cinematic elements. NO ,

final score: 0.375 ,

output: NO
}

Table 1: Output structure of CAVE, PROMPT-CAVE: The text (JSON keys) highlighted in blue depict the linguistic
features used in the analysis, as well as the keys for final confidence score and predicted task output. The text
underlined and highlighted in yellow depict the intermediate labels with respect to each linguistic feature, the
confidence score value, and the predicted task label. We use the predicted label to measure task accuracy and all of
them to measure rationale-label consistency.

tures (Uchendu et al., 2020); while these are ex-
plainable, they are hard to scale. Subsequent works
employed neural architectures to improve scala-
bility and accuracy, such as the usage of Siamese
networks (Araujo-Pino et al., 2020; Najafi and Ta-
van, 2022; Boenninghoff et al., 2019) to assign
authorship via distance between document embed-
dings. These methods, however, have little or no
post-hoc explainability. This poses a huge prob-
lem: one cannot, for instance, make legal assertions
about the authorship of a set of questionable doc-
uments solely on the basis of “a system said so” -
decision makers (judges, university officials, intel-
ligence analysts, etc.) need to know why. Recent
years have seen the surge of large language mod-
els and their self-rationalization capabilities: Hung
et al. (2023); Huang et al. (2024b) generate free-
text rationales2 for AV from models such as GPT-4
(OpenAI, 2024b) in a zero/few-shot manner. These
methods however face issues such as unreliabil-
ity of online models (varying results/details across
runs, deprecation of APIs), inconsistency of ratio-
nales with predicted label (C), and high expenses.

In this work, we propose our model
CAVE (Controllable Authorship Verification
Explanations), an in-house model that generates

2We use terms explanation and rationale interchangeably.

authorship predictions along with high-quality,
free-text rationales that explain the former
post-hoc. The rationales are structured as a set
of sub-explanations (refer Table 1) grounded to
AV-relevant linguistic features (Hung et al., 2023;
Boenninghoff et al., 2019); these sub-explanations
have corresponding (intermediate) labels that
provide further structure and also serve as a
means to verify overall consistency with CAVE’s
authorship prediction.

Since there is no human-written AV explana-
tion data that can be used to train our in-house
model, we adopt the model distillation strategy:
(West et al., 2022; Li et al., 2023a, 2024) we engi-
neer PROMPT-CAVE to generate silver-standard
train data in the format described above by prompt-
ing a large, oracle model (GPT-4-TURBO Ope-
nAI (2024a)), and use that to supervised-finetune a
smaller language model (LLAMA-3-8B Meta-AI
(2024)). We also introduce our automatic metric
CONS-R-L that measures the consistency between
the rationale and the model’s final label; CONS-
R-L is used to filter the silver train data before
finetuning (Ramnath et al., 2023; Li et al., 2023a),
and also assess CAVE during inference. Our exper-
iments with three difficult AV datasets show that
CAVE leads to competitive task performances as
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GPT4-Turbo
[>>> 8B] (1) CAVE format

(2) Cons-R-L

Filter ⚙

CAVE
Prompt-CAVE
   + Doc-1
   + Doc-2

Silver-standard 
train-data

Gold AV explanations unavailable 
⇒ generate high-quality silver data

- Accessible 
rationale

Zero-shot 
Prompting

Llama-3
[8B]

SFT

- Consistent 
rationale & 

label

- Offline model
- High accuracy

- Post-hoc explainability

Figure 2: Pipeline to train CAVE: We obtain silver train data from GPT-4-TURBO using PROMPT-CAVE, filter it
according to CONS-R-L and our output format. We then supervised-finetune a LLAMA-3-8B with the filtered data.

well as high quality of rationales.

2 Our Method

To enable and improve downstream utility of au-
thorship verification systems, we present CAVE,
our trained, offline model that generates accessible
free-text rationales (well-structured, and uniform
structure across all datapoints). We further propose
a novel metric CONS-R-L that leverages the struc-
ture of CAVE’s rationales to measure consistency
between a rationale and its task (AV) label. Figure
2 demonstrated the visual pipeline to train CAVE.

Silver-standard data. There exists no gold-
standard, human-written datasets for AV explana-
tions; hence, the first step to develop an AV model
that can generate explanations is to create silver-
standard data for it. We propose our zero-shot
prompt, PROMPT-CAVE, that can be used with
LLMs such as GPT-4-TURBO to generate silver
training data. We adapt and extend PROMPTAV
(Hung et al., 2023) to engineer PROMPT-CAVE.
We then use this silver data to train an in-house lan-
guage model CAVE to generate AV explanations.

PROMPT-CAVE and PROMPTAV. Prior work
PROMPTAV proposes a zero/few-shot prompt to
generate free-text rationales that contain linguis-
tic features relevant for AV

3. To our best knowl-
edge, PROMPTAV was the first work in contem-
porary literature to generate natural language AV

explanations (the second and latest work is LIP

(Huang et al., 2024b), which uses a different com-
pilation of linguistic features)4. While PROMPTAV
leads to high AV accuracies, its rationales are (1)
inaccessible towards automatic evaluation5, and
(2) potentially inconsistent with their final label
(detailed discussion and example in Appendix C),

3adapted and compiled from Boenninghoff et al. (2019)
4We discuss a contemporaneous work (Hu et al.) in Ap-

pendix B.1
5this is reinforced by their reporting only task accuracy

and no rationale metrics

both of which makes the rationales unusable. In
this work, we propose PROMPT-CAVE, an exten-
sion of PROMPTAV that addresses these issues: (1)
PROMPT-CAVE generates rationales that are uni-
formly structured across datapoints; it generates a
sub-rationale and label for each linguistic feature of
analysis, under a fixed JSON format. This ensures
ease of understanding, and enables any automatic
quality measurement. (2) The aforementioned in-
termediate labels, along with the final score and the
final label (also prompted for by PROMPT-CAVE)
allow for an automatic consistency evaluation (de-
scribed below), which leads to higher transparency
and awareness.Table 10 shows PROMPT-CAVE.

Output structure (Table 1). We define
the correct and complete output structure of
CAVE/PROMPT-CAVE to be a JSON struc-
ture where the linguistic features are keys; the
model has to discuss the authorship of the texts
grounded to each feature independently, via cor-
responding explanations and intermediate labels
(YES/NO/MAYBE). The model also has to provide
a score ∈ [0, 1] that indicates its overall confidence
in the shared authorship of the documents, and an
overall predicted task label (YES/NO).

CONS-R-L, automatic consistency metric. Ra-
tionales that are inconsistent with the model’s pre-
dicted label are risky and unusable in downstream
applications (Lyu et al., 2023). Prior works in
self-rationalization check for consistency either by
human analysis (Chen et al., 2023b) or by train-
ing models (Hase et al., 2020; Chen et al., 2023a;
Wiegreffe et al., 2021) for the same. In our output
format, the presence of intermediate labels allows
the automatic verification of rationale-label con-
sistency. We define a consistency metric CONS-
R-L using two binary variables CS-1 and CS-2:
CONS-R-L ⟺ (CS-1 ∧ CS-2).

CS-1: Is the final score (which indicates the
model’s confidence in shared authorship) consistent
with the final label? If the final label is ‘YES’, is
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the final score ≥ 0.5? Similarly, if the final label is
‘NO’, is the final score ≤ 0.5?

CS-2: Are the intermediate labels faithful (over-
all) to the final label? Since the model output is
structured as a JSON, we can automatically extract
the intermediate labels for each feature and count
them. If the final label is ‘YES’ and count(YES) +
count (MAYBE) > count(NO), then the labels are
consistent. Similarly, if the final label is ‘NO’ and
count(NO) + count(MAYBE) > count(YES) then
the labels are consistent6.

We define that is, a given output is consistent
(CONS-R-L = 1) only if the final score, final label
and the aggregate of the intermediate labels all
align with each other.

Training CAVE. We generate silver training data
(Dtrain) from GPT-4-TURBO (T ) using PROMPT-
CAVE (P ).

Dtrain = {(xi, yti)} ∼ T (xi∣P ) (1)

where xi represents the input document pairs and
y
t
i represents the outputs (rationale + label) cre-

ated from T . We then filter Dtrain according to
rationale-label consistency (CONS-R-L) and con-
formity to our desired structure, to get our final
train set Ftrain. Finally, we supervised fine-tune
a smaller, offline language model (S) with Ftrain;
for a decoder-only model like LLAMA-3-8B, we
train the model only on the output tokens.

E(x,yt)∼Ftrain
S(yt∣x) (2)

3 Experiments and Results

3.1 Datasets, Training, Inference
We conduct experiments on three popular AV

datasets: IMDB62 (Seroussi et al., 2014), BLOG-
AUTH (Schler et al., 2006) and FANFICTION

(via the PAN-2020 Authorship Verification). Our
datasets are diverse in domain (IMDB62: movie re-
views, BLOG-AUTH: website blogs, FANFICTION:
movie/book fanfiction); we carefully select these
datasets to test the generalizability of our method.
For IMDB62 we use the test set of 1k text pairs
from Hung et al. (2023). For BLOG-AUTH, we
create our own test set by sampling 1k document
pairs from the original blog authorship corpus. For
FANFICTION, we sample 1k document pairs from
the PAN-2020 test set (which had 14k pairs). Our
test sets have equal split of YES/NO labels.

6at this point, we assume all linguistic features have equal
weightage towards shared authorship.

Creating the train set. For IMDB62 and BLOG-
AUTH, the original datasets consist of documents
and their anonymous author IDs; we sample doc-
ument pairs with equal amounts of same/different
authors to create trainsets. For FANFICTION, we
take the ‘small’ train set provided by PAN-2020,
and sample data from the same. We start off with a
train set of ∼1.8k documents pairs for each dataset7

and combine them with PROMPT-CAVE and get
silver rationale data from GPT-4-TURBO (temper-
ature 0.0 and 2 responses per sample). Finally, we
filter them according to the criteria in §2 and use
them for training. Appendix D details the data
statistics after each stage of filtering.

Training and Inference. We supervised, fine-
tune a LLAMA-3-8B with LoRA (Hu et al., 2021).
We report all hyperparameters in Appendix E. We
use greedy decoding during inference.

3.2 Baselines

We present and compare with multiple baselines:
Traditional stylometry. We present a weak

baseline (Ikae, 2021) from traditional stylometry.
We represent input document pairs as the concate-
nation of their TF-IDF or word-count 8 features,
and train a Support Vector Machine (Cortes and
Vapnik, 1995) to classify their shared authorship
status (hyperparameters in Appendix E).

Zero-shot, prior work. We present three zero-
shot baselines with GPT-4-TURBO (temperature
0.0) and LLAMA-3-8B-INSTRUCT (greedy decod-
ing). The first baseline is chain-of-thought COT
(Wei et al., 2022), a standard self-rationalization
method that does not include any AV specific in-
structions. The second baseline is PROMPTAV
(Hung et al., 2023). We use the prompts for COT
and PROMPTAV reported in Hung et al. (2023) (Ap-
pendix C). Both these baselines report confidence
scores (0-1, higher score means more confidence
in shared authorship) in lieu of labels. We extract
this confidence score by string matching for deci-
mal numbers in the output; we measure accuracy
by thresholding these scores at 0.5. Consistency
cannot be calculated for these two baselines. The
third zero-shot baseline is PROMPT-CAVE itself.

Fine-tuned. Similar to how we train CAVE, we
generate silver COT and PROMPTAV data from
GPT-4-TURBO, filter them according to task cor-

7we ensure that there is no leakage between train/test
datasets.

8
sklearn.feature_extraction.text

TfidfVectorizer, CountVectorizer
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Model Method Test → IMDB62 BLOG-AUTH FANFICTION

Train ↓ ACC. CONS-R-L ACC. CONS-R-L ACC. CONS-R-L

SVM - Fine-tune 59.7 - 56.2 - 55.7 -

COT Zero-shot 73.6 - 62.0 - 54.2 -
GPT-4-TURBO PROMPTAV Zero-shot 73.0 - 62.2 - 57.0 -

[>>> 8B] PROMPT-CAVE Zero-shot 67.6 0.86 57.7 0.73 52.2 0.67
PROMPT-CAVE Few-shot 71.3 0.94 64.0 0.97 61.7 0.86

COT Zero-shot 62.4 - 60.7 - 57.5 -
LLAMA-3-8B PROMPTAV Zero-shot 62.8 - 57.9 - 53.8 -

-INSTRUCT PROMPT-CAVE Zero-shot 36.7 0.16 38.8 0.25 45.5 0.17
PROMPT-CAVE Few-shot 53.8 0.98 62.3 0.99 48.1 0.93

LLAMA-3-8B
COT Fine-tune 65.7 - 64.6∗ - 60.5 -

PROMPTAV Fine-tune 76.2∗ - 61.3 - 58.7 -

CAVE Fine-tune 74.1 0.99∗ 60.6 1.00∗ 62.6∗ 0.99∗

Table 2: Empirical results comparing baselines and CAVE. We note that fine-tuned CAVE is competitive with strong
baselines such as zero-shot and few-shot GPT-4-TURBO, while having higher rationale quality (via consistency).

rectness and train a LLAMA-3-8B with them. We
report final train set sizes in Appendix E.

Few-shot. Finally, we present a few-shot base-
line with PROMPT-CAVE on GPT-4-TURBO and
LLAMA-3-8B-INSTRUCT. This baseline is strong,
but undesirable owing to the high expenses of per-
forming few-shot AV

9. We have submitted the few
shot prompts in supplementary material.

3.3 Empirical Results
Table 2 shows the empirical results. We report
accuracy (ACC.) for all models, and consistency
(CONS-R-L) for CAVE and PROMPT-CAVE. For
all 3 datasets, CAVE beats all relevant baselines
in terms of rationale-label consistency. For FAN-
FICTION, CAVE beats all baselines (including few-
shot GPT-4-TURBO by 0.9%) in accuracy; for
IMDB62 and BLOG-AUTH, CAVE obtains compet-
itive accuracies (2% and 4% less than the highest
accuracy, which were PROMPTAV-SFT and COT-
SFT respectively).

Why show two zero/few-shot baselines? In
addition to the strong (online) baseline of GPT-
4-TURBO, we also show zero/few-shot results
using a less-strong local model, LLAMA-3-8B-
INSTRUCT. The significant performance degrada-
tion there (for all cases except few-shot BLOG-
AUTH) shows that it is insufficient merely to take
existing approaches and run them using a local
instruction-tuned model; our proposed distillation
strategies are essential to get a high performance

9Each document in our datasets has on-average 1000 to-
kens; performing even a 4-shot baseline is highly expensive.

with local, offline models that face the disadvantage
of having a much lower parameter size.

PROMPT-CAVE versus PROMPTAV, COT.
We investigate the drop in accuracy as we go from
COT/PROMPTAV to PROMPT-CAVE in the zero-
shot baseline GPT-4-TURBO. We observe that a
majority of this drop is caused by instruction fol-
lowing errors, such as not generating in a JSON
format, or generating a ‘MAYBE’ as the final la-
bel instead of ‘YES’ or ‘NO’. GPT-4-TURBO

might still does produce the right score in the pre-
diction (which is the indicator for the predicted
label used by PROMPTAV and COT), but since
our evaluation requires the JSON format and a
clear YES/NO label at the end, GPT-4-TURBO’s
performance decreases with PROMPT-CAVE. For
IMDB62, BLOG-AUTH and FANFICTION respec-
tively, the number of test datapoints (out of 1000)
where GPT-4-TURBO doesn’t follow the output
format with zero-shot PROMPT-CAVE are 47, 153
and 148 respectively; the number of datapoints
where it produces a label of ‘MAYBE’ are 59, 45
and 103 respectively. However, as we move to
few-shot PROMPT-CAVE or fine-tuned CAVE, we
find that instruction-following errors are almost
non-existent, and there is a huge improvement in
accuracy as well as consistency! Appendix F fur-
ther discusses practical advantages of CAVE over
GPT-4-TURBO, as well as experiments with more
local models.
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3.4 In-house human study:

AV + explanations is a highly complex task; annota-
tors require a considerable amount of training and
practice to be skillful in their evaluation. Hence,
for our evaluation, we opted to conduct a small but
high-quality in-house human study, instead of a
large-scale study with platforms such as Amazon
MTurk.
We pick 50 document pairs per dataset (total of 150
pairs) and evaluate the rationales generated by their
corresponding CAVE. We analyze the strengths &
weaknesses of CAVE’s rationales, which help to
understand the utility of these rationales to down-
stream applications (Joshi et al., 2023) and to learn
about potential areas for improvement (van der Lee
et al., 2019). We analyze the generated rationales
(for each linguistic feature as in Table 1) via three
properties as described below; we employ 3 dis-
tinct annotators per datapoint. We also require the
annotators to comment on why a rationale is un-
satisfactory, if they find it to be so with respect to
any property; this helps to perform a more detailed
analysis at the instance level.
1. Detail-Consistency: Are the details mentioned
in the rationale consistent with the input documents,
or are they hallucinated? (eg:- if the rationale men-
tions that both documents use parantheses, but the
documents don’t, then the details are hallucinated)
2. Factual-Correctness: Are the rationales fac-
tually correct? (eg:- if the rationale says that the
text was informal in tone, while it was actually for-
mal, or if it misinterprets an acronym to be author-
specific slang, it is incorrect)
3. Label-Consistency CAVE’s output format
has a distinct rationale and intermediate label
(YES/NO/MAYBE) for each linguistic feature. As
defined in §2, we use these intermediate labels to
check the overall consistency of the rationale with
the final label. In this human evaluation however,
we check whether each individual rationale is con-
sistent with its corresponding label.
In Table 3, we show number of examples (out of
150) for which the three annotators agree that the
rationale aligns with the property being analyzed.
We also show aggregate statistics for each property
across all linguistic features, i.e., sum(P1)

150∗8 where 8
is the number of linguistic features being analyzed.
Aggregate Analysis. Annotators find that CAVE’s
rationales align with properties P1, P2, P3 77.8%,
84.6% and 90.4% of the cases respectively. That
is, CAVE hallucinates, presents incorrect details

Linguistic Features P1 P2 P3

punctuation style 63 103 125

special characters & capitalization style 87 116 136

acronyms and abbreviations 110 124 135

writing style 136 137 145

expressions and idioms 130 137 138

tone and mood 140 138 145

sentence structure 126 133 141

any other relevant tabs 142 127 120

aggregate 934 1015 1085

aggregate as % 77.8% 84.6% 90.4%

Table 3: Human Pilot: This table shows the number of
examples out of 150 where all 3 annotators agree that
the rationale conforms to the property being analyzed.
P1 - ‘Detail-Consistency’, P2 - ‘Factual-Correctness’,
P3 - ‘Label-Consistency’. We report these numbers for
all linguistic features used by CAVE.

and produces inconsistent intermediate labels in
22.2%, 15.4% and 9.6% of the cases respectively.
Spurious patterns. Annotators noticed that docu-
ments in the FANFICTION dataset all used double
instead of single quotes for apostrophes (eg:- it”s in-
stead of it’s), leading to CAVE reasoning that these
double quotes were indicative of shared authorship.
Similarly, some documents in the BLOG-AUTH

dataset used the term ‘urlLink’ to denote the pres-
ence of hyperlinks (perhaps a formatting pattern
used by the blog platform) - CAVE however, took
the presence of this unique term as an indicator
of shared authorship. Since annotators view many
datapoints in their analysis, they are able to iden-
tify these spurious patterns; models such as CAVE

and GPT-4-TURBO view these datapoints in iso-
lation and hence do not dismiss these patterns as
indicators of shared authorship.
Qualitative examples & Annotator comments.
We report commonly observed rationale errors in
Table 4. Hallucination of details was a common
error, especially for punctuation style and special
characters / capitalization; for example, CAVE men-
tioning the presence of punctuation marks such as
ellipses, parantheses, etc., when those did not ex-
ist in the document. One hypothesis is that LLMs
are bad at these linguistic features since they deal
with individual characters and not broad pieces of
text like the other features. Another common er-
ror was the CAVE’s usage of topic of texts as a
reason to indicate or refute shared authorship of
two documents; topic cannot be an absolute factor
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Rationale / Label Annotator’s Comment
punctuation style: Both texts use a variety of punctuation
marks, including commas, parentheses, and quotation marks,
but Text2 uses more complex structures such as dashes and
colons.

Hallucination of punctuation marks when they don’t exist in
the original documents.

any other relevant aspect: The subject matter of the two texts
is vastly different, with Text1 focusing on technology and
personal preference, while Text2 focuses on societal issues
and personal identity. NO

Similarity/difference in topics or shared platforms does
not definitively imply same/different authorship - the label
should have been MAYBE for both these cases.

special characters style, capitalization style: Text1 shows a
casual approach to capitalization, with instances of lower-
case usage in contexts that typically require capitalization
(e.g.,‘relly’ instead of‘really’). Text2 adheres to standard
capitalization rules.

Confusion between capitalization and misspelling/typo.

acronyms and abbreviations: Neither text makes significant
use of acronyms or unusual abbreviations, maintaining a
formal tone in dialogue without informal abbreviations.

Lack of acronyms does not indicate a formal tone - this
rationale is even more incorrect when the original text is
informal in tone.

acronyms and abbreviations: Neither text makes significant
use of acronyms or abbreviations, which suggests a similarity
in this aspect. However, the absence of such elements makes
it difficult to draw a definitive conclusion. YES

The label should have been MAYBE owing to lack of infor-
mation with this feature.

special characters style, capitalization style: Both texts use
colloquial expressions (’buttload of dishes’, ’nagged the darn
thing out of Shawn’). These expressions contribute to the
informal tone of the texts.

Hallucination and factually incorrect: Both expressions were
in Text-1, none in Text-2.

Table 4: Sample rationales from various examples, to show observed error types by CAVE

in deciding authorship (Wegmann et al., 2022a),
and hence such labels must be ‘MAYBE’. We also
discuss random errors owing to computational lim-
itations (such as limited context window in LMs)
in Appendix H.
We report the human study numbers for individual
datasets in Table 19. We also release the complete
set of test-set rationales generated by CAVE.

3.5 Future steps

The first step towards handling these issues is to
make downstream users aware about them, so that
they can make an informed final decision with
CAVE’s rationales; the independence between lin-
guistic features make it easy for users to process
them separately and use them as needed.

Ablation study with linguistic features. A
straightforward solution is to simply identify
the linguistic feature that is the most uncer-
tain/problematic in the training data, and remove
it from the datapoints: we perform this experiment
as an ablation study. We identified from analyzing
the silver data that ‘punctuation style’ has an inter-
mediate label of ‘MAYBE’ in roughly 60-70% of
the data for each dataset. We hypothesized that this
feature was generally indecisive and unimportant;
we removed it from the train data and fine-tuned a
LLAMA-3-8B on the same - however, we found
that the performance reduced upon removal of this

feature for all 3 datasets. This suggests that though
this feature is generally indecisive, it does offer
much needed information or context that the model
depends upon; simply removing the feature will
not improve the performance, and hence, we need
more intricate methods such as weighing of linguis-
tic features depending on the datapoint at hand.

Targeted training. As futute steps, we propose
to perform targeted training that directly addresses
the problems of (1) hallucinated details, and (2)
trivial reasonings from unimportant features. For
the hallucination issue, given that we have the
input documents, we can potentially have a re-
ward model that checks the entailment between the
sub-explanations and the documents and verifies
whether a detail is real or a hallucination; we can
further perform reward-based learning with algo-
rithms such as PPO (Schulman et al., 2017), Quark
(Lu et al., 2022). For the latter issue, we can have
dynamic weighting of linguistic features for each
example, which highlight only the features that
contribute meaningful similarities or differences
between the documents.

4 Discussion

4.1 Robustness of CS-1 and CS-2

CONS-R-L, the automatic metric used to measure
rationale-label consistency, is defined based on two
binary variables (§2): CS-1 which measures con-
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sistency between the final score and the final la-
bel, and CS-2 which does the same between the
final label and the aggregated intermediate labels.
These variables were designed with common sense
logic (such as, a final score ≥ 0.5 must indicate a
final label of YES). But how robust are they sta-
tistically? We analyze the silver train data from
GPT-4-TURBO with relevant questions below. We
use the term accepted for datapoints that satisfied
the consistency condition being analyzed (CS-1 or
CS-2), and rejected for those that were filtered out.
We split the analysis into 5 categories: accepted dat-
apoints with a final label of YES/NO, and rejected
datapoints with a final label of YES/NO/MAYBE
(when the predicted label is ‘MAYBE’, it is always
filtered out).

CS-1: Is 0.5 the best threshold? In Table
5 we present the average score obtained by ac-
cepted/rejected datapoints in the five categories.
We note that for accepted data for all three datasets,
GPT-4-TURBO assigns a final score of 0.86 or
higher when predicting the final label as ‘YES’,
and assigns a final score of 0.33 or lower when pre-
dicting the final label as ‘NO’ - these indicate that
accepted datapoints are well away from the thresh-
old boundary. For rejected data, GPT-4-TURBO

on average assigns a score surrounding 0.6 for pre-
dicted labels of ‘NO’ and ‘MAYBE’ (there are no
cases where the rejected data has a label of ‘YES’,
i.e., where the label was ‘YES’ and the score < 0.5)
- this shows that rejected datapoints were not re-
jected just because of a harsh thresholding10.

Dataset Accepted Rejected
YES NO YES NO MAYBE

IMDB62 0.89 0.33 - 0.63 0.65
BLOG-AUTH 0.86 0.18 - 0.62 0.58
FANFICTION 0.87 0.30 - 0.63 0.62

Table 5: Statistical analysis of CS-1: Average ‘final
score’ generated by GPT-4-TURBO + PROMPT-CAVE
in the silver train data.

CS-2: How much do the intermediate
MAYBE’s contribute? We require that the in-
termediate labels as an aggregate (with ‘MAYBE’
as a buffer for both ‘YES’ and ‘NO’) side with
the final label. But statistically, how much of this
support comes from the MAYBE’s, and how much
comes from YES and NO? In Table 6 we present

10harsh thresholding is when the final score is marginally
crossing the boundary to be accepted, for example, a score of
0.51 for a label of ‘NO’ or 0.49 for a label of ‘YES’

Predicted Accepted Rejected
Label → YES NO YES NO MAYBE

Dataset ↓
% MAY. in % MAY. in

%NO %YES %MAY.
MAY.+YES MAY.+NO

IMDB62 15.7 38.8 - 51.2 45.7
BLOG-AUTH 22.1 24.6 - 50.0 54.3
FANFICTION 17.0 32.1 - 51.3 43.1

Table 6: Statistical analysis of CS-2: % of intermediate
labels

relevant proportions of intermediate labels for the
five categories. For accepted data, we calculate the
% of MAYBE in support of YES and NO respec-
tively, that is, % of MAYBE in MAYBE + YES
or MAYBE + NO. For rejected data, we calculate
the % of NO’s in the intermediate labels for a pre-
dicted label of ‘YES’ (that is, how many NO’s were
there in the intermediate labels to make them in-
consistent with the final label?), % YES’s for a
predicted label of ‘NO’, and % of MAYBE’s for
a predicted label of ‘MAYBE’. We note that for
accepted data, the support given by ‘MAYBE’ is
on average ∼ 15-22% for a final label of ‘YES’,
and ∼24-39% for a final label of ‘NO’ - this in-
dicates that the main support for the final labels
of YES/NO come respectively from intermediate
labels of YES/NO. For rejected data where the pre-
dicted label was NO, the aggregate intermediate
labels came roughly to ∼50% YES, indicating that
the inconsistency was not due to indecision of the
model with MAYBE’s. For rejected data where the
predicted label was MAYBE, the aggregate inter-
mediate labels are ∼43-54% MAYBE, indicating a
higher level of uncertainty in the model.
Measuring uncertainty via score and labels: As
per our logic, a final score close to 0.5, and/or a
high proportion of ‘MAYBE’ intermediate labels
indicate a higher uncertainty of the model in its
final prediction. To validate this hypothesis, we
calculate the correlation11 between the fraction of
MAYBE’s in the intermediate labels, and 1 minus
the absolute distance of the final score from 0.5

12.
Formally,

v1 =
count(MAYBE)

num_intermediate_labels
v2 = 1 − ∣final score − 0.5∣

correlation = PearsonCorr(v1, v2)
We calculate this correlation for the GPT-4-
11
from scipy.stats import pearsonr

12a lesser distance to 0.5 implies high uncertainty, so it is
subtracted from 1 to make the final value higher if there is
higher uncertainty
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TURBO train data; we obtain IMDB62: 0.66,
BLOG-AUTH: 0.8, FANFICTION: 0.6, all with
p << 0.01. The high correlation scores validate
our hypothesis.

4.2 Analyzing signal strengths across
linguistic features

In Table 7, we present a detailed analysis of the in-
termediate label (MAYBE) signal strengths across
all linguistic features, as measured from the train-
ing data of each dataset. Punctuation style sees
a high proportion of MAYBE’s (60-70%) for all
datasets, whereas features such as writing style,
tone & mood etc., have a very low proportion. On
average across all linguistic features, the propor-
tion of ‘MAYBE’ is 20-25%, reinforcing the con-
clusion from §4.1 that the majority support for the
predicted label comes from decisive intermediate
labels of ‘YES’ and ‘NO’, and not from the uncer-
tain ‘MAYBE’.

Ling. Feature IMDB62 BLOG-AUTH FANFICTION
punctuation style 68.4 % 60.2 % 59.4 %
special char./

21.2 % 23.9 % 20.7 %
capitalization
acronyms & abbr. 26.6 % 44.5 % 29.1 %
writing style 6.5 % 5.9 % 7.1 %
expressions/idioms 24.6 % 14.4 % 23.2 %
tone & mood 5.1 % 7.0 % 7.2 %
sentence structure 28.0 % 9.8 % 18.8 %
any other 17.5 % 8.6 % 8.8 %
avg. across features 24.74 % 21.79 % 21.79 %

Table 7: Proportion of datapoints in the train set for
each linguistic feature where the intermediate label is
‘MAYBE’. Punctuation style sees a high proportion of
‘MAYBE’ labels (60-70% across the datasets), whereas
other features see much lower proportions.

4.3 CAVE versus GPT-4-TURBO

In Appendix D, we present analyses of the silver
training data generated by GPT-4-TURBO as well
as human evaluation results of the same. In ad-
dition, here we compare rationales generated by
CAVE and GPT-4-TURBO on the test set in the
following three aspects:

Does CAVE yield less MAYBE’s than GPT-4-
TURBO? In terms of the final output label, since
CAVE is fine-tuned on data that has only YES/NO
labels as the final output, it always produces only
YES/NO and never a MAYBE; this is not the
case with GPT-4-TURBO since we zero/few-shot
prompt it. In terms of the intermediate labels, we re-
port the % of MAYBE’s averaged across linguistic

features for zero-shot GPT-4-TURBO and CAVE’s
predictions on the test set in Table 8. The pro-
portions are found to be similar, with zero-shot
GPT-4-TURBO having slightly more MAYBE’s as
its intermediate labels than CAVE.

Dataset GPT-4-TURBO CAVE
IMDB62 29.22 % 23.71 %
BLOG-AUTH 25.23 % 23.46 %
FANFICTION 26.64 % 20.34 %

Table 8: Proportion of intermediate labels MAYBE’s
averaged across linguistic features for zero-shot GPT-
4-TURBO and CAVE’s predictions on the test set.

Does CAVE yield less rejected samples with
respect to CS-1/CS-2 than GPT-4-TURBO?
From Table 2, we see that CAVE has a higher CONS-
R-L, which means that it yields less rejected sam-
ples than GPT-4-TURBO; in our individual CS-1
and CS-2 analysis, we find that CAVE has higher
values for both. We report values below for CAVE

and zero-shot GPT-4-TURBO on the test set below
in Table 9.

Dataset Model CONS-R-L CS-1 CS-2

IMDB62
GPT-4-T 0.86 0.86 0.86

CAVE 0.99 0.99 1.0
BLOG- GPT-4-T 0.73 0.73 0.73
AUTH CAVE 1.0 1.0 1.0

FANFIC- GPT-4-T 0.67 0.67 0.67
-TION CAVE 0.99 0.98 0.99

Table 9: CS-1 and CS-2 values for CAVE and zero-shot
GPT-4-TURBO on the test sets.

5 Conclusion

Existing methods for authorship verification face a
lack of accessible explainability. In this work, we
train an in-house language model CAVE to gener-
ates structured and consistent explanations for AV.
We present strong experimental results on three
difficult AV datasets; we also present a human pi-
lot study on the quality of generated rationales.
Finally, we provide detailed discussions on the ro-
bustness of our consistency metric, and explore
errors made by CAVE due to factors such as hallu-
cination, dataset biases, etc. to guide research in
this area. As future work, we would like to explore
reward metrics and reward-based learning for AV

explanations.
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Limitations

Bias propagation from GPT-4-TURBO to CAVE,
and mitigation: Since there is no human-written
explanation data for AV, we used silver data gen-
erated by GPT-4-TURBO; however, this can lead
to biases13 present in GPT-4-TURBO to uncon-
sciously propagate to CAVE. The datasets we use
in this paper are not highly bias-prone; however,
researchers/users who use our framework on their
dataset might deal with biases that stem from their
dataset (such as gender bias, racial bias, etc., for
example: ‘Document-1’s writing style is depictive
of demographic-X whereas Document-2’s writing
style is depictive of demographic-Y’). For users
dealing with sensitive data for AV, we recommend
they use bias mitigation strategies from relevant
literature such as Counterfactual Role Reversal
(Gupta et al., 2022) for gender bias, reducing bias
in the upstream model before fine-tuning (UBM
(Jin et al., 2021), strategic pretraining (Feng et al.,
2023)), ensembling models with varying/opposing
biases (partisan ensemble (Feng et al., 2023)), etc.

Hallucination. As we see in our human study,
CAVE’s rationales sometimes have hallucinated
details, especially for certain linguistic features.
Hallucination is a common problem faced when
using LMs (Ji et al., 2023; Huang et al., 2023);
prior works (Zhang et al., 2023; Shi et al., 2024)
have proposed task-specific strategies to alleviate
the same. In our work, our proposed output format
for CAVE allows for downstream users to analyze
each linguistic feature independently, making it
easier to identify hallucinations. We caution users
to be aware of this issue, and to always manually
read and verify the rationales before using them.

Completeness of rationale. We would like to
emphasize here that our models have not been ex-
plicitly trained for completeness; that is, apart from
any wrong information the generated explanation
may have, it could also have missed some cru-
cial similarity/dissimilarity between the documents.
We discuss rationale properties such as complete-
ness in Appendix K.

Trust. Lipton (2018) discusses that the defini-
tion of trust in a model is subjective: some users
only trust well-understood models; other users
might be inclined to trust well-performing mod-

13we adopt the definition of bias from Jin et al. (2021);
Blodgett et al. (2020): disparate model performance on differ-
ent subsets of data which are associated with different demo-
graphic groups

els regardless of how (not) explainable they are.
A recent work Sun et al. (2024) defines various
dimensions for trust for language models, such
as truthfulness, safety, robustness, etc. Our im-
provements in terms of accessibility of rationales
and automatic quality evaluation contribute to im-
proved trust in certain dimensions; as future work,
we would like to evaluate and improve on other di-
mensions of trust, including higher accuracy, more
datasets, more OOD evaluation, etc.

Practical limitations. Lastly our method has
practical limitations faced by any NLP task; our
models are restricted by the size of the context
window allowed by the model (both input and out-
put text) (also keeping in mind restrictions due to
computational costs, financial costs and GPU size
available). This can lead to data missed by the
model in its reasoning.

Data. All the datasets that we use in our work
are released publicly for usage and have been duly
attributed to their original authors. Note that while
we perform authorship verification, all the datasets
we use have been anonymized by their respective
creators. We do not have access to or use the names
of individual people.

Reproducibility

For all our experiments, we report (1) the com-
plete hyperparameter setting and any bounds ex-
plored (Appendix E) as well as the sizes and
versions/pretrained-model links of all models used,
(2) the time taken per experiment, and infras-
tructure used, (3) descriptions of datasets, and
demonstrations used to sample rationales from
GPT-4-TURBO. Further, we have released all our
codes and our training/test data at github.com/INK-
USC/Controllable-AV-Explanations.

LLAMA-3 Usage and License. Note that we
were granted access to download and use
LLAMA-3-8B from https://huggingface.co/
meta-llama/Meta-Llama-3-8B. While we train
a local LLAMA-3-8B, we do not release the
trained model; we submit only the script and data
used to train the model. Also note that we adhere
to the intended use case for LLAMA-3-8B, i.e.,
“Llama 3 is intended for commercial and research
use in English. Instruction tuned models are in-
tended for assistant-like chat, whereas pretrained
models can be adapted for a variety of natural lan-
guage generation tasks.”
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PROMPT-CAVE:
Task: On a scale of 0 to 1, with 0 indicating low confidence and 1 indicating high confidence, please provide a general
assessment of the likelihood that Text 1 and Text 2 were written by the same author. Your answer should reflect a moderate
level of strictness in scoring. Here are some relevant variables to this problem.
1. punctuation style (e.g. hyphen, brackets, colon, comma, parenthesis, quotation mark)
2. special characters style, capitalization style (e.g. Continuous capitalization, capitalizing certain words)
3. acronyms and abbreviations(e.g. Usage of acronyms such as OMG, Abbreviations without punctuation marks such as
Mr Rochester vs. Mr. Rochester,Unusual abbreviations such as def vs. definitely)
4. writing style
5. expressions and Idioms
6. tone and mood
7. sentence structure
8. any other relevant aspect
Provide the answer in a Python JSON format. Use the following keys for your dictionary: ‘punctuation style’, ‘special
characters style, capitalization style’, ‘acronyms and abbreviations’, ‘writing style’, ‘expressions and Idioms’, ‘tone and
mood’, ‘sentence structure’, ‘any other relevant aspect’, ‘final score’. Apart from the ‘final score’, everything else must
have a text value; also, the text should include a concluding YES/NO/MAYBE about whether the two texts are similar or
not with respect to the key at hand. Finally, provide an ‘output’ key in your dictionary, which says YES if the two texts are
written by the same author, and NO otherwise.

Text1: excellent until a completely unsatisfying ending This movie really got me hooked. The plot about...

Text2: A Nutshell Review: Oliver Twist “Please sir, may I have some more?” Ah, the immortal line from...

Table 10: PROMPT-CAVE: We extend Hung et al. (2023) to improve controllability in terms of the structure/parsing
of the output and automatic verification of the consistency between the rationale and the label. The highlighted part
is our extension to PROMPTAV.

zero-shot prompt to get silver data from ChatGPT,
which are then filtered for quality (they perform
consistency verifications based on identifying spe-
cific phrases in the generated rationale). In contrast,
we prompt GPT-4-TURBO (without providing the
gold label, in order to obtain unbiased rationales
from GPT-4-TURBO) to generate explanations that
are structured with respect to the various linguistic
features, as well as intermediate labels (which al-
low for easy verification of consistency); we filter
the silver data by checking of consistency between
the different steps of the rationale and the final la-
bel. Our method CAVE differs from INSTRUCTAV
in the specific format of the output used, as well as
the metrics we subsequently use to verify/ensure ra-
tionale quality - in addition to creating accurate
and high-quality models, we also have the goal
of making the process of authorship verification
more transparent and accessible for end-users.

B.2 Authorship Analysis

Classical AV systems use inter-textual distance to
quantify the likelihood for two documents to share
the same author (Mosteller and Wallace, 1984; Bur-
rows, 2002; Grieve, 2007). These verification tech-
niques rely on expert-derived hand-crafted features
to define the distance metric. Since such stylomet-
ric methods are grounded in hand-written rules,
they are inherently explainable. However, these

methods are known to not scale well, especially
in the scenario when for a given query document
the correct target author needs to be mined from a
large collection of candidate documents14.

Different from classical stylometric techniques,
current AV systems typically employ neural archi-
tectures which perform better at scale (Rivera-Soto
et al., 2021; Wegmann et al., 2022b). Although
significant amount of work has been devoted to
advancing neural AV architectures, most of the cur-
rent techniques lack interpretablity. For example,
a typical neural AV architecture comprises of a
Siamese network (Koch, 2015), where each docu-
ment is separately encoded into a vector and the
model is trained to ensure that the document vec-
tors are close if the they are written by the same
author and far otherwise (Rivera-Soto et al., 2021;
Wegmann et al., 2022b). In such a network, what
each dimension of the document vector means is
completely opaque.

To bridge this dichotomy between usability and
interpretibilty between classical stylometric tech-
niques and neural AV systems, (Boenninghoff et al.,
2019) proposed to use attention heat-maps. This
technique enabled them to determine which tokens
in the input text are attended to (and not attended

14See Table 1 of (Rivera-Soto et al., 2021) for a comparison
between scores from neural transformer/convolutional models
and classical tf-idf technique.
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to) by the neural model when performing AV. Dif-
ferent from attention-heat maps, model-agnostic
methods, such as LIME (Ribeiro et al., 2016), have
also been used to probe feature importance (Sari
et al., 2018). Such explanations are helpful, how-
ever, they are inherently local15 and thus cannot
capture higher level abstractions which can be in-
formative of authorship, for example fluency, tone
and mood, etc.

Motivated by the recent advancements made pos-
sible using LLMs, (Hung et al., 2023) and (Huang
et al., 2024b) investigated whether LLMs can per-
form the task of authorship analysis. They found
that, when prompted correctly, the LLMs can reli-
ably determine whether or not two documents are
written by the same author. LLMs have also been
used to construct interpretable authorship style vec-
tors (Patel et al., 2023) and subsequently used to
rewrite text from a source author in the writing style
of a target author (Patel et al., 2022). Similarly,
LLMs have also been used by works (Hu et al.,
2024) to perform authorship attribution, where,
given a text, the task is to identify who wrote the
text (i.e., which human or LLM from a predeter-
mined set of authors (Huang et al., 2024a)).

Our work is the first attempt to distill free-text
explanations for authorship verification from LLMs
like GPT-4-TURBO into smaller LMs; we provide
explicit focus to the joint explainability and security
of AV systems via our model CAVE.

B.3 Self-rationalization
Explainability for neural network based models
come in two formats: extractive rationales (in-
cludes pre-LLM era) and free-text rationales. Ex-
tractive rationales (Li et al., 2016; Sundararajan
et al., 2017; Lundberg and Lee, 2017; Jin et al.,
2019) involve analyzing the influence of input to-
kens on the predicted output via various meth-
ods such as gradient-based analysis of input to-
kens (Sundararajan et al., 2017; Lundberg and
Lee, 2017), input perturbation (Poerner et al., 2018;
Kádár et al., 2017), attention heatmap analysis
(Pruthi et al., 2020; Stacey et al., 2022; Wiegreffe
and Pinter, 2019), and trained models for this pur-
pose (Lei et al., 2016; Chan et al., 2022; Jain et al.,
2020; Situ et al., 2021; Liu et al., 2023). However,
extractive rationales have limited applicability as
discussed previously; hence we focus on free-text
rationales.

15For example, heat-maps can only capture features at the
token/span level.

The initial set of approaches for free-text ra-
tionales used gold standard human-written ratio-
nales to train rationale generation models (Cam-
buru et al., 2018; Narang et al., 2020; Wiegreffe
et al., 2021). Following the advent of emergent
self-rationalization in LLMs (Wei et al., 2022), the
research area moved to prompt large LMs with
the help of curated templates with or without ra-
tionale demonstrations (Wei et al., 2022; Kojima
et al., 2023; Li et al., 2023b; Jung et al., 2022;
Lightman et al., 2023). Other approaches include
leverage few-shot training approaches with a hand-
ful of gold rationales (Marasovic et al., 2022; Chen
et al., 2023b), or generating silver standard train-
ing data from large LMs to distill small LMs to be
better at the task or better rationalizers. (Ramnath
et al., 2023; Li et al., 2023a; Chan et al., 2023;
Wang et al., 2023; Saha et al., 2023; Hsieh et al.,
2023).

C PROMPTAV and COT

Tables 11 and 12 show the prompts used to apply
COT and PROMPTAV respectively. The prompts
are taken from Hung et al. (2023); further note that
the prompt is uniform across datasets.

PROMPTAV (and by extension, COT) which
serve as the inspiration for CAVE produce outputs
which cannot be automatically checked for con-
sistency; these prompts produces a free-text ex-
planation followed by a final score which can be
thresholded to produce a YES/NO AV label. As
observed in the experiments of (Hung et al., 2023),
models tend to produce low confidence scores with
PROMPTAV, which means that for better accuracy,
the optimal threshold in their experiments with
GPT-3.5-TURBO was found to be 0.2-0.3, which
will most probably not be consistent with the free
text rationale (that is, if the rationale says that it
thinks it is not confident that the authors are the
same, and the confidence is 0.25, the automatic
label prediction will still assume that the predicted
label is YES). Further, with just the score as the
label, it is still possible that we misconstrue the
label because the confidence score and the model’s
predicted label in the text are different, as shown
in the examples in Tables 13 and 14.

D GPT-4-TURBO silver data analysis

In Table 15 we show train dataset sizes at every
stage of data generation and preprocessing.

Further, we also perform manual analysis of
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COT:
Task: On a scale of 0 to 1, with 0 indicating low confidence and 1 indicating high confidence, please provide a general
assessment of the likelihood that Text 1 and Text 2 were written by the same author. Your answer should reflect a moderate
level of strictness in scoring. Let’s think step by step.

Text1: [T1]

Text2: [T2]

Table 11: COT prompt for the task of AV, taken from Hung et al. (2023)

PROMPTAV:
Task: On a scale of 0 to 1, with 0 indicating low confidence and 1 indicating high confidence, please provide a general
assessment of the likelihood that Text 1 and Text 2 were written by the same author. Your answer should reflect a moderate
level of strictness in scoring. Here are some relevant variables to this problem.
1. punctuation style (e.g. hyphen, brackets, colon, comma, parenthesis, quotation mark)
2. special characters style, capitalization style (e.g. Continuous capitalization, capitalizing certain words)
3. acronyms and abbreviations(e.g. Usage of acronyms such as OMG, Abbreviations without punctuation marks such as
Mr Rochester vs. Mr. Rochester,Unusual abbreviations such as def vs. definitely)
4. writing style
5. expressions and Idioms
6. tone and mood
7. sentence structure
8. any other relevant aspect
First step: Understand the problem, extracting relevant variables and devise a plan to solve the problem. Then, carry out
the plan and solve the problem step by step. Finally, show the confidence score

Text1: [T1]

Text2: [T2]

Table 12: PROMPTAV prompt for the task of AV, taken from Hung et al. (2023)

GPT-4-TURBO’s silver rationales. For the most
part, GPT-4-TURBO generates high-quality ratio-
nales; the most frequent issue observed is hallucina-
tion of details, especially punctuation marks. Out
of the 60 samples analyzed (20 from each dataset),
10 samples showed hallucination in their rationale
for punctuation style, 16 samples showed factual
incorrectness across varying linguistic features, and
6 samples showed inconsistency of rationale with
intermediate label in one linguistic feature (varying
across samples) each.

E Hyperparameters

We download the pre-trained LLAMA-3-8B
from HuggingFace (https://huggingface.co/
meta-llama/Meta-Llama-3-8B) and train it for
all our experiments. We train it with Low-
Rank Adaption (LoRA; Hu et al., 2021), a
parameter-efficient training method which offers
lightweight training no additional inference latency,
unlike other existing parameter-efficient methods
(Houlsby et al., 2019). We train LLAMA-3-8B
for 10 epochs. We use no validation set, and in-
stead use the last checkpoint obtained from train-
ing; since we have no gold-standard explanations,

we opt against using the GPT-4-TURBO gener-
ated data as the validation set. We experiment
with different values of ‘r’ and ‘alpha’ for LoRA
(refer to https://huggingface.co/docs/peft/
main/en/conceptual_guides/lora for their def-
initions). We use r=128 and alpha=256. Note that
all our training experiments for LLAMA-3-8B take
∼12 hours, and all our test set inferences take ∼7-8
hours on a single NVIDIA Quadro RTX 8000 GPU.
We report single-run results for all our experiments.

Why not LLAMA-3-8B-INSTRUCT for
fine-tuning? As explained in the documentation
for LLAMA-3-8B-INSTRUCT in hugging-
face https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct, “Instruction tuned
models are intended for assistant-like chat, whereas
pretrained models can be adapted for a variety of
natural language generation tasks”. Hence, we
provide zero-shot and few-shot baselines with
LLAMA-3-8B-INSTRUCT whereas we provide
fine-tuned results on LLAMA-3-8B.

Document truncation. When we truncate docu-
ments for GPU memory considerations in the train-
ing of CAVE, we always ensure that equal amounts
of both documents are present in the input. Further,
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Sample COT explanation that is inconsistent with label:

Based on the provided texts, I assess the likelihood that Text 1 and Text 2 were written by the same author as 0.7
(moderate confidence).

Here’s my reasoning:

1. Both texts exhibit a personal and introspective tone, which suggests that the author is comfortable sharing their
thoughts and feelings.
2. The language and sentence structure in both texts are similar, with a mix of short and long sentences, and a
conversational tone.
3. Both texts touch on themes of self-reflection, personal growth, and the struggle to overcome negative thoughts
and emotions.
4. The author’s writing style is informal and conversational, with a focus on expressing their thoughts and feelings
rather than presenting a polished or formal argument.

However, there are some differences that suggest the texts may not have been written by the same author:

1. The tone of Text 1 is more lighthearted and humorous, while Text 2 is more serious and introspective.
2. The language and vocabulary used in Text 2 are more formal and philosophical, with words like ‘suffering,’
‘unrealistic standards,’ and ‘setbacks.’
3. The structure and organization of the texts are different, with Text 1 consisting of short, disconnected paragraphs,
and Text 2 featuring longer, more cohesive paragraphs.

Overall, while there are some similarities between the two texts, the differences in tone, language, and structure
suggest that they may have been written by different authors.

Table 13: Sample output by COT where the predicted label and the predicted confidence score are inconsistent with
each other. The model predicts a high confidence score of 0.7 for same authorship (by usual standards of 0.5 as the
threshold), but it predicts that the final answer is different authorship.

we always use the first chunk of the document as
input and not a random chunk.

For our baseline SVM, we use TF-IDF feature
vectors for BLOG-AUTH (words) and FANFIC-
TION (characters), and word-count features for
IMDB62 (characters). All 3 datasets’ models use
the RBF kernel. IMDB62 and FANFICTION use
n-grams of minimum size 1 and maximum size 2,
whereas BLOG-AUTH uses only n-grams os size 2.
IMDB62 uses a C-value of 5.0. We used sklearn
version 1.2.2 for this baseline.

For our baseline of LLAMA-3-8B finetuned
with COT and PROMPTAV, our final training
dataset sizes are: for IMDB62, BLOG-AUTH and
FANFICTION, the COT sizes - 2.7k, 2.9k, 2.4k and
the PROMPTAV sizes - 2.6k, 3k, 2.6k.

F CAVE with different offline models,
Practical advantages of CAVE

We report experiments with local models of varying
sizes in Table 20. After LLAMA-3-8B, MISTRAL-
7B is the next best performing model.

Practical Advantages: CAVE also demonstrates
practical advantages over GPT-4-TURBO such as
(1) Energy: LLAMA-3-8B is just 8B parameters,
whereas GPT-4-TURBO is orders of magnitude
bigger - CAVE hence consumes much less energy

per datapoint, and hence is more affordable and ef-
ficient, (2) Financial cost: CAVE is also more finan-
cially affordable since it can be hosted on a local
server; GPT-4-TURBO or any API based language
model would cost much more since it charges for
every input/output token, (3) Speed: On average,
CAVE takes 3 minutes per datapoint for inference,
whereas GPT-4-TURBO takes 4.5 minutes.

F.1 Human Pilot

Prior works in this field largely focus on task ac-
curacy, with much lesser focus on explainability
(Patel et al., 2023) and by extension, human study
of the explanations. In this work, we take the first
step towards human analysis of AV explanations
by providing a pilot study on CAVE’s rationales.

G Human Evaluation

Table 16 shows the instructions given to the anno-
tators regarding the properties to be analyzed and
Table 17 shows a sample human evaluation. We
perform an in-house human evaluation, and annota-
tors used were proficient in English and well aware
of the high complexity of the task.

Table 19 shows the human pilot study numbers
for individual datasets. The aggregate of these num-
bers were used for the overall analysis in Appendix
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Sample PROMPTAV explanation that is inconsistent with label:

To assess the likelihood that Text 1 and Text 2 were written by the same author, we will analyze the texts based on
the provided variables:
1. Punctuation Style:
- Text 1 uses a variety of punctuation, including colons, commas, and quotation marks, with a distinctive style of
spacing before and after punctuation marks (e.g., ‘this : THIS’). It also uses apostrophes in plural forms, which is
unconventional (e.g., ‘one’s’).
- Text 2 uses standard punctuation without the unconventional spacing or misuse of apostrophes seen in Text 1.
2. Special Characters and Capitalization Style: - Text 1 features continuous capitalization for emphasis (e.g.,
‘THIS IS BETTER THAN THE ORIGINAL’) and capitalizes certain words for emphasis.
- Text 2 does not exhibit continuous capitalization or the same pattern of capitalizing certain words for emphasis.
3. Acronyms and Abbreviations:
- Text 1 does not prominently feature acronyms or abbreviations.
- Text 2 also does not prominently feature acronyms or abbreviations, making this variable less useful for differenti-
ation.
4. Writing Style:
- Text 1 has a detailed, narrative style, sharing personal experiences and opinions in depth.
- Text 2 has a more straightforward, opinion-based style without the narrative depth or personal anecdotes found in
Text 1.
5. Expressions and Idioms:
- Text 1 uses expressions and a more vivid language (e.g., ‘take 15 showers afterwards’).
- Text 2 uses simpler language and fewer idiomatic expressions.
6. Tone and Mood:
- Text 1 has a passionate, intense tone, especially when discussing the movie’s impact and the author’s feelings.
- Text 2 has a lighter, more casual tone, even when expressing disappointment.
7. Sentence Structure:
- Text 1 features complex sentences with multiple clauses and detailed descriptions.
- Text 2 uses simpler, more straightforward sentence structures.
8. Other Aspects:
- The subject matter and interest areas differ significantly between the two texts, with Text 1 focusing on horror
films and Text 2 on a Disney film. This could indicate different interests or purposes for writing, though it’s not
definitive evidence of different authorship.

Given these observations, the differences in punctuation style, capitalization, writing style, tone, and sentence
structure suggest that Text 1 and Text 2 were likely written by different authors. However, without more direct
evidence (e.g., consistent unique spelling errors or very distinctive stylistic quirks that appear in both texts), absolute
certainty is not possible.
Confidence Score: 0.8
This score reflects a high level of confidence that the texts were written by different authors, based on the analysis
of the provided variables, but it leaves room for the possibility of the same author adapting their style to different
subjects or formats."

Table 14: Sample output by PROMPTAV where the predicted label in the text and the predicted confidence score are
inconsistent with each other. The model predicts a high confidence score of 0.8 (by usual standards of 0.5 as the
threshold), but it predicts that the final answer is different authorship. Unless a human (or a trained model) can
manually analyze the text, it is impossible to determine that the predicted label via the confidence score and the
actual predicted label are different.

F.1.

H Random Errors due to Computational
Limitations

We acknowledge random errors (i.e., not system-
atic) that could have occurred in our results ow-
ing to limitations of language models and compu-
tational resources. Our method uses a language
model to read two input documents and provide an
output; however, in practice, language models have
a fixed maximum length of input due to model lim-
itations as well as GPU memory limitations. This
means that if the two input documents together
(along with the instructions) do not fit into the in-

put, it becomes necessary to truncate them, which
leads to loss of information of their latter parts.
This issue is exacerbated when we move towards
using in-house models on user servers (which typ-
ically have a shorter context window than API-
based models like GPT-4-TURBO). In our experi-
ments with LLAMA-3-8B, we used just 2 GPUs
(to have a realistic user environment), which means
that while training we had to restrict the input to
be of maximum length 1280

16, which could have
affected the training for the longer documents. Fur-

16note: during inference, we did not limit the size of the
input, but this could pose a problem if the documents became
much longer
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Dataset Initial size Filter for Structure Filter for float score Filter for CONS-R-L
IMDB62 3400 3396 3255 2354

BLOG-AUTH 3600 3600 3146 2724
FANFICTION 3600 3383 2887 2159

Table 15: Train dataset sizes at every stage of data generation and preprocessing. The ‘Initial size’ column shows the
number of datapoints generated from GPT-4-TURBO, and each succeeding column shows the number of datapoints
remaining after the different filtering methods (in order of application).

Human Annotation Instructions:
Given two documents, the task is to say whether they are written by the same author (label: YES) or not (label: NO). The
model produces a set of explanations (corresponding to different aspects like punctuation, writing style, etc.) for the same
each with an intermediate YES/NO/MAYBE label, and finally a YES/NO output label for the task.
The human evaluation looks at the three properties described below, and gives a score of 1, 0.5, 0 or -1 for each of the
individual explanations. The "Sample human eval" section gives an example evaluation. If you give a 0.5 or a 0, please
write a short explanation what was wrong with the rationale!
Criteria Definition: Options
consistency with details Is the detail consistent with the documents or hallu-

cinated? (for example, explanation mentions paran-
theses when it doesn’t exist in input document)

1 - all details are consistent, 0.5 - some details are
consistent, some are hallucinated, 0 - all details are
hallucinated, -1 - I don’t know

factual correctness Are the details factually correct? (for example, it
mentions serious writing style when writing style is
actually humorous)

1 - all details are factual, 0.5 - some details are
factual, 0 - no details are factual, -1 - I don’t know

consistency with pre-
dicted label

Is the statement faithful with the YES/NO/MAYBE
at the end?

1 - yes it is faithful, 0.5 - some details are faithful,
0 - no it is not faithful, -1 - I don’t know

Table 16: Instructions given to annotators for the human pilot study. Sample human evaluations are in Table 17.

ther, even for generating the training data from
GPT-4-TURBO for FANFICTION, the excessive
size of the documents made the GPT-4-TURBO

generations economically infeasible; we cut our
the input to to a maximum of 300 words per docu-
ment, which could have created errors/incomplete
rationales that eventually propagated to our down-
stream training of LLAMA-3-8B.

I Out-of-domain inference

Finally, we evaluate CAVE models on the other
datasets’ test sets (refer Table 21); we notice ro-
bust out-of-domain performance especially by the
IMDB62 and FANFICTION models. This is a sig-
nificant result, as it shows the generalizability of
this approach to unseen AV datasets: although we
use fine-tuning to improve performance over a zero-
shot approach, it is not fine-tuning specifically to
the domain that is most critical but rather fine-
tuning to the structured format of CAVE’s output.

J Post-hoc Interpretability

We finally clarify that CAVE was designed to serve
post-hoc rationalization, and not mechanistic (i.e.,
low-level mathematical) understanding of the lan-
guage model’s workings. We quote from Lipton
(2018) to emphasize that CAVE’s improved post-
hoc explainability leads to improved utility to (1)

downstream users, and (2) researchers, who can
leverage CAVE’s accessible outputs for detailed
analyses, to address errors and develop improved
models: “while post-hoc explanations often do not
elucidate precisely how a model works, they may
nonetheless confer useful information for practi-
tioners and end users of machine learning”.

K More rationale properties

In addition to consistency, there are several prop-
erties necessary for high quality rationales (Joshi
et al., 2023; Ramnath et al., 2023). Some of these
are easily verifiable by humans, even if there exist
no prevalent automatic methods to measure them:
for eg:- factual correctness, hallucination in the
rationale, etc. that we measured in our human eval-
uation (§F.1). There are also properties that are
hard to verify even by human evaluators: for eg:-
completeness of the rationale, i.e., has the rationale
missed any significant (dis)similarity between the
documents?. In fact, completeness does not have
a comprehensive definition even for simpler tasks
like multi-choice QA (Ramnath et al., 2023). In the
future, we would like to work on automatic metrics
and model training for these properties specifically
for AV.
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Sample evaluation:
Text1: One last update. I’ve decided to wear my khaki pants all day. I get off work at 4:30. I see no need to rush to the
5:05 train. So I’ll take my time and go on the 5:35. I just blowdried my hair and I think it’s going to be okay. I need to eat
something. I’ve eaten my two favorite foods, of late, for breakfast: pop tarts and pears. I think it’s going to be rice and
peas for lunch.

Text2: Hey guys! I’d like to tell you all that RICE is organising an event, ’Where is the love’. Go to urlLink my site for
more info, or go to the urlLink RICE site .It’s going to be great! there will be around 800 people there, and this event will
be about how the world’s gone wrong with terrorism, war... etc. Date: 10 July 2004 Place: Willoughby Civic Centre Time:
7pm Ask Ben, Adro or me for more info. We’d like All of you to come! urlLink

GOLD LABEL: NO

Rationale P1 P2 P3
punctuation style: Both texts use a variety of punctuation marks such
as periods, commas, and ellipses. However, Text 1 uses more complex
structures like colons and parentheses, which are less prevalent in Text
2. MAYBE

0.5 (ellipses
/ parantheses
halluci-
nated)

0.5 (colons
in both)

1

special characters style, capitalization style:Text 1 shows a more natural
capitalization style without unusual emphasis on continuous capitaliza-
tion or certain words. Text 2 capitalizes ’RICE’ and uses all caps for
’URL’, indicating a different approach. NO

0.5 (url not
capitalized
in Text2)

0.5 (RICE is
implied as
an organiza-
tion, it it not
a reflection
of the cap-
italization
approach)

1

acronyms and abbreviations: Text 1 does not prominently feature
acronyms or abbreviations, while Text 2 includes ’URL’ as an abbrevia-
tion. This suggests a difference in the use of abbreviations. Conclusion:
NO

1 1 1

writing style: Text 1 has a more personal, reflective style, discussing
personal routines and thoughts. Text 2 adopts a more informative and
promotional tone, inviting people to an event. The styles are quite
distinct. NO

1 1 1

expressions and idioms: Neither text heavily relies on idiomatic ex-
pressions, but the context in which they write differs significantly, with
Text 1 focusing on personal narrative and Text 2 on event promotion.
NO ,

1 1 1

tone and mood: The tone of Text 1 is casual and somewhat contempla-
tive, while Text 2 is more enthusiastic and outward-facing, aiming to
promote an event. These differences suggest different authors. NO

1 1 1

sentence structure: Text 1 uses a mix of short and long sentences,
with a more conversational flow. Text 2 also uses a mix but is more
structured, likely due to its promotional nature. The sentence structures
show some similarities but also differences in context and purpose.
MAYBE

1 1 1

any other relevant aspect: TThe subject matter of the two texts is
vastly different, with Text 1 focusing on personal habits and reflections,
and Text 2 on organizing an event and expressing concerns about
global issues. This difference in content and focus further supports the
likelihood of different authors. NO

1 0.5 (dif-
ference
in content
doesn’t
mean differ-
ent authors)

0 (should
be MAYBE.
Difference
in content
is not dif-
ference in
authorship)

Table 17: Sample human evaluation shown to human annotators
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Linguistic Features
IMDB62 BLOG-AUTH FANFICTION

P1 P2 P3 P1 P2 P3 P1 P2 P3

punctuation style 6 13 14 12 14 19 12 15 16

special characters/
11 17 17 9 15 18 12 16 15

capitalization style

acronyms/abbr. 17 17 18 12 17 17 18 18 13

writing style 18 18 19 19 19 20 17 16 20

expressions/idioms 18 19 19 17 15 18 18 18 17

tone and mood 18 19 19 18 18 20 19 16 20

sentence structure 17 19 16 17 18 20 14 16 19

any other 19 19 18 19 18 14 19 18 20

Table 18: Human Pilot for individual datasets: This
table shows the number of examples (out of 20) where
all 3 annotators agree that the rationale (corresponding
to the linguistic feature) conforms to the property being
analyzed. P1 is ‘Detail-Consistency’, P2 is ‘Factual-
Correctness’ and P3 is ‘Label-Consistency’.

Linguistic Features
IMDB62 BLOG-AUTH FANFICTION

P1 P2 P3 P1 P2 P3 P1 P2 P3

punctuation style 15 31 43 25 38 45 23 34 37

special characters/
31 40 47 23 37 46 33 39 43

capitalization style

acronyms/abbr. 38 41 47 25 37 45 47 46 43

writing style 47 45 46 44 48 49 45 44 50

expressions/idioms 44 48 49 40 43 45 46 46 44

tone and mood 47 48 48 46 47 48 47 43 49

sentence structure 45 48 46 42 45 48 39 40 47

any other 48 43 38 46 38 37 48 46 45

Table 19: NEW Human Pilot for individual datasets:
This table shows the number of examples (out of 20)
where all 3 annotators agree that the rationale (corre-
sponding to the linguistic feature) conforms to the prop-
erty being analyzed. P1 is ‘Detail-Consistency’, P2 is
‘Factual-Correctness’ and P3 is ‘Label-Consistency’.

L Analyzing cases where PROMPTAV
succeeds but CAVE fails

We consider the 88 samples of the BLOG-AUTH

test set where PROMPTAV succeeds but CAVE fails.
From qualitative analysis of a few samples, we find
out the following (non-exhaustive) patterns:

• Cases where the gold label is ‘YES’, and both
methods fail: CAVE wrongly predicts a label
of ‘NO’ with a final score of < 0.5. PROMP-
TAV gives the wrong reasoning, but concludes
by predicting a confidence score > 0.5 that
the authors are different which leads to a mis-
interpretation that PROMPTAV was right. We
provide an example of this error by PROMP-
TAV in Appendix C.

• Differences in perceiving patterns such as id-
ioms, acronyms: Both methods generate sim-
ilar explanations for abstract features such
as writing style, tone & mood. But when
it comes to token-level features such as
acronyms, idioms, etc., the methods some-
times predict different subsets, which leads to
differing final predictions. This comes under
the issue of completeness of rationale, which
we discuss in the Limitations section and in
Appendix K. In this particulat situation, both
models have provided different incomplete ra-
tionales, which eventually leads to different
labels.
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Model
Test → IMDB62 BLOG-AUTH FANFICTION

Train ↓ ACC. CONS. ACC. CONS. ACC. CONS.

LLAMA-3-8B Fine-tune 74.1 0.99∗ 60.6 1.00∗ 62.6∗ 0.99∗

MISTRAL-7B Fine-tune 73.7 0.99 59.2 0.99 57.7 0.98

Stable-LM-Zephyr-3B Fine-tune 50.8 0.71 47.7 0.81 42.0 0.68

Table 20: Empirical Results comparing CAVE trained with local models of different sizes. MISTRAL-7B is the next
best performing model after LLAMA-3-8B. STABLE-LM-ZEPHYR-3B however has a lower performance.

Test → IMDB62 BLOG-AUTH FANFICTION

Train ↓ ACC. CONS. ACC. CONS. ACC. CONS.

IMDB62 — — 59.9 1.0 61.2 0.99
BLOG-AUTH 71.3 0.96 — — 45.3 0.77
FANFICTION 68.8 1.0 59.3 1.0 — —

Table 21: Out of domain performance by CAVE
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