
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 7839–7853

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Functional Lexicon in Subword Tokenization

Zachary William Hopton1, Yves Scherrer2,3, Tanja Samardzic1

1Language and Space Lab, University of Zurich,
{zacharywilliam.hopton, tanja.samardzic}@uzh.ch

2Department of Informatics, University of Oslo, yves.scherrer@ifi.uio.no
3Department of Digital Humanities, University of Helsinki

Abstract

The distinction between function and content
units of the lexicon has been somewhat ne-
glected in recent NLP work, but it could still
be useful when working with low-resource lan-
guages, and, in particular, to improve cross-
lingual transfer. In this paper, we investigate
to what extent BPE subword tokenization can
be used to identify units of the functional lexi-
con in a language without any annotated data.
We analyze subword tokens in terms of their
productivity and attempt to find thresholds that
best distinguish function from content tokens.
On a sample of seven diverse languages, we
find that the best results are obtained with 50
BPE merges. We also show that this subword
tokenization setting can be beneficial for the
interlinear glossing task.

1 Introduction

The distinction between function and content units
of the lexicon used to be important in NLP before
neural models were introduced. A common pre-
processing step in many tasks was the removal of
“stop words” from input text before any feature ex-
traction. Lists of stop words typically included ele-
ments of the functional lexicon such as articles (e.g.
a, the), pronouns (e.g. it, they, you), prepositions
(e.g. at, in) and similar words. At the subword
level, stemming was used to remove suffixes (e.g.
-s in plays, toys). These steps were performed to
reduce data sparsity by separating the form from
the content so that the content could be modeled
better, which is the main goal in most tasks.

Continuous representations in neural models re-
moved the need for the function vs. content dis-
tinction, especially when large data sets are used
for training. When working with the smaller data
sets of low-resource languages, however, we expect
this distinction still to be useful, especially in the
context of cross-lingual transfer. Function units are

Figure 1: Short sentences in various languages with
function units marked in red. The examples are taken
from the SIGMORPHON 2023 Shared Task on Interlin-
ear Glossing (Ginn et al., 2023).

harder to map across languages than content units,
while being the most frequent tokens.

The representation of function units is difficult
through the lens of distributional semantics because
they do not appear in fixed contexts (Boleda, 2020).
Rather, function units tend to cooccur widely with
all other units in a language. It has been shown that
language models struggle to use function units’ em-
beddings to abstract knowledge about syntax. In-
stead, they tend to rely on previously seen, surface-
level evidence when processing information about
ideas such as tense or negation (Li and Wisniewski,
2021; Hartmann et al., 2021). Already identifying a
target language’s function units as a preprocessing
step could reduce confusion and improve the map-
ping between token vocabularies across languages.
However, such pre-processing would require ac-
cess to a target language’s functional lexicon, i.e.,
the set of all of its function words and subwords.

With the long-term goal of eventually introduc-
ing a function–content distinction as part of prepro-
cessing text data for NLP systems, we address a
prerequisite question in the present study: To what
extent can subword tokenizers be used to extract
a language’s functional lexicon from raw text
data? We assess the degree to which units such as
those marked in Figure 1 can be identified while
pre-processing the text so that they can be given
a special treatment depending on the application

7839

(e.g., they can be mapped to a special token or re-
moved). More specifically, our goal is to assess
the extent to which small BPE vocabularies contain
function units in diverse languages and whether a
specific tokenization can be used for identifying
function units without any labeled data. We show
that BPE models trained for 50 merging steps re-
sult in subword vocabularies that contain the most
prominent function units in diverse languages. We
examine the interaction between this tokenization
and NLP models on the task of Interlinear Glossing
— which implies distinguishing between lexical and
functional elements — and show the benefits of its
use for some models.

2 Related Work

The arbitrariness of subword tokenization is in-
creasingly recognized as an important problem
in NLP motivating efforts towards removing the
need for tokenization as a pre-processing step from
the NLP pipeline (Clark et al., 2022; Xue et al.,
2021). The other direction is developing meth-
ods for aligning popular subword tokenizers like
byte-pair encoding (BPE) (Sennrich et al., 2016;
Gage, 1994), SentencePiece Unigram Model (Kudo
and Richardson, 2018) or WordPiece (Schuster
and Nakajima, 2012) with linguistically meaning-
ful analyses. Sometimes linguistically motivated
tokenization improves processing (Bostrom and
Durrett, 2020; Erdmann et al., 2019; Ataman and
Federico, 2018; Ataman et al., 2017), but there is
often no clear impact (Ortega et al., 2020; Saleva
and Lignos, 2021; Scherrer et al., 2019; Banerjee
and Bhattacharyya, 2018; Vania and Lopez, 2017;
Zhu et al., 2019; Liu et al., 2020). The level of
text compression achieved by tokenizers has been
shown to impact the performance of NLP models,
especially on the tasks that involve text generation
(Gallé, 2019; Zouhar et al., 2023; Goldman et al.,
2024). The degree of compression has also been as-
sociated with the morphological types of languages
(Juola, 1998; Gutierrez-Vasques et al., 2023).

Paying attention to how the text is tokenized
seems to be especially important in languages with
richer morphology (Zevallos and Bel, 2023; Mager
et al., 2022; Park et al., 2021). More generally,
the type of script and other inherent properties of
languages have been shown to influence the tok-
enization and cause biases against some types of
languages (Ahia et al., 2023). Language-specific
tokenization gives better performance of NLP mod-

els across languages (Rust et al., 2021), but this
is hard to achieve in practice for multilingual pre-
trained models. Some efforts have been directed
towards a more balanced multilingual tokenization
via regularization (Kudo, 2018; Provilkov et al.,
2020) or sampling (The NLLB Team et al. (2022)).
Our focus on function units is intended to con-
tribute to a more uniform and balanced tokenization
across languages, exploiting a high-level binary
distinction highly relevant to describing languages
with glossed examples1 but also to linguistic theory
(Rizzi and Cinque, 2016).

3 Extracting True Labels from
Interlinear Glossing

Our goal is to identify function units using modern
subword tokenizers so that the same method can be
applied to any language for which there are written
texts. To evaluate the proposed methods, we need
samples of segmented texts annotated with true
labels showing whether each subword unit belongs
to the functional lexicon or not.

Glossed linguistic examples contain most of
the information that we need for our experiments.
Glosses are traditionally used when describing lan-
guages to show how sentences are structured. They
represent sentences segmented into subword units.
Each subword unit is annotated to show its mean-
ing (if the unit is lexical) or its form (if the unit
is an element of the functional lexicon). Glosses
for function units are special codes, usually written
in capital letters, signaling grammatical categories.
For example, the short sentence in Gitksan2 in Fig-
ure 1 is glossed in the following way:

Morphemes ii n gya’a -hl xadaa
Glosses CONJ 1.I see -CN moose
Function Yes Yes No Yes No
Text Ii na gya’ahl xadaa
Translation And I saw the moose

To obtain the annotation of function units, we
add another line of annotations (Function) to the
data format that is provided in the glossed sentence.
The mapping from the glosses to the binary labels
(function unit or not) is created semi-automatically.
Several rules and heuristics were written into a
Python script to identify glosses that were represen-
tative of function units. First, we seek out glosses
that were entirely written in capital letters, digits

1https://www.eva.mpg.de/lingua/pdf/
Glossing-Rules.pdf

2This example is adapted from the SIGMORPHON 2023
Shared Task on Interlinear Glossing (Ginn et al., 2023), which
is the main source of the data for all our experiments.

7840

https://www.eva.mpg.de/lingua/pdf/Glossing-Rules.pdf
https://www.eva.mpg.de/lingua/pdf/Glossing-Rules.pdf

and periods or any combination of these three types
of symbols (e.g. “NEG”, “PAST”, “2S.SUB”). This
was not enough because some function units that
would be included in a list of stop words are some-
times glossed with English words instead of special
codes. For instance, this can happen with auxiliary
verbs, pronouns, prepositions, interjections, and
conjunctions. We identified such cases with a hard-
coded list of function words adapted from Tang
(2020) and classified them as function units. The
output for each language was manually reviewed
by a human annotator.

4 Productivity Analysis of BPE Subword
Units

To isolate a language’s function units, we rely on a
productivity analysis of subword units created by a
tokenizer. In short, we test the hypothesis that the
most productive subword units are function units
and that we can define a productivity threshold ζ
that can identify function units in any language.
Though we use annotated data here to evaluate
various productivity thresholds, we aim to find a
value of ζ that is applicable cross-linguistically so
that a language’s function units can be identified
with just unlabeled text data.

Our approach is inspired by previous work show-
ing that, cross-linguistically, texts are maximally
compressed by applying a BPE model trained to
carry out between 200 and 300 merges (Gutierrez-
Vasques et al., 2021). A productivity analysis of the
units created in the first 350 merges can be used to
cluster typologically similar languages (Gutierrez-
Vasques et al., 2023). For instance, languages with
the highest productivity score of the BPE subword
units created in the first 350 steps are Kalaallisut,
Barasano, Apurinã and Alamblak, all classified in
linguistic typology as polysynthetic and concate-
native languages. Languages whose subword units
created in the first 350 BPE steps get the lowest
productivity score (i.e., Vietnamese, Thai, Sango
and Yoruba) are classified in linguistic typology as
analytic and mostly isolating. Between, we find
synthetic languages such as French, Persian, Greek
and Russian with medium productivity scores.

Assuming that these typological distinctions
found in the productivity values of BPE subwords
capture, at least approximately, some formal prop-
erties of languages, we try to exploit these prop-
erties for identifying function units. We thus con-
duct a productivity analysis similar to Gutierrez-

Vasques et al. (2023) but with some modifications.
We define two versions of the productivity score
depending on how we define the context of BPE
subwords.

In the first version, the context is the word in
which a given subword is found. This productivity
score is the number of unique words w in the set of
all space-separated words W that contain a given
BPE vocabulary item v after w is tokenized.

In the second version, we define the context more
generally as a unique sequence of three subword
units (trigram). To do this, we first tokenize each
sentence with BPE, resulting in a sequence of sub-
words such as the Uspanteko sentence below, tok-
enized with a BPE model trained to carry out 200
merges:

e -chaq g -a -l -aa -n -i' ri -ch -oo -chaq juntiir

We then create overlapping subword trigrams for
each sentence, resulting in the following for the
above sentence:3

e -chaq g
-chaq g -a

g -a -l
-a -l -aa ...

Once we have the set of subword trigrams T , the
productivity score is the number of unique trigrams
that contain a subword unit v.

The advantage of this second, trigram-based pro-
ductivity definition is that it also assigns a high pro-
ductivity to function words (when the BPE token
is a whole word), which are highly unproductive
under the first definition. Take, for example, the
function word and in English. In the word-level
definition of productivity, and would be assigned a
low productivity, as it is unlikely to occur in many
unique words. In a trigram context, however, and
would presumably have a very high productivity if
it were part of the BPE vocabulary, as it is likely to
occur in many unique subword contexts.

The two versions of the productivity score can
be formally described as follows:

productivityWORD(v) = |{w ∈ W |v ∈ w}|
productivityTRIGRAM (v) = |{t ∈ T |v ∈ t}|

Standardized productivity scores To make vari-
ous productivity scores comparable across the mea-
sures and different experimental settings, we center
and scale the values so that the distribution of the

3We do not consider trigrams that cross sentence bound-
aries, as the sentences in the corpus are not necessarily related.

7841

Name ISO 639-3 Area Data size

Arapaho arp North America 39,501
Gitksan git North America 31
Lezgi(an) lez Eurasia 701
Natügu ntu Papunesia 791
Nyangbo nyb Africa 2,100
Tsez ddo Eurasia 3,558
Uspanteko usp North America 9,774

Table 1: Overview of the SIGMORPHON data sets.
Data size is the number of glossed sentences in the
training set.

scores in each given setting has a mean of zero and
standard deviation of one.

5 Experiments

For all our experiments, we use the data from all
seven languages included in SIGMORPHON 2023
Shared Task on Interlinear Glossing (Ginn et al.,
2023) listed in Table 1. We train various versions of
the BPE tokenizer using the subword-nmt library4

on unsegmented texts (as shown in Figure 1).5

5.1 Classification of Function Units

For each of the seven languages in our data, we
establish a set of function units, F , by classifying
morphemes (words or parts of words) as functional
or not based on their interlinear glossing. For ex-
ample, the set F that would be created using the
Gitksan example in Section 3 would contain the
items Li, n, and hl. The set F corresponds to each
language’s functional lexicon.

Using the combined training and development
sets of each language in Table 1, we train BPE
models that carry out 50–350 merges with a step
size of 50. For reference, we also test the classifica-
tion capability of the character-segmented corpus,
which we refer to as “0 merges.” We then apply
each of these models to languages’ train, develop-
ment, and test sets. Note that our maximal number
of merges is far fewer than typically carried out in
NLP, but this is what allows us to spot the most
frequent subword units whose productivity analysis
revealed typological differences between languages
(see Section 4). For each BPE model, we evaluate

4https://github.com/rsennrich/subword-nmt
5We also experimented with the SentencePiece Unigram

Model, but we report only the BPE experiments because the
main findings did not change. The WordPiece tokenizer was
tested by Gutierrez-Vasques et al. (2023) also without impact-
ing the main findings.

how many subword tokens correspond to function
units.

We use the standardized productivity threshold
ζ (see Section 4) to classify BPE subword units
as belonging to the set F or not. We calculate the
productivity of each BPE vocabulary item using
word and trigram frequencies from the tokenized
test corpora, which were not used to train the BPE
models. Recall that we expect items with higher
productivity to be better candidates. We explore
the range of ζ values between [–5, 5] with a step
size of 0.1. To calculate precision and recall in
each case, we apply the following definitions:

True Positive: v ∈ F ∧ productivity(v) > ζ

False Positive: v /∈ F ∧ productivity(v) > ζ

False Negative: v ∈ F ∧ productivity(v) ≤ ζ

Taking these definitions, we can compute recall,
precision, and F1 scores for any given version of
the BPE tokenization and any productivity thresh-
old ζ. For our purposes, a high recall indicates
that among the function units in a language’s BPE
vocabulary, a large proportion have productivities
above ζ. When precision is high for some ζ, it
indicates that most of the subword units with the
productivity above ζ are indeed function units.

Single characters When text is tokenized using
BPE models with few merges, many tokens are
single characters. The productivity value of single
characters will be high because they tend to appear
in a large number of unique contexts, but only some
of them will be function units. Upon observing the
most productive subword vocabulary units in each
language we found that, except for Arapaho (the
language with the most data), single character vo-
cabulary items were indeed the majority of the 15
most productive units in our sample. A potentially
useful simplification would be to ignore all single
characters (classify them all as not functional) and
consider only the units merged by BPE as func-
tion units candidates. With this simplification, we
might see less confusion, but we are sure to miss
single-character function units. We thus report the
results in two settings: with and without single
characters.

Random Baselines We establish two random
baselines against which we compare our approach
to classifying function units. In the naive base-
line, we take the BPE vocabulary for a language
at some merge and randomly assign each item the
label “functional” or “not functional” with equal

7842

https://github.com/rsennrich/subword-nmt

probability (p = 0.5). In the hard baseline, we do
the same random labeling using the probability that
a unit in the original morphological segmentation
of a language’s corpus is functional. For instance,
in the Lezgi interlinear glossing data, we found
that 63.8% of the morphemes were function units;
therefore, we use a value of p = 0.638 to assign the
labels for Lezgi’s hard baseline. Using the labels
assigned in both baselines, we calculate F1 scores
for comparison to the rest of our classification con-
ditions.

5.2 Testing Models for Automatic Interlinear
Glossing

To see how our tokenization analysis might interact
with NLP models, we turn to the task of automatic
interlinear glossing as defined in the 2023 SIG-
MORPHON Shared Task (GlossingST). We train
and test four different model architectures on all
the languages included in the task. For each model,
we compare a base setting with character-level to-
kenization to a BPE tokenization setting based on
our analysis. We use the predefined data splits.

On the one hand, GlossingST is similar to our un-
supervised task of classifying function units in that
the systems might be using an inherent (implicit)
distinction between the two types of tokens to learn
the mapping between input text and glosses. But
GlossingST is harder than our unsupervised clas-
sification task because we predict only a sequence
of binary labels, while the models need to output
full glosses. On the other hand, glossing models
might learn to convert input text into the output la-
bels without necessarily learning to segment words
in any specific way, while our prediction is de-
termined by a given subword tokenization, which
results in segmenting words in a specific way.

5.2.1 Models

We start with the winner of shared the task, the
TÜ-CL submission (Girrbach, 2023; Ginn et al.,
2023).6 This model encodes the input tokens with
a bi-directional LSTM. The LSTM representations
of characters are used to form longer subword units
by unsupervised clustering. These units represent
a segmentation of words into morphemes. A multi-
layer perceptron is then used to predict a gloss for
each predicted morpheme in the input word. All
weights are learned end-to-end so that the subword

6https://github.com/LGirrbach/
sigmorphon-2023-glossing

units formed by unsupervised clustering maximize
the final performance on glosses.

The next architecture that we consider is sta-
tistical machine translation (SMT). This method
is well suited for monotonic character-level trans-
duction tasks (Bollmann, 2019; Kuparinen et al.,
2023) and works well with relatively small data
sets. Since some of the languages in GlossingST
are represented with only tens of sentences, SMT
may outperform more sophisticated neural architec-
tures. In our experiments, we use the Moses SMT
toolkit (Koehn et al., 2007) for translation mod-
eling, eflomal (Östling and Tiedemann, 2016) for
word alignment, KenLM (Heafield, 2011) for lan-
guage modelling and MERT for tuning the model
weights. We train a single 10-gram language model
for all seven languages, and disable distortion to
force monotonicity.

Finally, we try two versions of DeepSPIN mod-
els (Peters and Martins, 2022), DeepSPIN-2 and
DeepSPIN-3, which achieved particularly good
results in tasks involving subword analyses and
tokenization (Zevallos and Bel, 2023). DeepSPIN-
2 is a bi-directional LSTM encoder and decoder,
while DeepSPIN-3 uses a transformer architecture.
The characteristic feature of the DeepSPIN mod-
els is the entmax output layer, a sparse alternative
to softmax that can assign tokens zero probability
(Peters et al., 2019). The DeepSPIN models are im-
plemented in FairSeq7 using the hyperparameters
detailed in Peters and Martins (2022).

To tokenize the glosses, we split the output se-
quences at white spaces and then again at hyphens.
Hyphens are concatenated to the left-hand por-
tion of the gloss they separated. We do not to-
kenize glosses at periods. For instance, in the
Natügu development data, the gloss "MID-say-
PDIR.YON" is tokenized into “MID-”, “say-”, and
“PDIR.YON”. Given that the TÜ-CL submission
originally removes hyphens from the output vo-
cabulary entirely and restores them during post-
processing of the model’s word-level outputs, we
edit the gloss tokenization to match the process de-
scribed above and retrain the model with the same
hyperparameters described in GitHub.

6 Results

6.1 Unsupervised Classification
Using the definitions of true and false positives and
negatives presented in Section 4, we calculate the

7https://github.com/facebookresearch/fairseq

7843

https://github.com/LGirrbach/sigmorphon-2023-glossing
https://github.com/LGirrbach/sigmorphon-2023-glossing
https://github.com/facebookresearch/fairseq

With single characters:

arp ddo git lez ntu nyb usp
0

0.2

0.4

0.6

0.8

arp ddo git lez ntu nyb usp

Merge
0
50
100
150
200
250
300
350

M
ax

 F
1

S
co

re

Word Trigram

Without single characters:

arp ddo git lez ntu nyb usp
0

0.2

0.4

0.6

0.8

arp ddo git lez ntu nyb usp

M
ax

 F
1

S
co

re

Word Trigram

Figure 2: The maximum F1 scores across all tested values of ζ for each language at seven different merges. There
are no 0 merge results in the setting without single characters.

0.0

0.2

0.4

0.6

0.8

F1

Word F1 Trigram F1

2 1 0 1 2 3 4 5
Zeta

0.2

0.4

0.6

0.8

F1

Word F1 (No Single Characters)

2 1 0 1 2 3 4 5
Zeta

Trigram F1 (No Single Characters)

50 Merges Language
Arapaho
Tsez
Gitksan
Natügu
Nyangbo
Lezghi
Uspanteko

Figure 3: F1 scores for the unsupervised classification of function units in our set of languages. Results represent
the F1 scores for the corpora tokenized with a BPE model trained to carry out 50 merges. Though we explore values
of ζ beginning at -5, the visualization begins at the lowest subword productivity that actually occurred in each
language’s tokenized corpora rather than at -5. Long horizontal lines at high thresholds are indicative of outliers
with very high productivities relative to the rest of the subwords in a language’s subword vocabulary.

7844

Baseline Word Trigram

Naive Hard ζ = −0.5 Best ζ ζ = −0.5 Best ζ

arp 0.483 (0.054) 0.533 (0.047) 0.746 0.759 0.710 0.719
ddo 0.391 (0.061) 0.438 (0.045) 0.542 0.564 0.564 0.566
git 0.417 (0.065) 0.477 (0.047) 0.568 0.579 0.578 0.578
lez 0.360 (0.054) 0.396 (0.046) 0.556 0.583 0.538 0.564
ntu 0.476 (0.055) 0.528 (0.043) 0.667 0.673 0.683 0.683
nyb 0.455 (0.061) 0.512 (0.051) 0.495 0.562 0.561 0.571
usp 0.553 (0.053) 0.657 (0.037) 0.823 0.840 0.853 0.861

Avg. 0.448 0.506 0.628 0.651 0.641 0.649

Table 2: F1 scores obtained applying the same productivity threshold (ζ = −0.5) in comparison to the language
specific maximum F1 scores (applying the language best ζ). In all the cases, the tokenizer is BPE trained to carry
out 50 merges. Baseline scores represent the average F1 over n = 500 sets of random labels in each condition, with
standard deviations in parentheses. These results include single characters.

F1 score for our classification approach at every
tested ζ for each language after applying BPE mod-
els trained to carry out 50, 100, 150, 200, 250, 300,
and 350 merges. We also calculate F1 scores for
merge 0 for the character-level corpora.

In Figure 2, we indicate the maximum F1 scores
of any ζ in each condition. We find that, with little
exception, our unsupervised classification with a
subword productivity threshold is best with the
corpora tokenized with BPE models trained to carry
out just 50 merges. As we increase the number of
BPE merges (resulting in longer subword units),
we see a drop in the maximum F1 score at a rather
similar rate across languages.

Comparing the different definitions of the con-
text used for the productivity analysis (word vs.
trigram), we do not observe much difference in
how the number of BPE merges impacts the maxi-
mum F1 score. On the other hand, excluding single
characters seems to help reach better maximum F1
scores in all the languages, and especially in those
with larger data sizes (Arapaho, Nyangbo, Tsez
and Uspanteko).

To better observe the behavior of our classifica-
tion approach at 50 BPE merges, we plot the F1
score for each language as a function of the tested
ζ in Figure 3. Here we observe that relatively sim-
ilar values of ζ yield the highest F1 score across
languages despite the differences in the overall per-
formance. Lower ζ values generally result in higher
F1 score, with a steady drop as ζ increases. Here
again, the differences between the word vs. trigram
context is very small, while excluding vs. including
single characters has a bigger impact on the overall

performance.
When we include single characters, the maxi-

mum F1 scores occur after a small increase in ζ
values. This means that the productivity analysis
helps eliminate some subword units that are not
function units from the set of candidates. After this
initial peak, we see a relatively steady performance
drop which means that increasing the productivity
threshold eliminates many units that are functional.

The picture is slightly different in the setting
without single characters, where the best perfor-
mance is usually achieved with the lowest produc-
tivity threshold. This means that the productivity
analysis is not needed at all when single characters
are excluded from the set of candidates and the best
result is obtained by classifying as functional all
subwords units merged in the first 50 BPE steps.
Excluding single characters from the set of candi-
dates gives overall better results than applying any
productivity threshold to single characters.

The main generalization in these findings is that
the best approach to identifying function units in an
unsupervised way is to tokenize a given text with
a BPE model trained to perform 50 merges and
then label as function units all subwords merged by
BPE. This approach appears equally applicable to
various kinds of languages and different data sizes.
To find single-character function units, which are
all left unrecognized in this approach, one can ap-
ply a productivity threshold but at the cost of the
overall performance. At this point, we are typically
capturing between 20 and 40 function units of a lan-
guage (see Table 6 in Appendix B). Here again, the
optimal productivity threshold appears rather simi-

7845

arp ddo git lez ntu nyb usp Average

TÜ-CL
Character 0.824 0.763 0.148 0.584 0.526 0.889 0.790 0.646
BPE-50 0.820 0.675 0.132 0.355 0.505 0.840 0.714 0.577

SMT
Character 0.669 0.709 0.052 0.536 0.549 0.857 0.678 0.579
BPE-50 0.768 0.680 0.052 0.510 0.576 0.849 0.663 0.585

DeepSpin2
Character 0.764 0.727 0.069 0.446 0.531 0.825 0.740 0.586
BPE-50 0.753 0.712 0.067 0.409 0.483 0.818 0.744 0.569

DeepSpin3
Character 0.697 0.307 0.054 0.058 0.075 0.610 0.645 0.349
BPE-50 0.708 0.325 0.131 0.071 0.140 0.672 0.621 0.381

Table 3: F1 scores for automatic interlinear glossing of corpora’s function units. BPE-50 refers to the input corpora
having been tokenized by monolingual BPE models trained to carry out 50 merges.

lar across languages. Table 2 shows that applying
a single threshold to all languages (averaging the
best language specific thresholds to ζ = −0.5) the
performance remains very close to the language-
specific maximum (cf. Tables 4 and 5 in Appendix
B). Table 2 also indicates that even when we use
this single threshold rather than the threshold that
yields the best F1 score for a language, our ap-
proach still outperforms the naive and hard random
baselines for every language but one (Nyangbo us-
ing word-level productivity). The above results are
based on productivity scores calculated from the
test set word and trigram frequencies, though we
note that calculating the productivitiy scores from
the combined train and development sets yields
similar results (see Figure 4 in Appendix B).

6.2 Interlinear Glossing Models

Having established that BPE tokenization with a
model trained to perform 50 merges (BPE-50) gives
the best results in unsupervised classification of
function units, we test if this tokenization can help
interlinear glossing models in predicting the func-
tional part of the glosses. We evaluate models using
the GlossST evaluation script, which we edit to in-
clude an additional measure of the F1 score over
the glosses that we labeled as functional.8

Table 3 shows a comparison between F1 scores
on function units that the models achieve with their
base character-level tokenization and the scores
achieved using the BPE-50 tokenization. We find
that the BPE-50 tokenization helps DeepSpin-3
on all languages except Uspanteko. It also results
in an average improvement across languages for
SMT. For TÜ-CL and DeepSpin-2, character-level

8The original evaluation script is available here: https:
//github.com/sigmorphon/2023glossingST

tokenization resulted in higher F1 scores than BPE-
50 on average. Regardless of the evaluation metric,
the TÜ-CL model with character-level tokenization
has the best overall performance.

For reference, overall accuracy is presented in
Tables 8 and 9 in Appendix C. The same trend is
reflected in these metrics as the F1 scores over the
function units: BPE-50 results in the best average
scores for SMT and DeepSpin-3, while character
level input results in the best average scores for
DeepSpin-2 and the TÜ-CL model.

7 Discussion

In this study, we set out to quantify how sensitive
BPE is to the function–content distinction. We do
so with the goal of introducing this distinction to
models during preprocessing. We find that, when
using BPE models trained to carry out relatively
few merges (namely, 50), many function units of a
language can be identified in tokenized corpora by
analyzing the units’ productivity.

With respect to the distinction between trigram
and word-based definitions of productivity, our re-
sults seem to indicate that there is not a substantial
difference between the two definitions. Regardless
of whether we include single characters, Tables 4
and 5 (Appendix B) indicate that both productivity
definitions result in similar maximum F1 scores at
50 merges, and that the maximum occurs using a
similar threshold. This lack of difference could be
related to the selection of languages in our sample,
as Ginn et al. (2023) note that all of them demon-
strate synthetic morphology to some degree. As for
the difference in results when we do and do not in-
clude single characters in our calculations, we see
that while the maximum F1 scores are higher on av-
erage for the conditions without single characters,

7846

https://github.com/sigmorphon/2023glossingST
https://github.com/sigmorphon/2023glossingST

there is less stability with respect to the threshold
ζ at which these maxima occur.

Concerning the results on interlinear glossing,
we see that our tokenization — which we used with
the intention of including function units in the input
data to the models — resulted in higher average per-
formance in glossing function units for the SMT
model and the DeepSPIN-3 model. The reason
why we do not see improvements with the TÜ-CL
model might be the fact that this model learns to
segment the input words according to what will
maximize the score on the final gloss predictions
for each segment. With the BPE-50 tokenization,
the smallest units in the segments of each word
become subwords rather than characters. It is then
possible that with BPE-50 rather than character
input, we sometimes initialize the clusters that it
learns to make in a way that actually hurts the
glossing performance, perhaps because the BPE
segmentation does not always occur at morpholog-
ically relevant positions. Still, other studies have
shown that using relatively small BPE vocabularies
can be beneficial for performance in down-stream
tasks. For instance, in training multilingual models
for translation of Spanish to eleven indigenous lan-
guages, Attieh et al. (2024) found that using small,
monolingual BPE models (trained to carry out 300
merges) outperformed the same model trained on
a larger joint vocabulary. Moreover, Amrhein and
Sennrich (2021) found that using relatively small
vocabulary units (vocabulary sizes of 500) yielded
improvements in the translation of instances of non-
concatenative morphology, such as vowel harmony
and reduplication.

8 Conclusion

In the present study, we explore the extent to which
a BPE tokenizer can be used to extract a language’s
functional lexicon without any annotated data. Our
experiments on using a productivity analysis over
languages’ BPE subword vocabularies to find the
function units ultimately led us to conclude that
simply applying BPE models trained to carry out
50 merges is the best way to obtain a sample of
a language’s function units from BPE regardless
of the morphological type of the language and the
amount of available data. This method is not per-
fect, as it yields some false positives and leaves
quite a few function units unrecognized. However,
it is unsupervised and equally applicable across
diverse languages.

Introducing a large portion of function units in
the input by tokenizing the text with a language-
specific BPE model trained for 50 steps improved
the performance of some models on the task of
interlinear glossing. In future applications, we
hope to explore how we might treat those func-
tion units differently during preprocessing in an
effort to improve the models’ representations for
different tasks.

Limitations

A key limitation of the method presented is that
it does not identify all of a given language’s func-
tional lexicon, especially as far as single-character
function units are concerned. In Appendix A, we
define a metric to evaluate the total proportion of
a language’s functional lexicon that have been cor-
rectly classified (“propF ”). As seen in Tables 4
and 5 (Appendix B), we can usually accurately
classify less than a fifth of the languages’ unique
function units. Still, it is likely that the function
units that are captured by BPE at these early merges
are among the language’s most frequent function
units. Given the Zipfian distribution of word fre-
quencies, this would mean that a large portion of all
the function units in a corpus is still being classified
correctly. Indeed, when we look at the proportion
of all function tokens (rather than unique function
types) correctly classified in each language’s test
set, we see that this is the case (see Appendix B,
Table 7).

Due to the scarcity of interlinear glossing data,
our experiments include only languages with alpha-
betic scripts with relatively limited typological and
areal scope. Our findings thus might not generalize
to all languages.

Acknowledgments

This work has been supported by the Academy of
Finland through project No. 342859 “CorCoDial
– Corpus-based computational dialectology”. The
authors wish to acknowledge CSC – IT Center for
Science, Finland, for computational resources.

References
Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo

Kasai, David Mortensen, Noah Smith, and Yulia
Tsvetkov. 2023. Do all languages cost the same?
tokenization in the era of commercial language mod-
els. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing,

7847

https://doi.org/10.18653/v1/2023.emnlp-main.614
https://doi.org/10.18653/v1/2023.emnlp-main.614
https://doi.org/10.18653/v1/2023.emnlp-main.614

pages 9904–9923, Singapore. Association for Com-
putational Linguistics.

Chantal Amrhein and Rico Sennrich. 2021. How suit-
able are subword segmentation strategies for translat-
ing non-concatenative morphology? In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 689–705, Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Duygu Ataman and Marcello Federico. 2018. An evalu-
ation of two vocabulary reduction methods for neural
machine translation. In Proceedings of the 13th Con-
ference of the Association for Machine Translation
in the Americas (Volume 1: Research Track), pages
97–110.

Duygu Ataman, Matteo Negri, M. Turchi, and Marcello
Federico. 2017. Linguistically motivated vocabulary
reduction for neural machine translation from Turk-
ish to English. The Prague Bulletin of Mathematical
Linguistics, 108:331 – 342.

Joseph Attieh, Zachary Hopton, Yves Scherrer, and
Tanja Samardžić. 2024. System description of the
NordicsAlps submission to the AmericasNLP 2024
machine translation shared task. In Proceedings of
the 4th Workshop on Natural Language Processing
for Indigenous Languages of the Americas (Americ-
asNLP 2024), pages 150–158, Mexico City, Mexico.
Association for Computational Linguistics.

Tamali Banerjee and Pushpak Bhattacharyya. 2018.
Meaningless yet meaningful: Morphology grounded
subword-level NMT. In Proceedings of the second
workshop on subword/character level models, pages
55–60.

Gemma Boleda. 2020. Distributional semantics and
linguistic theory. Annual Review of Linguistics,
6(1):213–234.

Marcel Bollmann. 2019. A large-scale comparison of
historical text normalization systems. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3885–3898, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kaj Bostrom and Greg Durrett. 2020. Byte pair encod-
ing is suboptimal for language model pretraining. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 4617–4624, Online.
Association for Computational Linguistics.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion. Transactions of the Association for Computa-
tional Linguistics, 10:73–91.

Alexander Erdmann, Salam Khalifa, Mai Oudah, Nizar
Habash, and Houda Bouamor. 2019. A little linguis-
tics goes a long way: Unsupervised segmentation

with limited language specific guidance. In Pro-
ceedings of the 16th Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 113–124.

Philip Gage. 1994. A new algorithm for data compres-
sion. The C Users Journal, 12(2):23–38.

Matthias Gallé. 2019. Investigating the effectiveness of
BPE: The power of shorter sequences. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 1375–1381, Hong
Kong, China. Association for Computational Linguis-
tics.

Michael Ginn, Sarah Moeller, Alexis Palmer, Anna
Stacey, Garrett Nicolai, Mans Hulden, and Miikka
Silfverberg. 2023. Findings of the SIGMORPHON
2023 shared task on interlinear glossing. In Pro-
ceedings of the 20th SIGMORPHON workshop on
Computational Research in Phonetics, Phonology,
and Morphology, pages 186–201, Toronto, Canada.
Association for Computational Linguistics.

Leander Girrbach. 2023. Tü-CL at SIGMORPHON
2023: Straight-through gradient estimation for hard
attention. In Proceedings of the 20th SIGMORPHON
workshop on Computational Research in Phonet-
ics, Phonology, and Morphology, pages 171–185,
Toronto, Canada. Association for Computational Lin-
guistics.

Omer Goldman, Avi Caciularu, Matan Eyal, Kris Cao,
Idan Szpektor, and Reut Tsarfaty. 2024. Unpacking
tokenization: Evaluating text compression and its cor-
relation with model performance. In Findings of the
Association for Computational Linguistics ACL 2024,
pages 2274–2286, Bangkok, Thailand and virtual
meeting. Association for Computational Linguistics.

Ximena Gutierrez-Vasques, Christian Bentz, and Tanja
Samardžić. 2023. Languages through the looking
glass of BPE compression. Computational Linguis-
tics, 49(4):943–1001.

Ximena Gutierrez-Vasques, Christian Bentz, Olga Sozi-
nova, and Tanja Samardzic. 2021. From characters
to words: the turning point of BPE merges. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 3454–3468, Online.
Association for Computational Linguistics.

Mareike Hartmann, Miryam de Lhoneux, Daniel Her-
shcovich, Yova Kementchedjhieva, Lukas Nielsen,
Chen Qiu, and Anders Søgaard. 2021. A multilingual
benchmark for probing negation-awareness with min-
imal pairs. In Proceedings of the 25th Conference on
Computational Natural Language Learning, pages
244–257, Online. Association for Computational Lin-
guistics.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth

7848

https://doi.org/10.18653/v1/2021.findings-emnlp.60
https://doi.org/10.18653/v1/2021.findings-emnlp.60
https://doi.org/10.18653/v1/2021.findings-emnlp.60
https://doi.org/10.18653/v1/2024.americasnlp-1.18
https://doi.org/10.18653/v1/2024.americasnlp-1.18
https://doi.org/10.18653/v1/2024.americasnlp-1.18
https://doi.org/10.18653/v1/N19-1389
https://doi.org/10.18653/v1/N19-1389
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.18653/v1/D19-1141
https://doi.org/10.18653/v1/D19-1141
https://doi.org/10.18653/v1/2023.sigmorphon-1.20
https://doi.org/10.18653/v1/2023.sigmorphon-1.20
https://doi.org/10.18653/v1/2023.sigmorphon-1.19
https://doi.org/10.18653/v1/2023.sigmorphon-1.19
https://doi.org/10.18653/v1/2023.sigmorphon-1.19
https://doi.org/10.18653/v1/2024.findings-acl.134
https://doi.org/10.18653/v1/2024.findings-acl.134
https://doi.org/10.18653/v1/2024.findings-acl.134
https://doi.org/10.1162/coli_a_00489
https://doi.org/10.1162/coli_a_00489
https://doi.org/10.18653/v1/2021.eacl-main.302
https://doi.org/10.18653/v1/2021.eacl-main.302
https://doi.org/10.18653/v1/2021.conll-1.19
https://doi.org/10.18653/v1/2021.conll-1.19
https://doi.org/10.18653/v1/2021.conll-1.19
https://aclanthology.org/W11-2123
https://aclanthology.org/W11-2123

Workshop on Statistical Machine Translation, pages
187–197, Edinburgh, Scotland. Association for Com-
putational Linguistics.

Patrick Juola. 1998. Measuring linguistic complexity:
The morphological tier. Journal of Quantitative Lin-
guistics, 5(3):206–213.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic. Association
for Computational Linguistics.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Olli Kuparinen, Aleksandra Miletić, and Yves Scherrer.
2023. Dialect-to-standard normalization: A large-
scale multilingual evaluation. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2023, pages 13814–13828, Singapore. Association
for Computational Linguistics.

Bingzhi Li and Guillaume Wisniewski. 2021. Are neu-
ral networks extracting linguistic properties or mem-
orizing training data? an observation with a multi-
lingual probe for predicting tense. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 3080–3089, Online. Association for
Computational Linguistics.

Christopher Liu, Laura Dominé, Kevin Chavez, and
Richard Socher. 2020. Central Yup’ik and machine
translation of low-resource polysynthetic languages.
arXiv preprint arXiv:2009.04087.

Manuel Mager, Arturo Oncevay, Elisabeth Mager,
Katharina Kann, and Thang Vu. 2022. BPE vs. mor-
phological segmentation: A case study on machine
translation of four polysynthetic languages. In Find-
ings of the Association for Computational Linguistics:
ACL 2022, pages 961–971, Dublin, Ireland. Associa-
tion for Computational Linguistics.

John E Ortega, Richard Castro Mamani, and Kyunghyun
Cho. 2020. Neural machine translation with a
polysynthetic low resource language. Machine Trans-
lation, 34(4):325–346.

Robert Östling and Jörg Tiedemann. 2016. Effi-
cient word alignment with Markov Chain Monte
Carlo. Prague Bulletin of Mathematical Linguistics,
106:125–146.

Hyunji Hayley Park, Katherine J Zhang, Coleman Ha-
ley, Kenneth Steimel, Han Liu, and Lane Schwartz.
2021. Morphology matters: A multilingual language
modeling analysis. Transactions of the Association
for Computational Linguistics, 9:261–276.

Ben Peters and Andre FT Martins. 2022. Beyond char-
acters: Subword-level morpheme segmentation. In
Proceedings of the 19th SIGMORPHON Workshop
on Computational Research in Phonetics, Phonology,
and Morphology, pages 131–138.

Ben Peters, Vlad Niculae, and André F. T. Martins. 2019.
Sparse sequence-to-sequence models. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 1504–1519, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882–1892, Online. Association for
Computational Linguistics.

Luigi Rizzi and Guglielmo Cinque. 2016. Functional
categories and syntactic theory. Annual Review of
Linguistics, 2(1):139–163.

Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder,
and Iryna Gurevych. 2021. How good is your tok-
enizer? on the monolingual performance of multilin-
gual language models. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3118–3135, Online. Association
for Computational Linguistics.

Jonne Saleva and Constantine Lignos. 2021. The ef-
fectiveness of morphology-aware segmentation in
low-resource neural machine translation. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Student Research Workshop, pages 164–174, Online.
Association for Computational Linguistics.

Yves Scherrer, Raúl Vázquez, and Sami Virpioja.
2019. The University of Helsinki submissions to
the WMT19 similar language translation task. In
Proceedings of the Fourth Conference on Machine
Translation (Volume 3: Shared Task Papers, Day 2),
pages 236–244.

7849

https://aclanthology.org/P07-2045
https://aclanthology.org/P07-2045
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2023.findings-emnlp.923
https://doi.org/10.18653/v1/2023.findings-emnlp.923
https://doi.org/10.18653/v1/2021.eacl-main.269
https://doi.org/10.18653/v1/2021.eacl-main.269
https://doi.org/10.18653/v1/2021.eacl-main.269
https://doi.org/10.18653/v1/2021.eacl-main.269
https://doi.org/10.18653/v1/2022.findings-acl.78
https://doi.org/10.18653/v1/2022.findings-acl.78
https://doi.org/10.18653/v1/2022.findings-acl.78
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
https://doi.org/10.18653/v1/P19-1146
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.eacl-srw.22
https://doi.org/10.18653/v1/2021.eacl-srw.22
https://doi.org/10.18653/v1/2021.eacl-srw.22

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and Korean voice search. In 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5149–5152. IEEE.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Warren Tang. 2020. 6. The Development of a Functional
Function Word List from Form and Meaning. Ph.D.
thesis, Fukuyama University.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Rop-
ers, Safiyyah Saleem, Holger Schwenk, and Jeff
Wang. 2022. No language left behind: Scal-
ing human-centered machine translation. Preprint,
arXiv:2207.04672.

Clara Vania and Adam Lopez. 2017. From characters
to words to in between: Do we capture morphology?
arXiv preprint arXiv:1704.08352.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2021. ByT5: Towards a token-free
future with pre-trained byte-to-byte models. arXiv
preprint arXiv:2105.13626.

Rodolfo Zevallos and Nuria Bel. 2023. Hints on the
data for language modeling of synthetic languages
with transformers. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12508–
12522, Toronto, Canada. Association for Computa-
tional Linguistics.

Yi Zhu, Ivan Vulić, and Anna Korhonen. 2019. A
systematic study of leveraging subword information
for learning word representations. arXiv preprint
arXiv:1904.07994.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du,
Mrinmaya Sachan, and Ryan Cotterell. 2023. To-
kenization and the noiseless channel. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5184–5207, Toronto, Canada. Association for
Computational Linguistics.

7850

https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://doi.org/10.18653/v1/2023.acl-long.699
https://doi.org/10.18653/v1/2023.acl-long.699
https://doi.org/10.18653/v1/2023.acl-long.699
https://doi.org/10.18653/v1/2023.acl-long.284
https://doi.org/10.18653/v1/2023.acl-long.284

A Calculating the Proportion of all Function Units Correctly Classified

Given that we would like to know the proportion of all of a language’s function units above the threshold
ζ (not just the proportion of function units in the BPE vocabulary above the threshold), we define another
metric, propF , as follows:

propF =
|True Positives|

|F | (1)

A higher propF indicates that a larger portion of all the units in a language’s set of function units F
was correctly classified, regardless of how many function units were in the BPE vocabulary.

B Additional Function Unit Classification Results

Max F1 ζ at Max F1 Precision at Max F1 Recall at Max F1 propF

Word

arp 0.759 -0.2 0.710 0.815 0.033
ddo 0.564 -0.6 0.403 0.939 0.082
git 0.579 -0.4 0.458 0.786 0.203
lez 0.583 -0.4 0.455 0.811 0.088
ntu 0.673 -0.4 0.603 0.760 0.157
nyb 0.562 -0.7 0.391 1.0 0.169
usp 0.840 -0.6 0.797 0.887 0.056

Average 0.651 -0.471 0.545 0.857 0.113

Trigram

arp 0.719 -0.6 0.63 0.836 0.033
ddo 0.566 -0.6 0.405 0.941 0.082
git 0.578 -0.5 0.444 0.828 0.203
lez 0.564 -0.4 0.437 0.795 0.088
ntu 0.683 -0.5 0.575 0.84 0.157
nyb 0.571 -0.6 0.400 1.0 0.169
usp 0.861 -0.6 0.787 0.952 0.056

Average 0.649 -0.543 0.525 0.885 0.113

Table 4: Classifier evaluation for corpora tokenized with a BPE model trained to carry out 50 merges. This condition
includes single-character function units in the calculations.

Max F1 ζ at Max F1 Precision at Max F1 Recall at Max F1 propF

Word

arp 0.884 -1.7 0.792 1.0 0.024
ddo 0.548 -1.5 0.378 1.0 0.046
git 0.643 -0.7 0.474 1.0 0.141
lez 0.607 -1.2 0.447 0.944 0.044
ntu 0.838 -1.2 0.721 1.0 0.103
nyb 0.737 -1.1 0.583 1.0 0.139
usp 0.941 -1.1 0.889 1.0 0.038

Average 0.743 -1.214 0.612 0.992 0.076

Trigram

arp 0.905 -1.6 0.826 1.0 0.024
ddo 0.557 -1.2 0.386 1.0 0.046
git 0.643 -0.9 0.474 1.0 0.141
lez 0.610 -1.0 0.439 1.0 0.047
ntu 0.849 -1.1 0.738 1.0 0.103
nyb 0.747 -1.0 0.596 1.0 0.139
usp 0.952 -0.9 0.909 1.0 0.038

Average 0.752 -1.1 0.624 1.0 0.077

Table 5: Classifier evaluation for corpora tokenized with a BPE model trained to carry out 50 merges. This condition
does not include single-character function units in the calculations.

7851

With SC No SC

Word Trigram Word Trigram

arp 52 52 38 38
ddo 32 32 18 18
git 26 26 18 18
lez 34 34 17 18
ntu 47 47 31 31
nyb 34 34 28 28
usp 60 60 40 40

Average 40.714 40.714 27.143 27.286

Table 6: The count of true positives (i.e., function units above the threshold ζ) at 50 merges, using the value of ζ
that yields the highest F1 score for each language and condition.

With SC No SC

Word Trigram Word Trigram

arp 32.53 38.46 30.99 30.99
ddo 61.84 63.24 15.53 15.52
git 52.17 57.56 48.45 48.45
lez 64.68 68.23 40.66 44.09
ntu 67.67 78.06 67.92 67.93
nyb 74.55 74.55 50.08 50.08
usp 54.50 63.80 32.60 32.60

Average 58.28 63.41 40.89 41.38

Table 7: The percentage of function tokens in each language’s test set that were correctly labeled. Values represent
the corpora tokenized with BPE models trained to carry out 50 merges, and use the ζ values at which they achieve
their maximum F1 scores, detailed in Tables 4 and 5 for each condition.

With single characters:

arp ddo git lez ntu nyb usp
0

0.2

0.4

0.6

0.8

arp ddo git lez ntu nyb usp

Merge
0
50
100
150
200
250
300
350

M
ax

 F
1

S
co

re

Word Trigram

Loading [MathJax]/extensions/MathMenu.js Without single characters:

arp ddo git lez ntu nyb usp
0

0.2

0.4

0.6

0.8

arp ddo git lez ntu nyb usp

M
ax

 F
1

S
co

re

Word Trigram

Figure 4: The maximum F1 scores across all tested values of ζ for each language at seven different merges.
Productivities used for classification are calculated over each language’s combined training and development set.
There are no 0 merge results in the setting without single characters.

7852

C Additional Interlinear Glossing Results

arp ddo git lez ntu nyb usp Average

TÜ-CL
Character 76.25 75.07 9.55 59.84 50.03 87.40 71.59 61.39
BPE-50 76.15 65.85 8.54 33.67 46.77 82.44 63.79 53.89

SMT
Character 60.90 69.50 3.60 52.20 48.90 85.10 63.30 54.79
BPE-50 71.62 66.87 3.33 52.11 51.02 84.05 61.56 55.79

DeepSpin2
Character 68.28 70.59 3.62 43.66 46.49 79.81 66.39 54.12
BPE-50 67.31 68.85 3.91 40.45 42.19 78.55 67.16 52.63

DeepSpin3
Character 61.36 28.30 3.33 6.20 6.24 55.32 58.76 31.36
BPE-50 63.01 29.91 8.10 7.07 11.10 63.20 54.22 33.80

Table 8: Accuracy in glossing at the morpheme level. Values represent percentages correct.

arp ddo git lez ntu nyb usp Average

TÜ-CL
Character 77.10 80.83 16.15 78.33 78.44 85.90 73.43 70.03
BPE-50 78.03 78.00 17.97 54.06 74.16 84.39 68.98 65.08

SMT
Character 60.30 54.30 1.00 48.90 42.00 78.60 59.70 49.26
BPE-50 73.73 72.98 7.55 54.40 57.25 80.51 64.20 58.66

DeepSpin2
Character 69.88 76.62 2.34 45.49 60.13 76.44 73.10 57.71
BPE-50 70.63 74.84 2.60 41.20 50.09 75.59 73.60 55.51

DeepSpin3
Character 64.96 27.85 2.34 4.74 7.81 52.32 63.12 31.88
BPE-50 65.98 30.21 2.34 4.18 9.76 59.41 58.50 32.91

Table 9: Accuracy in glossing at the word level. Values represent percentages correct.

7853

