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Abstract

Leveraging large language models (LLMs) for
complex natural language tasks typically re-
quires long-form prompts to convey detailed
requirements and information, which results in
increased memory usage and inference costs.
To mitigate these challenges, multiple efficient
methods have been proposed, with prompt
compression gaining significant research in-
terest. This survey provides an overview of
prompt compression techniques, categorized
into hard prompt methods and soft prompt
methods. First, the technical approaches of
these methods are compared, followed by an
exploration of various ways to understand their
mechanisms, including the perspectives of at-
tention optimization, Parameter-Efficient Fine-
Tuning (PEFT), modality integration, and new
synthetic language. We also examine the down-
stream adaptations of various prompt compres-
sion techniques. Finally, the limitations of cur-
rent prompt compression methods are analyzed,
and several future directions are outlined, such
as optimizing the compression encoder, com-
bining hard and soft prompts methods, and
leveraging insights from multimodality. 1

1 Introduction

As task complexity increases, prompts become
longer for LLMs to accommodate more detailed re-
quirements, contextual information, and in-context
learning (ICL) examples. Lengthy prompts reduce
inference speed, increase memory costs, and nega-
tively impact user experience. Current methods for
improving LLM efficiency can be broadly catego-
rized into model-centric and prompt-centric meth-
ods (Wan et al., 2024). Model-centric approaches,
such as parameter pruning (Ma et al., 2023) and
quantization (Dettmers et al., 2022), focus on opti-
mizing the model itself. In contrast, prompt-centric

*Co-first authors.
1https://github.com/ZongqianLi/

Prompt-Compression-Survey

Figure 1: Illustrative examples of prompt compres-
sion methods. Hard prompt methods remove low-
information tokens or paraphrase for conciseness. Soft
prompt methods compress text into a smaller number
of special tokens, < cn >. The grids below visualize
attentions, where the y-axis represents the sequence of
tokens, and the x-axis shows the tokens they attend to.
(Bottom left) Original prompt: Each token attends to
all previous tokens. (Bottom middle) Hard prompt (fil-
tering): Each token cannot attend to previous deleted
tokens (Di). (Bottom right) Soft prompt (whole): After
the compression token (Ci) attends to all prior input to-
kens (Ii), subsequent output tokens (Oi) cannot attend
to tokens before the compression token.

methods, including prompt compression (Li et al.,
2023) and prompt design (Shin et al., 2020), aim
to improve the efficiency of LLM by lowering the
complexity of input. Prompt-centric methods typ-
ically introduce minimal or no changes to the pa-
rameters of the LLM, allowing them to be used in
a modular way. Thus, these methods, especially
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for prompt compression as shown in Figure 1, have
gained increasing attention. However, the opti-
mal architectures and underlying mechanisms of
prompt compression remain unclear, highlighting
an important area for further investigation.

This survey aims to introduce LLM prompt com-
pression to people with prior knowledge of atten-
tion mechanisms, transformers, and LLMs. Unlike
previous surveys on general efficient prompting
(Chang et al., 2024), this paper specifically focuses
on prompt compression. The preliminary knowl-
edge is introduced in Section 2, covering prompt-
ing and efficiency. This is followed by a detailed
discussion of hard prompt methods in Section 3
and soft prompt methods in Section 4. The key
elements driving the evolution of prompt compres-
sion models are examined, and insights into various
methods are provided. Their downstream adapta-
tions are discussed in Section 5 as well. Finally,
Section 6 analyzes the challenges of current prompt
compression techniques and proposes several po-
tential solutions. An overview of prompt compres-
sion methods and their downstream adaptations is
shown in Figure 2.

This survey highlights that:
• In addition to the exploration of existing prompt

compression methods, we provide our interpreta-
tion of their mechanisms: filtering or paraphras-
ing in hard prompt methods, and attention mod-
ification, PEFT, modality integration, or a new
synthetic language in soft prompt methods.

• We identify challenges in current methods, in-
cluding fine-tuning problems such as overfitting
and performance reduction, long compression
time, and the need for comparison with attention
optimization techniques.

• We propose several future directions to solve
current challenges, including optimizing the
compression encoder, combining hard and soft
prompts, and integrating insights from multi-
modality.

2 Preliminary

Prompts are important for LLMs, broadly classi-
fied into hard and soft prompts (Liu et al., 2023b).
They serve as input instructions to guide LLMs in
performing tasks such as summarization, classifica-
tion, translation, and question answering without
the need for fine-tuning (Vatsal and Dubey, 2024).
The flexibility and effectiveness of prompts lever-
age the generalization abilities of LLMs, influenced
by elements such as wording, in-context examples,

clarity, and accuracy, making prompt design an
important area (Schulhoff et al., 2024).

Prompt structures in this survey consist of two
main components: an instruction or context and
an input or question, depending on the task. The
instruction, input, output format is commonly used
in instruction fine-tuning datasets such as Alpaca
(Taori et al., 2023) and PwC (Ge et al., 2024) for
tasks such as content creation and language transla-
tion. The context, question, answer format is preva-
lent in QA and reading comprehension datasets
such as SQuAD (Rajpurkar et al., 2016), HotpotQA
(Yang et al., 2018), and RACE (Lai et al., 2017).
In few-shot scenarios, several demonstrations with
these formats are prepended at the beginning of
the prompt, which serves as additional instruc-
tion or context to guide the behavior of the LLM.
Prompts can vary significantly in length, with dif-
ferent prompt compression methods targeting some
or all of these components.

Hard prompts are natural language prompts
made up of tokens from the vocabulary set of
the LLM, corresponding to specific words or sub-
words (Sennrich et al., 2016). These prompts can
be generated by either humans or models. While
natural language prompts are interpretable and pro-
vide transparency, their inherent ambiguity can
make it difficult to fully capture intent in a con-
cise manner. This limitation reduces the utility
of hard prompts in diverse contexts and scenar-
ios. Additionally, creating effective and precise
hard prompts requires considerable human effort,
and can involve training a model to refine or op-
timize these prompts. Furthermore, variations in
hard prompts can lead to differences in LLM per-
formance for the same task.

Soft prompts are trainable, continuous vectors
that share the same dimensions as token embed-
dings in the dictionary of the LLM (Zhao et al.,
2023). Different from hard prompts, the vectors in
soft prompts are trained to convey nuanced mean-
ings that cannot be captured by discrete tokens in
the predefined vocabulary. When tuned on diverse
datasets, soft prompts are expected to help the LLM
perform well across different tasks. However, as
the dataset size grows, the computational resources
needed increase as well. Additionally, soft prompts
are less explainable by humans compared to hard
prompts, as their tokens are not directly readable.

Prompt compression aims to reduce the length
of prompts, thereby improving the efficiency of pro-
cessing LLM inputs (Wan et al., 2024). There are
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Figure 2: Tree overview of prompt compression methods and their downstream adaptions. For downstream
adaptations, compression methods not belonging to specific categories can be classified into general QA.

two primary approaches to prompt compression:
removing unnecessary or low-information content
(hard prompt methods) and learning continuous
prompt vectors of the prompt information in the
embedding space (soft prompt methods) (Chang
et al., 2024). Hard prompt methods act as a form
of filtering, still using natural language tokens, al-
though the resulting prompts may be less fluent
and grammatically correct, and can potentially gen-
eralize to LLMs with different embeddings. Soft
prompt methods, on the other hand, employ encod-
ing to convert prompt information into continuous
prompt vectors, resulting in special embeddings
that cannot be understood by humans. Different
from KV compression, prompt compression only
manipulates on the input tokens, but not changes
the KV values for the input tokens during encod-
ing. Thus, the compression ratio is calculated by
the number of original input tokens divided by the
number of compression tokens. The evaluation
of prompt compression methods typically follows
two approaches: comparing their performance un-
der the same compression ratio, or examining their
achievable compression ratios while maintaining
comparable performance levels.

3 Hard Prompt Methods

Hard prompt methods remove unnecessary tokens
from the original prompt while maintaining the use
of natural language words or sub-words (Reynolds
and McDonell, 2021). These methods are partic-
ularly useful for LLMs that only accept natural
language inputs, such as close API models, rather
than word embeddings. There are three represen-
tative hard prompt methods: SelectiveContext (Li
et al., 2023) and LLMLingua (Jiang et al., 2023)
for filtering, and Nano-Capsulator (Chuang et al.,
2024) for paraphrasing, as shown in Figure 3.

SelectiveContext identifies and deletes redun-
dant or less informative parts of an input prompt by
quantifying the informativeness of lexical units us-
ing self-information (Li et al., 2023). To maintain
text coherence, the syntactic parsing capabilities
of SpaCy2 are used to group individual tokens into
noun phrases based on dependency parsing. Se-
lectiveContext does not rely on external models
or additional parameters, and can be applied to
any model architecture. However, there are two
main disadvantages: (1) It relies on accurate phrase
boundary detection using SpaCy. (2) Currently,
there are no methods for merging verb phrases.

2https://spacy.io/api/pipeline-functions/
#merge_noun_chunks

7184

https://spacy.io/api/pipeline-functions/#merge_noun_chunks
https://spacy.io/api/pipeline-functions/#merge_noun_chunks


Figure 3: Architectures for various prompt compression models by hard prompt methods. For SelectiveContext and
LLMLingua, the bottom language models filter the prompt tokens without modifying them, serving as selection
mechanisms. In Nano-Capsulator, the bottom LLM generates a paraphrased version of the input prompt which then
serves as input for the LLM above. "SLM" means "small language model". "Close LLM" refers to closed-source
language models that only accept natural language inputs through API calls.

LLMLingua employs a smaller language model,
such as GPT-2 (Radford et al., 2019), to calculate
the self-information of content, similar to Selec-
tiveContext, and removes redundant tokens from
the natural language prompt before it is fed to the
LLM (Jiang et al., 2023). LLMLingua operates on
prompts structured as {Instruction, Input (Demon-
strations), Question}, initially selecting key demon-
strations based on self-information. It then applies
token-level filtering across the prompt, allowing for
breaking words into sub-word units and avoiding
noun phrase merging by SpaCy. For key elements
such as numbers and units, LLMLingua incorpo-
rates token preservation algorithms that prioritize
these elements within instructions and questions.
Achieving compression ratios up to 20x, the com-
pression process of LLMLingua is managed by
the smaller external language model, allowing it
to work with close LLMs. However, there are two
limitations: (1) The smaller language model re-
quires additional memory and may use a different
tokenizer than the larger LLM. (2) Since not all
prompts contain a large portion of in-context exam-
ples, it is important to differentiate between prompt
compression and in-context example selection.

Nano-Capsulator summarizes the original
prompt into a concise natural language version,
which is then input into the LLM (Chuang et al.,
2024). This process removes irrelevant informa-
tion and makes the prompt into fluent sentences.
The compression model, a fine-tuned Vicuna-7B,
operates independently of the LLM. Different from
standard summarization, Nano-Capsulator includes
a semantic preservation loss to retain key meanings
important for downstream tasks and a reward func-
tion to optimize the utility of the prompt for the
LLM. This targeted approach yields better task per-
formance by enhancing semantic relevance. How-

ever, the memory cost of the compression model
is not negligible. Additionally, the compression
process is akin to a pre-generation step, requiring
more computational resources due to the need for
additional inference rather than simple encoding.

In addition to the methods mentioned above,
general hard prompt methods include LongLLM-
Lingua, which has a longer compression window
than LLMLingua by applying document reorder-
ing and subsequence recovery (Jiang et al., 2024a),
and AdaComp, an adaptive compression method
that dynamically selects relevant documents based
on query difficulty and retrieval quality (Zhang
et al., 2024b). These general methods have been
further improved in different ways. For example,
LLMLingua-2 uses data distillation to create a com-
pressed dataset and trains a classifier to retain essen-
tial tokens (Pan et al., 2024). Both PCRL (Jung and
Kim, 2024) and TACO-RL (Shandilya et al., 2024)
apply RL for token selection: PCRL is model-
agnostic, while TACO-RL is task-specific. CPC
(Liskavets et al., 2024) and TCRA-LLM (Liu et al.,
2023a) reduce tokens by leveraging embeddings:
CPC ranks sentence relevance with context-aware
embeddings, while TCRA-LLM uses embeddings
for summarization and semantic compression.

4 Soft Prompt Methods

4.1 Architectures

Soft prompt compression methods typically con-
sist of two main components: an encoder that
compresses the prompts into a shorter sequence
of continuous special tokens and a decoder that
processes the compressed prompts to generate cor-
responding responses. As these models improve,
they show better generalization abilities, require
fewer additional trainable parameters in the origi-
nal LLMs, allow for longer prompt lengths to be
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Figure 4: Architectures for various prompt compression models by soft prompt methods. Tokens with diagonal
stripes represent the output tokens processed by the language models. Different from hard prompt methods, the
bottom LLMs in soft prompt methods process the input tokens, and their outputs (tokens with diagonal stripes)
serve as input for the LLMs above.

compressed, and achieve higher compression ra-
tios. Several common architectures for these com-
pression models are illustrated in Figure 4, includ-
ing contrastive conditioning (CC) (Wingate et al.,
2022), gist tokens (GIST) (Mu et al., 2024), Au-
toCompressor (Chevalier et al., 2023), in-context
autoencoder (ICAE) (Ge et al., 2024), 500xCom-
pressor (Li et al., 2024), xRAG (Cheng et al., 2024),
and UniICL (Gao et al., 2024)

CC is a decoder-only method that trains a shorter
soft prompt to approximate the output distribution
of a natural language prompt by minimizing the
Kullback-Leibler (KL) divergence across token se-
quences, thereby aligning with desired responses
(Wingate et al., 2022). The output distributions
are estimated through repeated sequence sampling,
with both the natural and soft prompts serving as
conditional inputs for token generation. By apply-
ing various contrastive contexts, soft prompts can
be trained to produce specific attributes, such as
enhanced sentiment, allowing for effective content
control. However, each soft prompt is uniquely
trained for a specific natural language prompt,
which limits the generalization capabilities of CC,
as new prompts require retraining from scratch.

GIST modifies the attention mechanism of the
LLM (Mu et al., 2024). Compression tokens, a
series of a new extended vocabulary token initial-
ized by specific trained values, are appended after
the original prompt tokens. While these tokens
can attend to the original prompt, newly gener-
ated tokens can only attend to the compression to-
kens, enforcing a separation in attention. This setup
can be viewed as an encoder-decoder architecture:

an LLM fine-tuned on Alpaca+ functions as the
encoder, compressing the original prompt into a
smaller set of KV values. These KV values then
serve as input to the decoder (the same fine-tuned
LLM), which generates corresponding responses.
Different from CC, GIST can compress unseen
prompts without additional fine-tuning, achieving a
compression ratio of up to 26x, though it is limited
by the maximum compressible prompt length used
in its fine-tuning dataset. Additionally, the com-
pression tokens cannot be used with the original
untuned LLM, restricting its broader applicability.

AutoCompressor shares a similar architecture
with GIST and can handle long-context prompt
compression up to 30,720 tokens (Chevalier et al.,
2023). The whole process is recursive, with the
original prompt divided into several sub-prompts.
In each iteration, the sub-prompt is compressed into
a small set of continuous prompt vectors, which are
then passed to the next iteration along with a new
sub-prompt for further compression. This contin-
ues until all the encoded embeddings are collected,
representing the information from the entire origi-
nal prompt. While AutoCompressor increases the
maximum prompt length that can be compressed,
the training process is time-consuming, and the
compression tokens cannot be used by the original
untuned LLM.

ICAE increases the compression length and uses
the frozen LLM as the decoder (Ge et al., 2024). It
compresses long, information-rich contexts into a
small number of continuous prompt vectors, which
are then used for QA. Unlike GIST, which com-
presses low-information texts of around 30 tokens
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focused on questions and instructions, ICAE can
handle detailed contexts. The question itself re-
mains uncompressed, and the answer is generated
based on the compressed context and the uncom-
pressed question. Since the decoder is frozen, the
compression tokens can be used directly with the
original LLM without fine-tuning. ICAE com-
presses up to 512 tokens into 32, 64, or 128 continu-
ous vectors, achieving compression ratios between
4x and 16x. By concatenating multiple groups of
encoded embeddings, ICAE can handle up to 5,120
tokens. However, its compression ratio decreases
compared to GIST. In addition, ICAE is trained
and tested on the Pile dataset (Gao et al., 2020b),
which may overlap with the training corpus of the
LLM, raising concerns about potential data leakage
and the possibility of retrieving answers from the
memory of the LLM.

500xCompressor explores prompt compression
at high compression ratios while maintaining the
compression length limit of ICAE (Li et al., 2024).
Similar to ICAE, 500xCompressor employs train-
able LoRA parameters (Gao et al., 2020a) in the
encoder, while keeping the original LLM frozen
in the decoder. However, different from ICAE,
500xCompressor feeds the decoder with the KV
pairs of the compression tokens rather than the
continous vectors themselves. These KV pairs
keep more detailed information than embedding
vectors, especially under high compression ratios.
500xCompressor uses a small number of tokens
(1-16) to compress longer sequences (up to 480
tokens), achieving compression ratios from 6x to
480x, while retaining more than 60-70% of the
capabilities of the uncompressed prompts. More-
over, the test set ArxivQA, generated from arXiv
abstracts from January to April 2024, ensures eval-
uation on strictly unseen data, mitigating poten-
tial data leakage. Though 500xCompressor col-
lects the KV pairs for the compression tokens, it
does not modify them, thus 500xCompressor is a
prompt compression method not a KV compression
method.

xRAG uses a frozen embedding model as the en-
coder, with only an adapter, positioned between the
encoder and the decoder LLM, containing trainable
parameters (Cheng et al., 2024). Although primar-
ily designed for Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020), the task of xRAG re-
mains a QA task, making it applicable as a general
prompt compression method. xRAG proves that
current embedding models can compress informa-

tion into a single token for QA tasks. While several
embedding models were tested in the original pa-
per, the final choice was SFR-Embedding-Mistral
(Meng et al., 2024), which is still based on the
LLM and requires substantial memory. As a result,
xRAG needs to load two LLMs and a projector,
whereas ICAE and 500xCompressor only need to
load a single LLM and a set of LoRA parameters.

UniICL focuses on compressing the demonstra-
tions component of the input prompt, leaving the
query unchanged (Gao et al., 2024). The only train-
able component in UniICL is a projector placed
between the encoder and decoder. Unlike previous
soft prompt methods, both the encoder and decoder
in UniICL are frozen and utilize the same LLM,
reducing gradient computation during training and
conserving memory for loading the LLM. In ICL,
the quality and relevance of the examples influence
model performance. The encoded continuous vec-
tors in UniICL can be considered as embeddings
for various in-context examples, eliminating the
need for additional embedding processes during
in-context example selection.

Besides the seven methods introduced above,
several other similar approaches exist, such as CO-
COM (Rau et al., 2024), LLoCO (Tan et al., 2024),
and QGC (Cao et al., 2024). COCOM and LLoCO
use fine-tuned encoder-decoder setups, while QGC
employs a frozen decoder. Both COCOM and
LLoCO are designed for the task of RAG: CO-
COM compresses multiple documents into groups
of context embeddings and inputs them together
into the decoder, while LLoCO stores and retrieves
specific LoRA parameters for the decoder to adapt
to particular text types and tasks. Different architec-
tures possess unique characteristics and advantages
(Jha et al., 2024), warranting a comprehensive com-
parative analysis.

4.2 Insights
Soft prompt methods for prompt compression can
be understood from several perspectives, includ-
ing attention mechanism optimization, analogies
with prompt and prefix tuning, encoding natural
language into a new modality, and viewing com-
pressed prompts as a new language for LLMs.

Attention mechanism. In the standard self-
attention of transformer, each newly generated to-
ken attends to all previous tokens, which increases
computational costs along with the sequence length.
Soft prompt compression reduces the input length
in two stages: first, a small number of special to-
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kens attend to the full input, storing key informa-
tion in these tokens; second, new tokens are gener-
ated based solely on the encoded continuous vec-
tors. This process blocks the need for the full input
during generation, limiting attention to the encoded
continuous vectors and reducing computation. This
can be seen as a form of attention optimization,
though it differs in that the KV pairs generated in
the first stage are not identical to those in the origi-
nal LLM (as LoRA parameters are added). There
are other attention optimization methods as well,
including sliding window attention (Beltagy et al.,
2020) and sparse attention (Child et al., 2019). In
sliding window attention, for example, all input to-
kens are kept, however, each token can only attend
to a limited number of preceding tokens.

Prompt and prefix tuning. Prompt tuning
(Lester et al., 2021) and prefix tuning (Li and Liang,
2021) are PEFT methods for language models. In
prompt tuning, a set of trainable embeddings is
added to the beginning of the input. In prefix tun-
ing, both the added embeddings and their corre-
sponding KV pairs in each layer of the language
model are trainable as well. While these methods
are useful for fine-tuning models for specific tasks,
their significance has decreased with the appear-
ance of LLMs capable of handling downstream
tasks through simple prompting. ICAE and related
methods are similar to prompt tuning. Instead of
manually training the embeddings, these embed-
dings are generated by the encoder (a fine-tuned
LLM) through compressing the natural language
input. Each natural language prompt is encoded
into a unique set of embeddings, with different
prompts corresponding to different sets. This pro-
cess provides a zero-shot way of determining the
parameters typically trained in prompt tuning. In
contrast, 500xCompressor is more akin to prefix
tuning. Here, the inputs for the decoder are not
embeddings, but KV pairs, which are determined
by the fine-tuned LLM encoder. These KV pairs
contain more parameters than embeddings and are
assumed to store richer details (Li and Liang, 2021).
500xCompressor proves that KV pairs can com-
press more detailed information at high compres-
sion ratios and outperform embeddings in terms of
data retention (Li et al., 2024). Since both embed-
dings and KV pairs are generated simultaneously
by the encoder, they offer similar improvements in
LLM efficiency, including higher inference speed
and reduced computational costs.

Modality integration. Compressed texts can

be considered a new modality, similar to vision
and speech. In vision-language models, for ex-
ample, an image encoder converts an image into
a list of embeddings, which are then used by an
LLM decoder for downstream tasks such as im-
age captioning or QA (Zhang et al., 2024a). This
architecture parallels that of prompt compression
models, where an encoder compresses natural lan-
guage into special embeddings and an LLM de-
coder utilizes these continuous vectors. The train-
ing processes for both are similar as well: image
encoders are paired with decoders trained to predict
missing parts of an image and align with textual
descriptions, while prompt compression encoders
are coupled with LLM decoders trained to regener-
ate original texts from compressed prompt vectors.
Thus, encoded continuous vectors from text can be
seen as a new, rich-information modality derived
from natural language. However, it is important
to note that texts contain more specific details and
have a higher information density than images. As
a result, text compression requires greater precision
than image encoding, and the potential for infor-
mation loss during prompt compression is more
significant than during image encoding.

New synthetic language. A new language can
be defined by three key characteristics: (1) it can
encode information and convert thoughts, concepts,
or data into embeddings; (2) this encoded informa-
tion can be transmitted between entities; and (3)
the entity can dynamically adjust its interpretation
or output based on the input it receives, a process
known as adaptive evaluation (Mansilla, 2004). In
the context of prompt compression, the encoded
embeddings represent natural language texts as con-
tinuous vectors, which can be understood by LLMs.
These continuous vectors can be saved, transferred
between different LLMs, and facilitate knowledge
transfer. Moreover, when the encoded information
changes, LLMs can dynamically adjust their re-
sponses based on the new input. Therefore, the
encoded embeddings generated by prompt com-
pression models can be considered a new, more
efficient language for LLMs. Work is ongoing in
the definition and evaluation of this emerging LLM-
specific language (Guo et al., 2020).

5 Downstream Adaptions

Prompt compression has a wide range of applica-
tions in domains such as general QA, RAG (Cheng
et al., 2024; Xu et al., 2024a; Rau et al., 2024; Yoon
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et al., 2024; Jung et al., 2024; Zhang et al., 2024b;
Tan et al., 2024; Liu et al., 2023a), ICL (Gao et al.,
2024), role playing (Ge et al., 2023), agent-based
(Jiang et al., 2024c; Xu et al., 2024b), and interdisci-
plinary tasks (Shen et al., 2024; Teehan et al., 2024).
In general QA, prompt compression methods are
generally used to compress instructions (Mu et al.,
2024) or contexts (Li et al., 2024) to perform var-
ious instruction-following tasks (Ge et al., 2024).
In RAG, xRAG exemplifies a method that answers
questions based on text embeddings encoded from
retrieved documents rather than processing the en-
tire text (Cheng et al., 2024). For ICL, UniICL is
an example method that compresses in-context ex-
amples to a smaller number of embedding tokens,
helping with the selection of relevant examples
(Gao et al., 2024). In agent, API documentation
can be compressed to enable more efficient tool use
(Jiang et al., 2024c).

6 Challenges and Future Work

6.1 Current Challenges

Current prompt compression methods face several
challenges, including information loss, reduced
model capability, and marginal improvements in
efficiency, due to fine-tuning limitations and ineffi-
cient compression processes.

Finetuning problems. Although some soft
prompt methods, such as ICAE, 500xCompressor,
xRAG, and UniICL, do not need to fine-tune the
decoder LLM, the input soft prompt functions sim-
ilarly to prompt tuning or prefix tuning for the de-
coder, leading to problems related to fine-tuning.
Previous work has shown that fine-tuning base mod-
els can result in forgetting, overfitting, and model
drift, which can decrease the generalization perfor-
mance of the base LLM (Gururangan et al., 2020).
To avoid these problems, prompt compression mod-
els must be trained on large, diverse datasets, which
is computationally expensive. Furthermore, the
trained encoders are specific to the corresponding
decoder LLMs, meaning that when the LLM is
updated, for example, from LLaMA-2 (Touvron
et al., 2023) to LLaMA-3 (Dubey et al., 2024), the
encoder must be re-trained. Hard prompts face
challenges as well: filtered hard prompts may de-
crease grammatical correctness and provide an un-
familiar input distribution to the LLM, potentially
influencing its performance.

Limited efficiency improvements. Although
prompt length can be reduced by dozens or even

hundreds of times, the time required for compres-
sion and the memory needed to store the compres-
sor remain under-optimized. Current encoders in
soft prompt methods can be finetuned using ei-
ther full-parameter training or PEFT methods, such
as LoRA. Fully fine-tuned LLMs are the most
resource-expensive, while the additional parame-
ters in LoRA-based encoders are modular, allow-
ing for separate loading. However, larger encoders
result in longer compression times. Hardware vari-
ability can lead to fluctuations in time for the same
task as well (Hennessy and Patterson, 2011), intro-
ducing large standard deviations and relative errors,
making it essential to perform multiple evaluations
for accuracy. Moreover, if the encoder and de-
coder are of equal size in soft prompt methods, the
computations required for prompt compression are
nearly the same or even slightly higher than those
for encoding the original prompt. As a result, effi-
ciency gains are only realized during the generation
of new tokens. For tasks with short outputs, these
improvements may not be substantial. Hard prompt
methods also face issues: additional models may
be needed to determine which tokens to delete, and
the filtered prompts still need to be re-encoded by
the LLM, further influencing efficiency.

Comparison with attention optimization
methods. As discussed in Section 4.2, soft prompt
methods can be regarded as special attention mod-
ifications. However, current prompt compression
methods have not been compared to traditional at-
tention optimization methods, such as sliding win-
dow attention (Beltagy et al., 2020) and sparse at-
tention (Child et al., 2019). Unlike soft prompt
methods, attention modifications do not need an
encoder model, which eliminates additional mem-
ory costs (Ren et al., 2021). Additionally, in soft
prompt methods, the input and generated tokens
rely on different attention mechanisms, whereas at-
tention optimization methods apply the same mech-
anism to both the input and the generated tokens,
resulting in greater stability and scalability (Tay
et al., 2022). Therefore, it is important to deter-
mine the compression ratio when both methods
have equivalent computational efficiency and com-
pare prompt compression methods with attention
modification methods.

6.2 Future Directions
To address current challenges and improve prompt
compression methods, several future directions are
proposed to reduce information loss while increas-
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ing compression ratio and speed.
Encoder Optimization. In current soft prompt

methods, encoders are similar in size to decoders.
For instance, if a decoder has 8 billion parameters,
the encoder may add tens of millions of trainable
parameters on top of that. As a result, the time
used for compression is comparable to the time it
takes for the original LLM to process inputs, mean-
ing that soft prompt methods only improve effi-
ciency during the generation of new tokens. In the-
ory, large encoders that are similar to the decoders
can compress information well from the original
text into continuous vectors for the LLM. However,
smaller, well-trained models such as BERT, which
have fewer parameters (as least 10 times smaller
than LLMs), are capable of encoding semantic in-
formation effectively (Devlin et al., 2019). This
will substantially increase compression speed. Be-
sides LoRA, other PEFT methods, such as QLoRA
(Dettmers et al., 2023), DoRA (yang Liu et al.,
2024), and MoRA (Jiang et al., 2024b) are worth
trying for fine-tuning the compression encoder as
well.

Combination of hard and soft prompts. Hard
prompt methods increase information density by
filtering out unnecessary tokens. Soft prompt meth-
ods represent the original text using a small number
of special tokens. Since hard and soft prompt meth-
ods operate through orthogonal mechanisms, their
combination can further enhance compression ra-
tios. However, when combining these methods,
their compression times add up sequentially, lead-
ing to increased overall processing time for input.

Insights from multimodality. As discussed in
Section 4.2, soft prompt methods can be under-
stood as a form of modality integration between
natural language and compressed language. This
opens the possibility of applying insights from mul-
timodality to benefit prompt compression models.
There are mainly two ways to encode images into
embeddings: self-attention and cross-attention (Jin
et al., 2024). In self-attention, images and query
vectors are input to the image encoder together,
whereas in cross-attention, only query vectors are
input to the encoder, and they attend to external im-
age embeddings in each layer. Current soft prompt
methods rely on self-attention to transfer informa-
tion from natural language prompts to compres-
sion tokens, however, cross-attention remains un-
explored. Trying other multimodal architectures,
such as those using cross-attention, may offer new
ways to leverage compression tokens. In image-

text integration, image encoders are trained to align
image embeddings with natural language embed-
dings, a process that can be adapted for prompt
compression models (Radford et al., 2021).

7 Conclusions

This survey provides a comprehensive overview
of the previous prompt compression methods,
from the perspectives of hard and soft prompt ap-
proaches. In addition to discussing the technical
approaches of these models, different perspectives
on understanding the compression process and their
applications are explored. Furthermore, we also
discuss the challenges of the existing prompt com-
pression methods and suggest the potential future
development directions. We hope our survey of-
fers a comprehensive overview of existing methods,
providing deeper insights into their motivations.
We also aim for our suggested future directions to
inspire the community and support future develop-
ments in the field.

Limitations

This paper focuses specifically on prompt compres-
sion and does not provide an overview of all effi-
cient prompting methods or other efficiency-related
LLM techniques. Rather than addressing a broad
topic, it offers a detailed explanation and insights
into the specific area of prompt compression. It
should be noted that the use of any prompt com-
pression methods should follow their guidelines
and copyright restrictions.
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A Appendix

To provide readers with a way to locate reference
papers on prompt compression methods, Figure 2
has been translated into Table 1. Data examples
for prompt structures in Section 2 are presented in
Table 2.

This paper was refined with ChatGPT.
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Hard Prompt Methods
Filtering:
General: SelectiveContext (Li et al., 2023), LLMLingua (Jiang et al., 2023), LongLLMLingua (Jiang
et al., 2024a), AdaComp (Zhang et al., 2024b)
Distillation Enhanced: LLMLingua-2 (Pan et al., 2024)
RL Enhanced: TACO-RL (Shandilya et al., 2024), PCRL (Jung and Kim, 2024)
Embedding Enhanced: CPC (Liskavets et al., 2024), TCRA-LLM (Liu et al., 2023a)
Paraphrasing:
Nano-Capsulator (Chuang et al., 2024), CompAct (Yoon et al., 2024), FAVICOMP (Jung et al., 2024)
Soft Prompt Methods
Decoder Only:
Not Finetuned: CC (Wingate et al., 2022)
Finetuned: GIST (Mu et al., 2024), AutoCompressor (Chevalier et al., 2023)
Encoder-decoder:
Both Finetuned: COCOM (Rau et al., 2024), LLoCO (Tan et al., 2024)
Finetuned Encoder: ICAE (Ge et al., 2024), 500xCompressor (Li et al., 2024), QGC (Cao et al.,
2024)
Embedding Encoder: xRAG (Cheng et al., 2024)
Projector: UniICL (Gao et al., 2024)
Applications:
RAG:
RAG: xRAG (Cheng et al., 2024), RECOMP (Xu et al., 2024a), COCOM (Rau et al., 2024),
CompAct (Yoon et al., 2024), FAVICOMP (Jung et al., 2024), AdaComp (Zhang et al., 2024b),
LLoCO (Tan et al., 2024), TCRA-LLM (Liu et al., 2023a)
Agents: HD-Gist (Jiang et al., 2024c), (Xu et al., 2024b)
Domain-specific tasks: Tag-llm (Shen et al., 2024), CoLLEGe (Teehan et al., 2024)
Others: ICL (Gao et al., 2024), Role Playing (Ge et al., 2023), Functions (Todd et al., 2024)

Table 1: Summary of methods and applications in prompt compression.

{Instruction, Input, Output}
Example in Alpaca:
Instruction: Evaluate this sentence for spelling and grammar mistakes
Input: He finnished his meal and left the resturant
Output: There are two spelling errors in the sentence. The corrected sentence should be: "He finished
his meal and left the restaurant."
{Context, Question, Answer}
Example in SQuAD:
Context: Super Bowl 50 was an American football game to determine the champion of the National
Football League (NFL) for the 2015 season. The American Football Conference (AFC) champion
Denver Broncos defeated the National Football Conference (NFC) champion Carolina Panthers
24–10 to earn their third Super Bowl title. The game was played on February 7, 2016, at Levi’s
Stadium in the San Francisco Bay Area at Santa Clara, California. As this was the 50th Super Bowl,
the league emphasized the "golden anniversary" with various gold-themed initiatives, as well as
temporarily suspending the tradition of naming each Super Bowl game with Roman numerals (under
which the game would have been known as "Super Bowl L"), so that the logo could prominently
feature the Arabic numerals 50.
Question: Where did Super Bowl 50 take place?
Answer: Santa Clara, California

Table 2: Examples for the QA items with formats of {Instruction, Input, Output} and {Context, Question, Answer}.
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