
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 6677–6694

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Active Few-Shot Learning for Text Classification

Saeed Ahmadnia1 Arash Yousefi Jordehi2 Mahsa Hosseini Khasheh Heyran2

Seyed Abolghasem Mirroshandel2 Owen Rambow3 Cornelia Caragea1

1University of Illinois Chicago 2University of Guilan 3Stony Brook University
sahmad67@uic.edu arashy76@phd.guilan.ac.ir mahsahsii@gmail.com

mirroshandel@guilan.ac.ir owen.rambow@stonybrook.edu cornelia@uic.edu

Abstract
The rise of Large Language Models (LLMs)
has boosted the use of Few-Shot Learning
(FSL) methods in natural language processing,
achieving acceptable performance even when
working with limited training data. The goal
of FSL is to effectively utilize a small number
of annotated samples in the learning process.
However, the performance of FSL suffers when
unsuitable support samples are chosen. This
problem arises due to the heavy reliance on
a limited number of support samples, which
hampers consistent performance improvement
even when more support samples are added. To
address this challenge, we propose an active
learning-based instance selection mechanism
that identifies effective support instances from
the unlabeled pool and can work with differ-
ent LLMs. Our experiments on five tasks show
that our method frequently improves the perfor-
mance of FSL. We make our implementation
available at https://github.com/theSaeed/active-
fewshot-learning.

1 Introduction

Deep learning systems have shown great perfor-
mance when given enough labeled data, yet they
struggle to learn from a small amount of labeled
data (Sun et al., 2019). However, constructing
a large corpus of annotated data is costly and
time-consuming, which hinders the building of su-
pervised classifiers for new domains (Zhu et al.,
2009). Few-Shot Learning (FSL) addresses this
by seeking to grasp new concepts from limited la-
beled examples for broader applications (Sun et al.,
2019). With recent advances in Large Language
Models (LLM), the capabilities of FSL can be uti-
lized much better than before and these methods
can reach acceptable performance using minimal
training data (Gao et al., 2021; Chen et al., 2021;
Karimi Mahabadi et al., 2022; Lin et al., 2022).

There are two widely adopted approaches to ad-
dressing the FSL problem: In-Context Learning

(ICL) and Fine-Tuning (FT). Recent autoregressive
decoder-only LLMs have demonstrated strong per-
formance in the realm of FSL (Brown et al., 2020),
providing the opportunity to achieve satisfactory re-
sults with little to no labeled data without requiring
any fine-tuning. On the other hand, FT is a more
established strategy for text classification, which
leverages a model fine-tuned on labeled support
data for prediction, and can show strong results as
opposed to ICL (Edwards and Camacho-Collados,
2024), but a large amount of training data is re-
quired for model fine-tuning.

Interestingly, most FSL methods typically select
the samples randomly. However, the quality of
the samples can have a significant impact on the
model’s performance. In some scenarios, adding
un- or less-informative samples can even decrease
the accuracy or may cause a high variance in the
model’s performance (Zhang et al., 2020; Schick
and Schütze, 2021b). Few studies in the field of
Natural Language Processing (NLP) have explored
sample selection strategies. Nevertheless, prior
works are limited by their lack of advanced tech-
niques, such as active learning (Chang et al., 2021),
and by compromising performance to achieve effi-
ciency (Müller et al., 2022).

Given these challenges, and following the re-
vealed strong performance of FT approaches
against ICL (Edwards and Camacho-Collados,
2024), we propose a new FT- and Active Learn-
ing (AL)-based Few-Shot (FS) sample selection
method to enhance classification performance by
choosing the most informative unlabeled samples,
thus, minimizing annotation costs. Inspired by suc-
cessful AL algorithms (Settles, 2009), our algo-
rithm selects instances using entropy and cluster-
ing methods to ensure uncertainty, diversity, and
representativeness in sample selection.

More specifically, we propose an iterative ap-
proach to progressively choose samples for human
annotation and label them to be added to the sup-

6677

https://github.com/theSaeed/active-fewshot-learning
https://github.com/theSaeed/active-fewshot-learning

port set. This process begins with generating an or-
ganized depiction of the unlabeled data based on a
certain embedding method to capture the requested
key features of the data. Following this, a sampling
method is applied to strategically select new data
points based on the generated embeddings. These
data points are then selected and given to a human
annotator to be labeled and added to the support
set. Afterward, we use this augmented support set
for fine-tuning LLMs.

To evaluate our method, we conduct experi-
ments on five classification tasks: the news topic,
5-star rating, and private states’ type, polarity, and
intensity classification. We use two pre-trained
language models, BART and FLAN-T5 (Lewis
et al., 2019; Chung et al., 2022), as the back-
bone and fine-tuning models in our approach. The
proposed method is compared against weak and
strong baselines to support its effectiveness and
efficiency. These baselines include random sam-
pling, in-context learning with Gemma 2 (Team
et al., 2024), Llama 3.1 (Dubey et al., 2024), and
Mistral v0.3 (Jiang et al., 2023), as well as other
related work utilizing more advanced sample se-
lection strategies in FSL. Our approach, especially
when combining representative and uncertainty-
based sampling techniques, exceeds the baselines
considerably on average.

Our contributions can be summarized as follows:
1) We introduce an Active Learning-based sample
selection scenario by combining uncertainty and
representativeness measures for FS classification
problems achieving state-of-the-art performance
when paired with recent FSL algorithms. 2) We
executed comprehensive experiments on a wide
variety of tasks using various LLMs. 3) We present
a thorough analysis to assess the performance of
the models at different iterations, comparing them
to the baselines presented in previous work. 4) We
make our implementation publicly available.

2 Related Work

In previous studies, the few-shot scenario has been
simulated by randomly sampling a subset from the
complete training data (Chen et al., 2020; Schick
and Schütze, 2021a; Gao et al., 2021; Chen et al.,
2021; Lin et al., 2022; Edwards and Camacho-
Collados, 2024). Among different FSL methods in
NLP, there are few methods that have paid attention
to the sample selection strategies. However, some
recent studies in the field of image processing have

demonstrated the effectiveness of incorporating AL
strategies in the context of FSL (Boney et al., 2019;
Pezeshkpour et al., 2020; Li et al., 2021; Shin et al.,
2022).

The study conducted by Chang et al. (2021) is
one of the few works that specifically addresses
sample selection in NLP. Their research focuses
on FS training instance selection and using it in
three text generation tasks with BART. Their ap-
proach is motivated by the idea that few-shot train-
ing instances should exhibit diversity and repre-
sentativeness. To achieve this, the authors utilized
K-Means clustering for choosing data points closer
to the center of clusters as important (i.e., infor-
mative) samples. Their results demonstrate the
success of this method even with this simple non-
iterative clustering-based approach. In contrast,
our research specifically targets classification tasks.
Furthermore, our active learning approach incorpo-
rates a wider range of tasks and selection strategies
(i.e., uncertainty, diversity, and representativeness)
compared to their study. We then extend the usage
of this idea to iteratively expand the support set.

The only recent study that incorporates FS and
AL approaches in NLP is conducted by Müller
et al. (2022), using a zero-shot approach for XLM-
RoBERTa-based Siamese networks. They use la-
bel tuning to fine-tune the label embeddings for
faster training. On the contrary, we use multiple
language models (i.e., BART and FLAN-T5) and
fine-tune the entire model on the support set in
every iteration as we prioritize the FS instance se-
lection quality and model performance, which is
shown to produce significantly better performance.
Also, the related work does not specify how they
select samples in the first iteration using an uncer-
tainty approach while the model has never seen
any related data before. In contrast, we propose
using representative sampling in the first step to
boost the initial performance of the model, even
in uncertainty sampling methods. Moreover, we
introduce four new sampling methods compared
to the mentioned work. Importantly, our methods
and implementation are open source and publicly
available to be freely used by fellow researchers.
To the best of our knowledge, the previous work’s
methods are not freely available to the public.

3 Active Few-Shot Learning

In our definition of the problem, we have a large
set of unlabeled training samples to start with. Our

6678

fine-tuned model

at step i-1

fine-tuned model

at step i

unlabeled training pool

at step i-1 (N samples)

support set at step i

(K=i*M samples)

support set at step i-1

(K=(i-1)*M samples)

unlabeled training pool

at step i (N-M samples)

Extract Embeddings

embedding method sampling method validation set
fresh new instance of

the pre-trained model test set

Sampling Annotator Augment Support Set Fine-Tuning Evaluate results

embeddings
M unlabeled

instances

M labeled

instances

Figure 1: Pipeline of the ith iteration in our approach. Yellow boxes represent different phases of the method. Blue
boxes are constant inputs during all iterations. Red boxes are carried over and modified during all consecutive
iterations. Green boxes are products of the current iteration that will not be used later in the approach.

goal is to select a small number of samples from
this unlabeled pool to be labeled and used as a
support set in a way that maximizes a model’s per-
formance on the test set. In different FS instance
selection methods, we may have one or more it-
erations of sampling and model fine-tuning. We
categorize experiments with a single round of this
process as ‘non-iterative’, and those with multiple
rounds as ‘iterative’.

Figure 1 illustrates the full pipeline of a single
iteration, which can be the one and only iteration
in the non-iterative approaches. At each iteration,
we first examine the data to determine which addi-
tional samples to include in the support set. This
process begins by extracting embeddings from a
certain source, specified by an embedding method,
to have a structured representation of the unlabeled
data. This source is derived from running inference
on the fine-tuned model of the last iteration by feed-
ing it the unlabeled training pool. Subsequently,
a sampling method is applied to select new sam-
ples based on the obtained embeddings, guiding the
model’s learning toward optimal performance. The
embedding and sampling methods are explained in
the following subsections in more detail.

The selected samples are then removed from the
unlabeled training pool and given to an oracle for
labeling. Following that, the newly labeled sam-
ples are added to the support set. This augmented
support set is next used to fine-tune a new instance
of the pre-trained model on the validation set. Fi-
nally, we evaluate the latest fine-tuned model on
the test set to analyze the performance of our ap-
proach at the end of each step. However, the test
set is solely used for evaluation purposes and is

not needed for our approach to function in the de-
fined setup. Moreover, in the initial round, the
support set is an empty set, all the training data is
included in the unlabeled pool, and a pre-trained
model without any previous fine-tuning is used to
extract embeddings.

3.1 Embedding Methods

We obtain the embeddings by using two distinct
methods:

Encoder (En): In this method, we extract the
last hidden states from the encoder of the model
and apply mean pooling over it. This embedding
serves as a dense representation of the input data,
while providing a rich feature space that encodes
the input sequence.

Scores (Sc): Here, we leverage the output logits
of the model and apply a softmax function to cal-
culate the probability distribution over the possible
labels. This method focuses on the model’s confi-
dence in assigning labels to the input data, which
can be interpreted as a measure of how well the
model understands the instance.

In both cases, we use a pre-trained model with-
out any fine-tuning during the first iteration and
use the fine-tuned model of the previous iteration
during the subsequent iterations. Moreover, the
embedding methods we use in this study make our
approach adaptable to any LLM that provides label
probabilities and its encoder’s last hidden states.

Since we are working with text generation mod-
els, additional processing is required to calculate
the scores. Specifically, we need to compute the

6679

probability P<t>
m [n] (Equation 1), which repre-

sents the likelihood that the token at position t in
sample m’s logits corresponds to the nth class out
of all N classes.

Each pre-trained model has its own vocabulary
that maps distinct numerical indices to the tokens
it recognizes. Logits<t>

m [i] indicates the model’s
logit for the ith word in the vocabulary at position
t for sample m. During this procedure, we need
our classes to be represented by a single token. For
cases where a class name is represented by multi-
ple tokens in the pre-trained model’s tokenizer, we
handle this by manually replacing such multi-token
labels with semantically close single-token labels.
We then disregard all the other tokens in the vocab-
ulary that do not correspond to any task-specific
class. To manage this, we define and use a dictio-
nary ClassId(i), which maps the ith class to its
corresponding index in the vocabulary.

Once the class probabilities are computed, we
calculate the score Scorem[n] (Equation 2) by tak-
ing the maximum probability of the nth class over
all T output tokens for sample m. This is espe-
cially important for multi-label tasks such as the
MPQA Type task, where the model may generate
multiple tokens in the output to indicate multiple
labels. Using this method, we will eventually end
up with a vector the same size as the label set (|L|
in Section 4.1).

P<t>
m [n] =

eLogits
<t>
m [ClassId(n)]

∑N
i=1 e

Logits<t>
m [ClassId(i)]

(1)

Scorem[n] = max
1≤i≤T

(P<i>
m [n]) (2)

3.2 Sampling Methods

Within each iteration, M instances need to be sam-
pled from the training set and added to the support
set of size K, which is an empty set at the begin-
ning of the initial round. More precisely, these
instances are sampled from the (simulated) unla-
beled training set by considering the inputs and
their corresponding embeddings. Only after choos-
ing the samples, we can look at the labels of the M
instances (simulating the human annotation) and
use them in the fine-tuning process. M is a small
number and is considered to designate the whole
selection size, unlike typical FSL classification
tasks that select M samples for each class (Ren
et al., 2018; Chen et al., 2019; Wang et al., 2023),
since we do not have access to those classes in our

definition of the problem. The sampling methods
that we use in this paper are as follows:

Random: With this method, we simply sample
M instances randomly without replacement from
the unlabeled pool. This sampling method does not
require any embedding data.

Representative (Rep): This method gets help
from the embeddings we retrieved in our desired
embedding method to cluster the unlabeled data
into M groups using the K-Means algorithm. Then,
inside each cluster, we sample the data point that its
corresponding embedding is the closest (euclidean
distance) to the cluster centroid.

Uncertainty (Un): It can only benefit from the Sc
embeddings to select the M samples about which
the model has the most doubts. We will be us-
ing entropy (Shannon, 1948; Settles, 2009) as our
uncertainty measure throughout this paper.

Uncertainty Representative (UnRep): Using
this technique, we first choose the α × M most
uncertain samples based on the Sc embeddings.
Thereafter, we do a representative sampling based
on the En embeddings only on these selected data
points in order to sample the final M unlabeled
samples.

Cluster Uncertainty (ClUn): This strategy, at
first, splits the data into M clusters considering the
given embeddings using the K-Means algorithm.
It will then pick the data point that the model has
the least confidence about inside each cluster by
looking at their Sc embeddings.

All of these methods can be used during the
second iteration onwards, but only the ones that do
not involve uncertainty (Random and Rep) can be
used within the first iteration and/or non-iterative
approaches since there’s no previous step for the
model to learn enough about the task and decide
whether it has doubts about the data.

4 Experimental Setup

4.1 Datasets

We use the MPQA Opinion Corpus, which is an-
notated at the word or phrase level to extract the
following features of the expressed attitudes: type,
polarity, and intensity (Wiebe et al., 2005; Wilson,
2008). Refer to Appendix A for more details. Ad-
ditionally, we use AG News Corpus (Gulli, 2005)

6680

for news topic classification and the English por-
tion of The Multilingual Amazon Reviews Corpus
(Keung et al., 2020) for 5-star rating classification
tasks.

Dataset Multi-Label Train Val Test |L| U%

MPQA Type ✓ 4,248 1,060 1,327 4 85.1
MPQA Polarity ✗ 4,505 1,123 1,404 2 8.9
MPQA Intensity ✗ 4,505 1,123 1,404 5 34.6
AG News ✗ 118,800 1,200 7,600 4 0.0
Amazon Reviews ✗ 200,000 1,200 5,000 5 0.0

Table 1: Dataset Statistics. It specifies whether they are
multi-label, the size of training, validation, and test set
splits, and the number of classes and their uniformness.

Table 1 exhibits the statistics and diversity of
the datasets. The MPQA dataset does not offer
separate training, validation, and test data, so we
use the splits of MPQA that are provided in previ-
ous work (Ahmadnia et al., 2024). Although the
AG News dataset presents training and test sets, it
does not include any validation set. Therefore, we
randomly sample the validation data from the train-
ing set without replacement. Amazon Reviews,
however, offers all three mentioned splits, but the
given validation set is relatively large. We gen-
erate a new set by randomly down-sampling the
original validation set to refrain from overfitting
too easily on the validation data as suggested by
previous study (Gunel et al., 2020). We maintain
the original sets’ label distributions for these new
validation sets. Following Müller et al. (2022),
we define |L| as the cardinality of the label set L,
and U =

∑
l∈L |f(l) − 1

|L| | as a uniformity met-
ric (U = 0 is uniform), where f(l) is the relative
frequency of label l.

4.2 Fine-Tuning Experiments

We evaluate our method across a wide range of
tasks, comparing it to various baselines and re-
lated work leveraging several large language mod-
els. Specifically, for FT, we use the base versions
of BART and FLAN-T5 with 139M and 248M pa-
rameters, respectively (Lewis et al., 2019; Chung
et al., 2022).

To get better intuition about the tasks, we first
calculate the majority baselines, which are the base-
lines we expect to beat. Additionally, we fine-tune
the models using the entire training set as our sup-
port set (K = full training set size). These results
represent a sort of top-line, which we do not expect
to beat in our FS experiments.

Next, we fine-tune the pre-trained models with

varying support set sizes, K ∈ {10, 20, 50, 100},
using random sampling, representative sampling,
and our proposed iterative approaches. In the itera-
tive approaches, within each iteration, we sample
M = 10 new data points to be progressively added
to our support set and present the results when
we have fine-tuned the model using support sets
of size K ∈ {10, 20, 50, 100}. For these experi-
ments, we assign α, in Section 3.2, the value of
10. Appendix D includes additional experiments
evaluating the impact of different values of α.

We further repeat FT experiments, this time with
K ∈ {5, 10, 25, 50} while having M = 5 in itera-
tive approaches on the MPQA tasks to assess the
impact of different selection sizes with the same
number of iterations. Additionally, we choose the
best-performing models from the AG News and
Amazon Reviews tasks and fine-tune them with
M = 16 over 16 iterations, resulting in a total sup-
port set size of K = 256. We compare our results
to the best-performing models provided by Müller
et al. (2022), namely LT margin and LT k-means.

4.3 In-Context Learning Experiments
For ICL, we utilize instruction-tuned models and
prompt templates similar to related work (Reid
et al., 2024; Dubey et al., 2024), and describe
each task alongside a list of possible labels. These
prompts can be applied directly in 0-shot settings
as the system prompt. For FS settings, we append
labeled instances to the system prompt to provide
additional context. In the end, we query the model
for predictions on each test instance in the user
prompt and match the predicted output strings with
the corresponding labels. The prompt template for
each task is included in Appendix C. If a model
does not support system prompts, we concatenate
and merge the system and user prompts and treat
them as a single (user) prompt. We employ two
methods to sample training data for ICL:

Random: Similar to random sampling method
in FT, we select M instances randomly without
replacement, regardless of any information.

Custom: This approach takes advantage of the
instance selection used in FT methods by incorpo-
rating the support samples constructed by encoder-
decoder models. This allows decoder-only mod-
els to leverage the encoder of the encoder-decoder
models. The goal is to assess the performance gain
by using samples interesting for and selected by
FT models. However, the decoder-only models

6681

Model Name MPQA Type MPQA Polarity MPQA Intensity
0 10 20 50 100 Full 0 10 20 50 100 Full 0 10 20 50 100 Full

Majority Baseline 56.6 54.8 37.2
Random Sampling
BART-Random 56.81.4 56.71.5 59.51.8 63.33.3 80.3 73.25.1 78.94.3 82.91.6 86.81.7 92.5 36.02.4 37.00.2 37.10.1 35.22.1 47.0
FLAN-T5-Random 56.24.6 60.02.9 65.32.6 66.72.7 80.7 76.52.4 80.62.4 85.31.4 88.40.9 94.2 33.03.8 34.03.6 35.51.6 35.51.5 50.0
Representative Sampling
BART-Rep(En) 56.50.2 57.11.7 59.82.7 64.23.5 71.40.0 76.12.6 81.81.0 87.11.2 37.00.0 35.22.1 37.00.4 37.30.3
FLAN-T5-Rep(En) 53.66.2 63.72.3 65.11.5 67.81.9 77.55.1 79.31.8 85.32.7 89.21.6 33.92.2 35.40.9 36.31.1 35.61.1
Iterative Approaches
FLAN-T5-Rep(En)-Un 53.66.2 59.81.4 63.72.6 66.92.3 77.55.1 81.25.8 88.21.9 91.40.8 33.92.2 36.80.3 37.40.7 39.22.1
FLAN-T5-Rep(En)-Rep(Sc) 53.66.2 61.31.1 65.81.9 68.50.8 77.55.1 80.83.4 87.40.8 90.61.4 33.92.2 35.32.0 37.42.5 38.01.4
FLAN-T5-Rep(En)-Rep(En) 53.66.2 61.42.9 64.72.1 68.91.3 77.55.1 80.42.0 85.60.6 88.11.4 33.92.2 34.52.3 36.92.2 37.81.2
FLAN-T5-Rep(En)-UnRep 53.66.2 60.64.6 63.22.7 68.82.0 77.55.1 82.42.5 87.52.0 90.10.5 33.92.2 36.21.4 37.40.6 38.82.2
FLAN-T5-Rep(En)-ClUn(Sc) 53.66.2 59.62.8 64.42.9 68.01.9 77.55.1 83.22.4 88.30.9 90.40.7 33.92.2 36.30.8 36.42.0 38.21.4
FLAN-T5-Rep(En)-ClUn(En) 53.66.2 59.23.6 64.62.0 69.30.8 77.55.1 81.51.8 87.51.4 90.80.8 33.92.2 35.12.9 38.01.6 39.71.8
In-Context Learning
Gemma 2-Random 49.3 50.96.8 55.23.3 - - - 67.0 73.02.1 75.03.3 - - - 32.0 32.82.6 33.22.6 - - -
Gemma 2-Custom 50.55.7 52.95.0 - - 73.50.7 76.12.3 - - 33.54.9 33.84.8 - -
Llama 3.1-Random 43.4 57.24.6 58.23.9 59.53.0 60.12.9 - 64.9 69.73.7 70.42.9 68.36.4 75.71.9 - 23.9 31.32.2 31.62.5 30.61.7 31.01.9 -
Llama 3.1-Custom 60.90.9 61.01.1 61.81.1 61.51.1 63.33.5 67.64.7 72.13.4 67.24.4 32.42.3 33.02.9 31.43.3 31.44.4
Mistral v0.3-Random 39.4 54.54.3 57.72.6 58.70.9 58.52.1 - 72.4 73.82.1 75.21.3 76.52.1 78.13.4 - 22.9 28.92.4 28.52.4 29.30.6 28.72.1 -
Mistral v0.3-Custom 53.94.1 56.92.0 58.62.7 57.84.4 72.11.8 74.11.8 73.61.2 73.94.3 29.47.2 30.77.7 32.65.3 29.75.0

Model Name AG News Amazon Reviews Mean
0 10 20 50 100 Full 0 10 20 50 100 Full 0 10 20 50 100 Full

Majority Baseline 25.0 20.0 38.7
Random Sampling
BART-Random 75.17.3 80.94.2 85.11.0 86.81.2 94.2 32.13.0 35.72.7 41.11.8 45.32.7 63.2 54.6 57.8 61.1 63.5 75.4
FLAN-T5-Random 71.86.3 87.31.2 88.41.2 89.30.7 94.4 47.24.8 52.74.3 55.90.7 58.81.5 65.7 56.9 62.9 66.1 67.7 77.0
Representative Sampling
BART-Rep(En) 61.40.3 75.911.9 86.30.4 86.61.5 29.90.0 34.91.7 38.72.6 45.92.7 51.2 55.8 60.7 64.2
FLAN-T5-Rep(En) 86.90.7 86.31.4 88.42.1 89.10.3 51.50.2 51.51.8 55.02.9 59.30.9 60.7 63.2 66.0 68.2
Iterative Approaches
FLAN-T5-Rep(En)-Un 86.90.7 87.71.0 88.50.6 88.71.4 51.50.2 54.73.1 57.01.7 57.52.8 60.7 64.0 67.0 68.7
FLAN-T5-Rep(En)-Rep(Sc) 86.90.7 87.51.2 88.71.1 89.70.2 51.50.2 52.82.2 57.41.1 59.51.4 60.7 63.5 67.3 69.3
FLAN-T5-Rep(En)-Rep(En) 86.90.7 86.62.4 88.60.4 89.30.2 51.50.2 52.62.9 57.31.0 58.70.9 60.7 63.1 66.6 68.6
FLAN-T5-Rep(En)-UnRep 86.90.7 87.60.3 88.51.2 89.30.5 51.50.2 45.74.2 52.43.2 55.03.1 60.7 62.5 65.8 68.4
FLAN-T5-Rep(En)-ClUn(Sc) 86.90.7 86.41.8 87.61.0 88.80.7 51.50.2 54.71.8 58.40.9 59.40.4 60.7 64.0 67.0 69.0
FLAN-T5-Rep(En)-ClUn(En) 86.90.7 87.50.7 88.12.0 89.10.8 51.50.2 52.03.5 58.31.6 59.91.1 60.7 63.1 67.3 69.8
In-Context Learning
Gemma 2-Random 84.6 85.21.6 86.81.4 - - - 62.2 60.61.6 60.11.9 - - - 59.0 60.5 62.1 - - -
Gemma 2-Custom 87.20.5 88.10.6 - - 61.90.6 60.50.6 - - 61.3 62.3 - -
Llama 3.1-Random 82.5 85.81.4 85.11.4 86.31.3 86.51.3 - 59.4 53.35.4 54.74.8 57.02.7 55.63.1 - 54.8 59.5 60.0 60.3 61.8 -
Llama 3.1-Custom 84.81.0 85.70.7 86.00.9 85.31.4 50.42.4 52.22.6 56.12.4 54.51.2 58.4 59.9 61.5 60.0
Mistral v0.3-Random 84.9 82.92.6 85.31.4 86.10.8 86.41.4 - 54.3 59.41.2 58.52.2 49.77.9 46.19.0 - 54.8 59.9 61.0 60.1 59.6 -
Mistral v0.3-Custom 80.42.8 86.20.7 83.22.9 81.93.6 60.00.9 56.92.2 45.66.6 47.72.8 59.2 61.0 58.7 58.2

Table 2: The average micro-F1 (%) results for MPQA Type, MPQA Polarity, MPQA Intensity, AG News, and
Amazon Reviews when M = 10 (i.e., selection size) in iterative approaches, calculated over five different seeds for
the sampling phase. The sub-columns denote K (i.e., total support set size), and the subscripts indicate the standard
deviation. Any experiment that encountered out-of-memory errors is marked with a “-” symbol.

themselves do not participate in identifying or se-
lecting these informative samples in this process,
and the encoder-decoder models operate entirely
independent of the decoder-only models.

In ICL, we apply both random and custom sam-
pling methods on the instruction-tuned models, i.e.,
Gemma 2, Llama 3.1, and Mistral v0.3 with 9B, 8B,
and 7B parameters, respectively. We report results
for support sets of sizes K ∈ {0, 10, 20, 50, 100}.
Notably, each step’s support set is a subset of the
support set from the subsequent step. In custom
sampling, we only use instances selected by the
overall best-performing model in FT experiments.

5 Discussion of Results

To better understand the impact of different ap-
proaches, we analyze the experimental results in
this section. Table 2 summarizes the main exper-

imental results for FT and ICL approaches. The
outcomes for the smaller selection size and com-
parisons with other related work are also available
in Tables 3 and 4, respectively. Additional fine-
grained results, including more intermediate sup-
port set sizes, are provided in Appendix E as well.

The model names in the tables indicate the em-
ployed pre-trained model, followed by the sam-
pling method. If an iterative approach is used, the
name reflects the sampling method for the first
iteration, followed by the method used in the sub-
sequent iterations. Whenever a referred sampling
method can make use of both embedding methods,
we specify the used method inside parentheses.

5.1 Active Few-Shot Learning

Table 2 elucidates significant differences in task
performance, particularly when fine-tuning on the

6682

Model Name MPQA Type MPQA Polarity MPQA Intensity
5 10 25 50 5 10 25 50 5 10 25 50

Random Sampling
BART-Random 55.03.8 57.22.4 58.02.1 59.31.3 68.09.0 72.84.2 76.83.3 81.93.4 32.76.2 36.01.9 36.11.5 36.61.2
FLAN-T5-Random 46.88.5 55.64.1 59.73.6 64.52.3 67.28.9 74.44.9 80.51.7 84.32.2 28.05.0 31.04.6 34.64.9 36.01.2
Representative Sampling
BART-Rep(En) 52.70.0 56.20.7 56.91.6 59.22.3 62.915.3 71.40.0 78.93.4 82.52.7 35.91.7 37.00.0 36.41.2 37.00.6
FLAN-T5-Rep(En) 59.32.4 52.05.6 62.22.7 64.52.0 72.11.3 78.34.1 80.61.4 85.82.6 29.20.6 34.32.3 35.41.4 36.50.9
Iterative Approaches
FLAN-T5-Rep(En)-Un 59.32.4 59.45.2 63.51.9 65.71.8 72.11.3 73.63.1 84.72.1 88.61.6 29.20.6 33.32.8 35.72.7 38.02.2
FLAN-T5-Rep(En)-Rep(Sc) 59.32.4 61.23.2 61.03.5 65.12.1 72.11.3 81.21.7 83.52.2 87.72.1 29.20.6 34.02.2 35.71.9 37.41.5
FLAN-T5-Rep(En)-Rep(En) 59.32.4 62.22.0 63.23.0 65.42.4 72.11.3 78.23.2 81.92.2 84.11.7 29.20.6 31.92.8 33.83.1 34.71.8
FLAN-T5-Rep(En)-UnRep 59.32.4 57.24.7 62.74.3 65.01.3 72.11.3 79.12.8 84.31.4 87.51.5 29.20.6 32.62.7 35.12.5 38.91.0
FLAN-T5-Rep(En)-ClUn(Sc) 59.32.4 61.83.3 63.52.8 65.02.4 72.11.3 80.32.3 84.01.8 88.51.8 29.20.6 33.71.5 36.61.0 37.61.5
FLAN-T5-Rep(En)-ClUn(En) 59.32.4 60.71.7 63.22.4 65.12.6 72.11.3 78.23.0 84.51.7 87.81.3 29.20.6 34.11.9 35.23.8 37.42.4

Table 3: The average micro-F1 (%) results of MPQA Type, MPQA Polarity, and MPQA Intensity tasks when M = 5
(i.e., selection size) in iterative approaches, calculated over ten seeds for the sampling phase. The sub-columns
denote K (i.e., total support set size), and the subscripts indicate the standard deviation.

10 20 30 40 50 60 70 80 90 100
K

50

55

60

65

70

F1
-S

co
re

MPQA Type

FLAN-T5-Random
FLAN-T5-Rep(En)
FLAN-T5-Rep(En)-ClUn(En)

10 20 30 40 50 60 70 80 90 100
K

70

75

80

85

90

MPQA Polarity

FLAN-T5-Random
FLAN-T5-Rep(En)
FLAN-T5-Rep(En)-Un

10 20 30 40 50 60 70 80 90 100
K

27.5

30.0

32.5

35.0

37.5

40.0

42.5
MPQA Intensity

FLAN-T5-Random
FLAN-T5-Rep(En)
FLAN-T5-Rep(En)-ClUn(En)

10 20 30 40 50 60 70 80 90 100
K

70

75

80

85

90
AG News

FLAN-T5-Random
FLAN-T5-Rep(En)
FLAN-T5-Rep(En)-Rep(Sc)

10 20 30 40 50 60 70 80 90 100
K

40

45

50

55

60

Amazon Reviews

FLAN-T5-Random
FLAN-T5-Rep(En)
FLAN-T5-Rep(En)-ClUn(En)

Figure 2: The range (min and max) and average of micro-F1 (%) scores of all tasks with steps of 10 over five runs.

full dataset. These variations stem from the distinct
nature of the tasks, which span binary, multi-class,
and multi-label classification problems. Notably,
the MPQA Type and MPQA Intensity tasks involve
imbalanced independent label sets, while the re-
maining tasks are more balanced. Additionally, the
MPQA Intensity and Amazon Reviews tasks have
a greater number of labels, which are mostly se-
mantically close, adding more complexity to the
classification. Thus, we believe that the chosen
tasks offer a diverse and representative spectrum of
classification challenges.

As anticipated, the majority baseline gener-
ally yields the poorest performance. Both BART-
Random and FLAN-T5-Random provide reason-
able starting points, with improvements observed
as the support set size K increases. A common
trend across FT approaches is the progressive en-
hancement in performance as the support set grows
from 10 samples to the full dataset.

Furthermore, the table demonstrates that FLAN-
T5-based models work better than BART-based
models in most cases. This is why we focus our
iterative experiments on FLAN-T5. However, ad-
ditional experiments with BART can be found in
Appendix E. The results also suggest that simple

representative sampling is more effective than ran-
dom sampling when K = 100, even when used
in a non-iterative setup. Nevertheless, the iterative
approaches outperform most non-iterative methods
when K ≥ 20. The MPQA Intensity task, in par-
ticular, succeeds in excelling the majority baseline
in FSL experiments only when iterative methods
are applied.

Although the five tasks produce distinct out-
comes, the iterative approach ‘FLAN-T5-Rep(En)-
ClUn(En)’ usually outperforms the random and
representative approaches, and it does so consis-
tently when K ∈ {50, 100} in three tasks and when
K = 100 in four tasks. All of the iterative ap-
proaches manage to excel the best non-iterative
approaches on average when K = 100. Espe-
cially, ‘FLAN-T5-Rep(En)-ClUn(En)’ stands out
as it beats the best non-iterative methods on aver-
age by 1.2% points at K = 50 and 1.6% points
at K = 100. Hence, we recommend using this
method in new use cases. Figure 2 captures the
contrast between the non-iterative FLAN-T5-based
models and the best-performer model at K = 100
for each task in greater detail, including the inter-
mediate steps results.

6683

5.2 Impact of Smaller Selection Size

Table 3 presents additional experimental results for
K ∈ {5, 10, 25, 50} on the MPQA dataset across
10 different seeds, using M = 5 in the iterative
approaches. Even though, in our problem con-
text, K represents the overall size of the support
set—distinct from the conventional FSL classifica-
tion tasks where K refers to the number of samples
per class, making it challenging to ensure equitable
representation of all labels in tasks like MPQA In-
tensity—the iterative approaches still surpass the
non-iterative methods in most cases. Moreover, the
iterative approach ‘FLAN-T5-Rep(En)-ClUn(En)’
still holds up and beats all the non-iterative ap-
proaches at K = 50. An interesting insight that
can be drawn by comparing the K = 50 columns
in Tables 2 and 3 shows that having M = 5 leads
to improved performance across nearly all itera-
tive approaches compared to M = 10 at the same
support set size (K = 50). This suggests using a
smaller M can result in a more effective sample
selection process.

5.3 In-Context Learning

An examination of the ICL results reveals that
these models generally not only underperform
iterative approaches but also struggle to beat
non-iterative FT methods. They even fail to exceed
the majority baseline in the MPQA Intensity
task. Although ICL models can usually deliver
reasonable performance when K is small and may
outperform iterative methods in Amazon Reviews,
their performance stagnates or even declines as
the number of support samples (K) increases. This
inability of ICL approaches to leverage larger
support sets has been noted in previous work
as well (Pecher et al., 2024). Additionally, ICL
methods are inclined to exhibit higher standard
deviations compared to FT approaches, indicating
greater performance variability.

Comparing the pre-trained models in ICL shows
there is no definitive winner between Llama 3.1
and Mistral v0.3. Generally, Mistral v0.3 performs
better with smaller K values, while Llama 3.1
surpasses Mistral v0.3 as K increases. However,
Gemma 2 stands out as the clear leader, outperform-
ing the other two models in most cases. Interest-
ingly, custom sampling fails to help Llama 3.1 and
Mistral v0.3 to gain performance against random
sampling, suggesting that these two models do not
benefit from instances identified as informative by

FLAN-T5. Gemma 2, however, is the only pre-
trained model that benefits from custom sampling
in most experiments.

5.4 Other Related Work

Model Name AG News Amazon Reviews
LT margin 86.20.7 46.61.4
LT k-means 82.81.2 48.60.9
FLAN-T5-Rep(En)-Rep(Sc) 90.70.2
FLAN-T5-Rep(En)-ClUn(En) 61.01.0

Table 4: The average macro-F1 (%) results for AG
News and Amazon Reviews when M = 16 and K =
256, calculated over five different seeds in the sampling
phase. The subscripts denote standard deviation.

Table 4 compares our best-performing models on
AG News and Amazon Reviews datasets with the
best-performing models reported in previous work
on the same datasets, i.e., LT margin for AG News
and LT k-means for Amazon Reviews (Müller et al.,
2022). Our models outperform these baselines by a
significant margin of 4.5% points on AG News and
12.4% points on Amazon Reviews, demonstrating
the effectiveness of our methods. Figure 3 illus-
trates that LT margin and LT k-means at K = 256
struggle to beat the best iterative FT approaches
even at small K values. The figure also shows
how the performance gains of iterative approaches
diminish as K increases. For example, there is a
performance improvement of 3.3% points in AG
News and 8.2% points in Amazon Reviews when
K increases from 16 to 96. Meanwhile, there is
only a 1.1% and 1.6% points improvement when K
increases from 96 to 256 in AG News and Amazon
Reviews, respectively. These results suggest the
proposed methods are most effective in FS settings.

16 64 112 160 208 256
K

84

86

88

90

F1
-S

co
re

AG News

FLAN-T5-Rep(En)-Rep(Sc)
LT margin
LT k-means

16 64 112 160 208 256
K

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5
Amazon Reviews

FLAN-T5-Rep(En)-ClUn(En)
LT margin
LT k-means

Figure 3: The range (min and max) and average of
macro-F1 (%) scores of AG News and Amazon Reviews
tasks with steps of 16 over five runs.

5.5 Performance-Efficiency Trade-off
In designing our methodology, we prioritized the
quality of few-shot instance selection and model

6684

performance, as these are critical in applications
where model accuracy outweighs time efficiency
constraints. However, here we analyze run-time
performance to enable practical deployment in
time-sensitive scenarios. We present a breakdown
of execution times for different phases of the pro-
cess, allowing for informed decisions when tuning
key parameters to meet efficiency requirements.

Model Name Embedding Sampling FT Overall
FLAN-T5-Random 0:00:00 0:00:00 0:10:30 0:10:30
FLAN-T5-Rep(En) 0:00:16 0:00:03 0:08:59 0:09:18
FLAN-T5-Rep(En)-Un 0:01:58 0:00:01 1:48:06 1:50:04
FLAN-T5-Rep(En)-Rep(Sc) 0:02:14 0:00:02 1:55:16 1:57:32
FLAN-T5-Rep(En)-Rep(En) 0:01:38 0:00:07 1:56:44 1:58:28
FLAN-T5-Rep(En)-UnRep 0:02:03 0:00:03 2:08:03 2:10:09
FLAN-T5-Rep(En)-ClUn(Sc) 0:02:17 0:00:02 1:50:20 1:52:39
FLAN-T5-Rep(En)-ClUn(En) 0:01:56 0:00:04 1:49:36 1:51:37

Table 5: Accumulated execution time (h:mm:ss) of em-
bedding extraction, sampling, and fine-tuning across
different models.

Table 5 presents execution times for embedding
extraction, sampling, and fine-tuning phases across
different approaches on the MPQA Polarity dataset
over a single seed. Durations are accumulated over
ten iterations in iterative approaches. Annotation,
support set augmentation, and evaluation times are
excluded, as they are either negligible or indepen-
dent of the approach. As expected, non-iterative
methods exhibit shorter execution times compared
to iterative ones. The results confirm that increas-
ing the number of iterations directly extends the
overall run time in a linear fashion, as it naturally
requires more computational steps, though perfor-
mance gains diminish, as illustrated in Figure 2.
Thus, tuning the number of iterations is crucial for
balancing performance and efficiency.

The embedding extraction time is also influenced
by the embedding method used. Method En pro-
cesses data through the encoder, while Sc requires
both encoder and decoder passes, increasing com-
putational cost. If both methods are applied, em-
beddings can still be obtained in a single model
pass. Another key factor is the size of the unlabeled
training pool; for large datasets (e.g., Amazon Re-
views), random downsampling can significantly
reduce execution time when necessary.

The sampling phase is relatively insignificant
compared to embedding extraction and fine-tuning.
Interestingly, iterative sampling does not take ten
times the time of representative sampling, since the
computations can be more simplified when choos-
ing 10 samples per iteration compared to all 100
samples in a single iteration. Sampling method

choice also impacts execution time, with non-K-
Means approaches typically being faster. Similar to
embedding extraction, downsampling the training
pool can further enhance efficiency as well.

Fine-tuning times vary due to early stopping,
with no clear correlation between approach type
and fine-tuning duration beyond iteration count.
However, fine-tuning time is highly dependent on
validation set size, and reducing the validation set
can significantly shorten run time when needed.
Random downsampling of the validation set offers
an effective strategy for optimizing efficiency.

Overall, our findings highlight key factors (e.g.,
iteration count, training pool size, validation set
size, etc.) that influence execution time. Proper
tuning of these parameters enables a flexible trade-
off between model performance and computational
efficiency.

6 Conclusion and Future Work

We propose a novel fine-tuning-based method for
sampling data to be used in a few-shot setting with
active learning, while many others tend to sample
data randomly. We show how using different em-
bedding and sampling methods helps us achieve
better results in classification tasks by choosing and
labeling the most informative unlabeled samples
that may represent the variety of data or that the
model has the most doubts about. These methods
unleash their full potential when used iteratively,
using the fine-tuned model from the previous iter-
ations, surpassing in-context learning approaches
and other fine-tuning-based sampling strategies in
previous studies.

Future work will expand on new embedding and
sampling methods in classification tasks as well
as other types of NLP tasks, such as text gen-
eration. It will also explore the effect of semi-
supervised learning methods on top of our approach
in a pipeline, making use of the rest of the unla-
beled data to improve performance.

Acknowledgment

This research is funded in part by NSF IIS and Dis-
covery Partners Institute (DPI) at the University of
Illinois Chicago. Any opinions, findings, and con-
clusions expressed here are those of the authors and
do not necessarily reflect the views of NSF or DPI.
Rambow gratefully acknowledges support from the
Institute for Advanced Computational Science at
Stony Brook University.

6685

Limitations

In the current study, we have centered our atten-
tion on English. In the future, we plan to focus
on other natural languages and alternative datasets.
Furthermore, our proposed methods are unable to
be directly used in non-classification or non-NLP
tasks and they need some modifications to be ap-
plied to these types of tasks. These experiments
also require a lot of computational resources like
the other AL approaches, since we have to itera-
tively run the same experiment 10 times with an
incrementally augmented support set.

Ethics Statement

Our current study is a fundamental research work
in the field of NLP and computational linguistics.
There are many applications considered for these
fields of research. For instance, understanding
users’ tweets on Twitter, e-commerce applications,
and question answering. Although many research
projects have been done in these fields, and a large
number of them have accomplished remarkable re-
sults, we do not explicitly recommend using these
systems standalone. The reason is that there are
open issues about the robustness and fairness of
these systems. Hence, we see a need for human
experts in interpreting the results. From our point
of view, there are no ethical concerns about the
platforms, technologies, tools, and algorithms used
or proposed in this study. We should also note that
the dataset, language models, tools, and libraries
that we have utilized in this work are all publicly
available.

References
Saeed Ahmadnia, Arash Yousefi Jordehi, Mahsa Hos-

seini Khasheh Heyran, SeyedAbolghasem Mirroshan-
del, and Owen Rambow. 2024. Opinion mining us-
ing pre-trained large language models: Identifying
the type, polarity, intensity, expression, and source
of private states. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 12481–12495, Torino, Italia.
ELRA and ICCL.

Rinu Boney, Alexander Ilin, et al. 2019. Active one-shot
learning with prototypical networks. In ESANN.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,

Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Ernie Chang, Xiaoyu Shen, Hui-Syuan Yeh, and Vera
Demberg. 2021. On training instance selection for
few-shot neural text generation. arXiv preprint
arXiv:2107.03176.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-
Chiang Frank Wang, and Jia-Bin Huang. 2019. A
closer look at few-shot classification. arXiv preprint
arXiv:1904.04232.

Yiming Chen, Yan Zhang, Chen Zhang, Grandee Lee,
Ran Cheng, and Haizhou Li. 2021. Revisiting self-
training for few-shot learning of language model.
In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing, pages
9125–9135, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu,
and William Yang Wang. 2020. Few-shot NLG with
pre-trained language model. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 183–190, Online. Associ-
ation for Computational Linguistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Aleksandra Edwards and Jose Camacho-Collados. 2024.
Language models for text classification: Is in-context
learning enough? In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 10058–10072, Torino, Italia.
ELRA and ICCL.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Antonio Gulli. 2005. Ag’s corpus of news articles.

6686

https://aclanthology.org/2024.lrec-main.1093
https://aclanthology.org/2024.lrec-main.1093
https://aclanthology.org/2024.lrec-main.1093
https://aclanthology.org/2024.lrec-main.1093
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.718
https://doi.org/10.18653/v1/2021.emnlp-main.718
https://doi.org/10.18653/v1/2020.acl-main.18
https://doi.org/10.18653/v1/2020.acl-main.18
https://aclanthology.org/2024.lrec-main.879
https://aclanthology.org/2024.lrec-main.879
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoy-
anov. 2020. Supervised contrastive learning for pre-
trained language model fine-tuning. arXiv preprint
arXiv:2011.01403.

AQ Jiang, A Sablayrolles, A Mensch, C Bamford,
DS Chaplot, D de las Casas, F Bressand, G Lengyel,
G Lample, L Saulnier, et al. 2023. Mistral 7b (2023).
arXiv preprint arXiv:2310.06825.

Rabeeh Karimi Mahabadi, Luke Zettlemoyer, James
Henderson, Lambert Mathias, Marzieh Saeidi,
Veselin Stoyanov, and Majid Yazdani. 2022. Prompt-
free and efficient few-shot learning with language
models. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3638–3652, Dublin,
Ireland. Association for Computational Linguistics.

Phillip Keung, Yichao Lu, György Szarvas, and Noah A.
Smith. 2020. The multilingual Amazon reviews cor-
pus. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4563–4568, Online. Association for
Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Xiaorun Li, Zeyu Cao, Liaoying Zhao, and Jianfeng
Jiang. 2021. Alpn: Active-learning-based prototypi-
cal network for few-shot hyperspectral imagery clas-
sification. IEEE Geoscience and Remote Sensing
Letters, 19:1–5.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu
Wang, Shuohui Chen, Daniel Simig, Myle Ott, Na-
man Goyal, Shruti Bhosale, Jingfei Du, et al. 2022.
Few-shot learning with multilingual generative lan-
guage models. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 9019–9052.

Thomas Müller, Guillermo Pérez-Torró, Angelo Basile,
and Marc Franco-Salvador. 2022. Active few-shot
learning with fasl. In International Conference on
Applications of Natural Language to Information Sys-
tems, pages 98–110. Springer.

Branislav Pecher, Ivan Srba, Maria Bielikova, and
Joaquin Vanschoren. 2024. Automatic combination
of sample selection strategies for few-shot learning.
arXiv preprint arXiv:2402.03038.

Pouya Pezeshkpour, Zhengli Zhao, and Sameer Singh.
2020. On the utility of active instance selection for
few-shot learning. NeurIPS HAMLETS.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste

Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi-
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un-
locking multimodal understanding across millions of
tokens of context. arXiv preprint arXiv:2403.05530.

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake
Snell, Kevin Swersky, Joshua B Tenenbaum, Hugo
Larochelle, and Richard S Zemel. 2018. Meta-
learning for semi-supervised few-shot classification.
arXiv preprint arXiv:1803.00676.

Timo Schick and Hinrich Schütze. 2021a. Few-shot
text generation with natural language instructions. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 390–
402.

Timo Schick and Hinrich Schütze. 2021b. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2339–2352, Online. Association
for Computational Linguistics.

Burr Settles. 2009. Active learning literature survey.
Computer Sciences Technical Report 1648, Univer-
sity of Wisconsin–Madison.

Claude E Shannon. 1948. A mathematical theory of
communication. The Bell system technical journal,
27(3):379–423.

Junsup Shin, Youngwook Kang, Seungjin Jung, and
Jongwon Choi. 2022. Active instance selection for
few-shot classification. IEEE Access.

Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt
Schiele. 2019. Meta-transfer learning for few-shot
learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Xixi Wang, Xiao Wang, Bo Jiang, and Bin Luo.
2023. Few-shot learning meets transformer: Unified
query-support transformers for few-shot classifica-
tion. IEEE Transactions on Circuits and Systems for
Video Technology.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions
in language. Language resources and evaluation,
39(2):165–210.

Theresa Ann Wilson. 2008. Fine-grained subjectivity
and sentiment analysis: recognizing the intensity,
polarity, and attitudes of private states. University
of Pittsburgh.

6687

https://doi.org/10.18653/v1/2022.acl-long.254
https://doi.org/10.18653/v1/2022.acl-long.254
https://doi.org/10.18653/v1/2022.acl-long.254
https://doi.org/10.18653/v1/2020.emnlp-main.369
https://doi.org/10.18653/v1/2020.emnlp-main.369
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Jingbo Zhu, Huizhen Wang, Benjamin K Tsou, and
Matthew Ma. 2009. Active learning with sampling
by uncertainty and density for data annotations. IEEE
Transactions on audio, speech, and language process-
ing, 18(6):1323–1331.

A MPQA Opinion Corpus

A sentence may contain expressions that reflect dif-
ferent private states with various attitudes. These at-
titudes can belong to different types, and each type
can express negative or positive opinions (polar-
ity) toward targets with varying degrees of strength
(intensity) (Wiebe et al., 2005; Wilson, 2008).

Task Input OutputAttitude Type Sentence

T -
The new US policy deserves to be

arguing sentimentclosely analyzed and monitored.

P intention
Canada is among the countries that

positive
have pledged to ratify the accord.

I sentiment
There is a deep faith here, however,

high
in the power of democracy.

Table 6: The examples for Type (T), Polarity (P), and
Intensity (I) tasks. The expressions within the sentences
are in bold.

The original MPQA annotation scheme com-
prises 6 types of attitudes. We remove the other and
speculation types in our experiments as these types
of attitudes do not hold a polarity. That leaves us
with a 4-class classification task for the type. Fur-
thermore, an expression in a sentence may have
zero to four labels as attitude types based on the
expression itself and the sentence that contains the
expression. This leads the type identifier task to
be a multi-label classification task. Subsequently,
we identify polarity and intensity using the attitude
type, the expression that holds the attitude, and the
expression’s container sentence as the input. This
input can only have one specific polarity and one in-

tensity, which makes these tasks binary and 5-class
multi-class classification tasks, respectively.

An example for each task is available in Ta-
ble 6, and all labels and their distribution are as
follows: type: agreement (×284), arguing (×2,466),
intention (×420), and sentiment (×3,862) polarity:
negative (×3,200) and positive (×3,832); and intensity:
low (×658), low-medium (×1,262), medium (×2,615),
medium-high (×1,258), and high (×1,239).

B Implementation Details

Our models were implemented on PyTorch1

neural network framework. Furthermore, we
utilized the scikit-learn library2, NumPy3, and
Matplotlib4 packages. We used facebook/
bart-base and google/flan-t5-base models
in FT and google/gemma-2-9b-it, meta-llama/
Llama-3.1-8B-Instruct, and mistralai/
Mistral-7B-Instruct-v0.3 in ICL and their
tokenizers from the Hugging Face Transformers
library5 (Wolf et al., 2020). For the ICL tasks,
non-MPQA tasks, performance-efficiency tradeoff
experiments, BART-based MPQA Polarity iterative
experiments, and the analysis of the impact of
parameter α, the models were executed on a single
NVIDIA RTX A5000 GPU 24 GB GPU and AMD
EPYC 7662 3.28 GHz 64-Core CPU. The rest
of the tasks (many of the FT MPQA tasks) were
executed on a single NVIDIA A100 40 GB GPU
and dual AMD Rome 7742 CPUs (each with
2.25 GHz 64-Cores). The maximum amount of
GPU memory we used for our approaches was
18 GB. They also required a maximum of 16 GB
of RAM.

Parameter BART FLAN-T5
Batch Size 10 10
Learning Rate 5e-5 1e-4
Dropout Rate 0.1 0.1
Optimizer AdamW AdamW
Early Stopping 20 epochs 20 epochs

Table 7: The hyperparameters for BART- and FLAN-
T5-based models.

All results in this paper are reproducible by set-
ting the random seeds to fixed numbers. The hy-
perparameters used in our experiments are listed

1https://pytorch.org/
2https://scikit-learn.org/stable/
3https://numpy.org/
4https://matplotlib.org/
5https://github.com/huggingface/transformers

6688

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

in Table 7. In the present study, we utilized pub-
licly available datasets. Hence, we did not use any
human annotators.

C ICL Templates

This section contains prompt templates that we
used in ICL experiments for MPQA Type in Fig-
ure 4, MPQA Polarity in Figure 5, MPQA Intensity
in Figure 6, AG News in Figure 7, and Amazon
Reviews in Figure 8.

D Impact of Parameter α

Table 8 presents the results of the
“FLAN-T5-Rep(En)-UnRep” approach for
α ∈ {1, 2, 5, 10, 20, 50} with M = 10, using the
MPQA Polarity dataset.

E Fine-Grained Experiments

Tables 9 (MPQA Type), 10 (MPQA Polarity), 11
(MPQA Intensity), 12 (AG News), and 13 (Ama-
zon Reviews) present the main experiments
from Table 2, along with intermediate steps
for better comparison. Table 10 also includes
additional experiments for BART-based iterative
approaches using the MPQA Polarity dataset. The
results are reported for support set sizes of K ∈
{0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, Full}.
Some of the experiments encountered out-of-
memory errors.

6689

System:
You are a sentiment classifier. For each message, predict the type of an expressed private state as (sentiment, intention,
arguing, or agreement) given the whole sentence for context, followed by the expression itself. Each entry may belong to
one or more classes. Return the predicted classes with exactly one space between each if there is more than one class. Do
not add any additional information, comment, or formatting.

User:
Text: [Test Sample]
Type:

System:
You are a sentiment classifier. For each message, predict the type of an expressed private state as (sentiment, intention,
arguing, or agreement) given the whole sentence for context, followed by the expression itself. Each entry may belong to
one or more classes. Return the predicted classes with exactly one space between each if there is more than one class. Do
not add any additional information, comment, or formatting. Here are some samples:

Text: [Support Sample #1]
Type: [Label of Support Sample #1]

...

Text: [Support Sample #K]
Type: [Label of Support Sample #K]

User:
Text: [Test Sample]
Type:

Figure 4: Prompt templates for MPQA Type task. The upper box shows a sample for zero-shot learning, and the
lower one shows a sample for K-shot learning.

System:
You are a sentiment classifier. For each message, predict the polarity of an expressed private state as (negative or positive)
given the type of the private state, followed by the whole sentence for context, followed by the expression itself at the end.
Return your prediction without adding any additional information, comment, or formatting.

User:
Text: [Test Sample]
Polarity:

System:
You are a sentiment classifier. For each message, predict the polarity of an expressed private state as (negative or positive)
given the type of the private state, followed by the whole sentence for context, followed by the expression itself at
the end. Return your prediction without adding any additional information, comment, or formatting. Here are some samples:

Text: [Support Sample #1]
Polarity: [Label of Support Sample #1]

...

Text: [Support Sample #K]
Polarity: [Label of Support Sample #K]

User:
Text: [Test Sample]
Polarity:

Figure 5: Prompt templates for MPQA Polarity task. The upper box shows a sample for zero-shot learning, and the
lower one shows a sample for K-shot learning.

6690

System:
You are a sentiment classifier. For each message, predict the intensity of an expressed private state as (low, low-medium,
medium, medium-high, or high) given the type of the private state, followed by the whole sentence for context, followed by
the expression itself at the end. Return your prediction without adding any additional information, comment, or formatting.

User:
Text: [Test Sample]
Intensity:

System:
You are a sentiment classifier. For each message, predict the intensity of an expressed private state as (low, low-medium,
medium, medium-high, or high) given the type of the private state, followed by the whole sentence for context, followed by
the expression itself at the end. Return your prediction without adding any additional information, comment, or formatting.
Here are some samples:

Text: [Support Sample #1]
Intensity: [Label of Support Sample #1]

...

Text: [Support Sample #K]
Intensity: [Label of Support Sample #K]

User:
Text: [Test Sample]
Intensity:

Figure 6: Prompt templates for MPQA Intensity task. The upper box shows a sample for zero-shot learning, and
the lower one shows a sample for K-shot learning.

System:
You are a news article classifier. For each message, predict the category of a news article as (World, Sports, Business, or
Sci/Tech) given the news article title and description. Return the predicted class without any additional comment.

User:
Article: [Test Sample]
Class:

System:
You are a news article classifier. For each message, predict the category of a news article as (World, Sports, Business, or
Sci/Tech) given the news article title and description. Return the predicted class without any additional comment. Here are
some samples:

Article: [Support Sample #1]
Class: [Label of Support Sample #1]

...

Article: [Support Sample #K]
Class: [Label of Support Sample #K]

User:
Article: [Test Sample]
Class:

Figure 7: Prompt templates for AG News task. The upper box shows a sample for zero-shot learning, and the lower
one shows a sample for K-shot learning.

6691

System:
You are a sentiment classifier. For each message, predict the number of stars (1, 2, 3, 4, or 5) given by a user based on the
given review text. Return the predicted number of stars without any additional comment.

User:
Review: [Test Sample]
Stars:

System:
You are a sentiment classifier. For each message, predict the number of stars (1, 2, 3, 4, or 5) given by a user based on the
given review text. Return the predicted number of stars without any additional comment. Here are some samples:

Review: [Support Sample #1]
Stars: [Label of Support Sample #1]

...

Review: [Support Sample #K]
Stars: [Label of Support Sample #K]

User:
Review: [Test Sample]
Stars:

Figure 8: Prompt templates for Amazon Reviews task. The upper box shows a sample for zero-shot learning, and
the lower one shows a sample for K-shot learning.

α 10 20 30 40 50 60 70 80 90 100
1 76.43.7 80.31.0 82.93.1 84.32.8 86.31.6 88.61.2 88.11.3 90.31.5 90.20.5 90.61.2
2 76.43.7 81.61.1 83.51.4 85.21.9 86.50.6 87.82.5 88.91.6 90.51.4 90.71.0 91.00.6
5 76.43.7 81.33.3 83.42.2 86.71.9 87.42.6 87.52.1 88.91.7 90.20.9 91.01.1 91.10.9
10 76.43.7 80.72.6 83.10.5 84.91.6 86.71.3 89.51.7 89.81.0 90.00.4 91.00.6 91.10.5
20 76.43.7 80.41.4 80.45.6 83.32.7 84.51.3 86.51.8 88.20.6 89.41.1 90.31.0 91.20.7
50 76.43.7 79.83.0 83.21.8 84.81.9 85.91.8 88.32.1 89.12.5 90.01.8 90.71.3 91.31.4

Table 8: The average micro-F1 (%) results for MPQA Polarity when M = 10 (i.e., selection size) in the “FLAN-
T5-Rep(En)-UnRep” approach, calculated over five different seeds for the sampling phase. The sub-columns denote
K (i.e., total support set size), and the subscripts indicate the standard deviation.

Model Name 0 5 10 20 30 40 50 60 70 80 90 100 Full
Majority Baseline 56.6
Random Sampling
BART-Random 56.81.4 56.71.5 59.51.8 63.33.3 80.3
FLAN-T5-Random 56.24.6 60.02.9 62.52.1 62.23.2 65.32.6 65.81.6 67.61.3 67.50.9 67.41.8 66.72.7 80.7
Representative Sampling
BART-Rep(En) 56.50.2 57.11.7 59.82.7 64.23.5
FLAN-T5-Rep(En) 53.66.2 63.72.3 62.51.8 62.51.9 65.11.5 67.02.0 66.12.6 67.11.1 67.31.4 67.81.9
Iterative Approaches
FLAN-T5-Rep(En)-Un 53.66.2 59.81.4 59.92.2 61.41.9 63.72.6 64.01.9 66.32.8 66.52.5 67.42.4 66.92.3
FLAN-T5-Rep(En)-Rep(Sc) 53.66.2 61.31.1 63.42.1 64.71.4 65.81.9 68.21.3 67.11.7 67.80.9 68.21.8 68.50.8
FLAN-T5-Rep(En)-Rep(En) 53.66.2 61.42.9 63.12.2 63.42.0 64.72.1 66.41.4 67.12.2 69.01.5 68.71.5 68.91.3
FLAN-T5-Rep(En)-UnRep 53.66.2 60.64.6 62.52.8 62.03.1 63.22.7 65.82.2 66.81.3 66.71.9 67.40.5 68.82.0
FLAN-T5-Rep(En)-ClUn(Sc) 53.66.2 59.62.8 63.32.5 64.81.0 64.42.9 65.61.8 65.41.3 66.91.7 68.02.2 68.01.9
FLAN-T5-Rep(En)-ClUn(En) 53.66.2 59.23.6 61.23.2 63.41.3 64.62.0 67.02.3 67.91.3 67.71.2 68.01.4 69.30.8
In-Context Learning
Gemma 2-Random 49.3 48.46.2 50.96.8 55.23.3 63.01.5
Gemma 2-Custom 50.55.7 52.95.0
Llama 3.1-Random 43.4 57.04.7 57.24.6 58.23.9 59.42.9 58.93.6 59.53.0 60.12.9
Llama 3.1-Custom 60.90.9 61.01.1 61.81.1 61.51.1
Mistral v0.3-Random 39.4 49.44.5 54.54.3 57.72.6 58.00.8 57.61.8 58.70.9 58.52.1
Mistral v0.3-Custom 53.94.1 56.92.0 58.62.7 57.84.4

Table 9: The average micro-F1 (%) results for MPQA Type when M = 10 (i.e., selection size) in iterative
approaches, calculated over five different seeds for the sampling phase. The sub-columns denote K (i.e., total
support set size), and the subscripts indicate the standard deviation.

6692

Model Name 0 5 10 20 30 40 50 60 70 80 90 100 Full
Majority Baseline 54.8
Random Sampling
BART-Random 73.25.1 78.94.3 82.91.6 86.81.7 92.5
FLAN-T5-Random 76.52.4 80.62.4 81.72.7 82.91.2 85.31.4 86.80.9 86.51.3 87.21.3 88.31.4 88.40.9 94.2
Representative Sampling
BART-Rep(En) 71.40.0 76.12.6 81.81.0 87.11.2
FLAN-T5-Rep(En) 77.55.1 79.31.8 80.80.6 82.61.7 85.32.7 87.70.7 87.72.0 87.71.1 88.72.6 89.21.6
Iterative Approaches
BART-Rep(En)-Un 77.85.5 80.72.0 81.73.0 80.54.2 84.62.4 83.52.6 84.74.8 87.01.3 87.82.9 87.52.5
BART-Rep(En)-Rep(Sc) 77.85.5 77.54.9 77.43.4 82.14.4 81.75.4 82.93.9 84.92.0 84.32.5 86.02.0 86.61.9
BART-Rep(En)-Rep(En) 77.85.5 79.83.9 81.23.1 80.43.9 84.13.3 84.62.7 87.41.2 86.41.4 85.72.5 88.20.8
BART-Rep(En)-UnRep 77.85.5 78.34.3 80.12.5 80.74.5 83.54.2 82.94.5 85.11.9 83.94.9 82.55.5 86.21.5
BART-Rep(En)-ClUn(Sc) 77.85.5 80.14.5 81.13.4 83.62.5 84.62.2 83.52.6 85.31.6 83.23.4 86.32.1 87.22.5
BART-Rep(En)-ClUn(En) 77.85.5 79.24.4 83.02.8 83.42.4 84.01.6 84.12.2 82.22.3 84.84.6 86.62.1 87.21.6
FLAN-T5-Rep(En)-Un 77.55.1 81.25.8 84.13.0 85.82.7 88.21.9 88.41.6 89.71.0 90.80.8 90.71.1 91.40.8
FLAN-T5-Rep(En)-Rep(Sc) 77.55.1 80.83.4 82.61.2 84.92.3 87.40.8 86.52.6 87.42.4 89.61.1 89.91.5 90.61.4
FLAN-T5-Rep(En)-Rep(En) 77.55.1 80.42.0 82.21.7 84.02.3 85.60.6 85.51.2 87.01.5 86.42.0 87.40.7 88.11.4
FLAN-T5-Rep(En)-UnRep 77.55.1 82.42.5 84.12.4 85.31.0 87.52.0 88.41.7 89.01.2 89.21.5 89.70.8 90.10.5
FLAN-T5-Rep(En)-ClUn(Sc) 77.55.1 83.22.4 85.42.6 85.52.0 88.30.9 89.10.5 89.60.8 89.50.8 90.40.7 90.40.7
FLAN-T5-Rep(En)-ClUn(En) 77.55.1 81.51.8 85.02.2 85.51.4 87.51.4 88.81.5 89.81.0 89.71.2 91.00.5 90.80.8
In-Context Learning
Gemma 2-Random 67.0 71.91.9 73.02.1 75.03.3 76.13.7
Gemma 2-Custom 73.50.7 76.12.3
Llama 3.1-Random 64.9 67.03.9 69.73.7 70.42.9 72.93.1 75.42.8 68.36.4 75.71.9
Llama 3.1-Custom 63.33.5 67.64.7 72.13.4 67.24.4
Mistral v0.3-Random 72.4 71.23.0 73.82.1 75.21.3 75.81.1 75.81.7 76.52.1 78.13.4
Mistral v0.3-Custom 72.11.8 74.11.8 73.61.2 73.94.3

Table 10: The average micro-F1 (%) results for MPQA Polarity when M = 10 (i.e., selection size) in iterative
approaches, calculated over five different seeds for the sampling phase. The sub-columns denote K (i.e., total
support set size), and the subscripts indicate the standard deviation.

Model Name 0 5 10 20 30 40 50 60 70 80 90 100 Full
Majority Baseline 37.2
Random Sampling
BART-Random 36.02.4 37.00.2 37.10.1 35.22.1 47.0
FLAN-T5-Random 33.03.8 34.03.6 36.20.9 36.90.7 35.51.6 36.11.7 36.01.4 35.51.5 35.61.4 35.51.5 50.0
Representative Sampling
BART-Rep(En) 37.00.0 35.22.1 37.00.4 37.30.3
FLAN-T5-Rep(En) 33.92.2 35.40.9 36.10.8 35.51.6 36.31.1 35.92.0 36.71.4 36.81.3 36.81.0 35.61.1
Iterative Approaches
FLAN-T5-Rep(En)-Un 33.92.2 36.80.3 36.81.2 37.21.8 37.40.7 37.02.4 37.22.6 38.42.7 38.51.9 39.22.1
FLAN-T5-Rep(En)-Rep(Sc) 33.92.2 35.32.0 35.52.5 36.92.5 37.42.5 37.53.1 37.61.2 37.50.7 38.41.3 38.01.4
FLAN-T5-Rep(En)-Rep(En) 33.92.2 34.52.3 35.13.1 36.21.5 36.92.2 37.10.7 37.81.6 37.21.3 37.00.7 37.81.2
FLAN-T5-Rep(En)-UnRep 33.92.2 36.21.4 36.70.7 36.80.5 37.40.6 37.32.7 37.22.8 36.51.0 38.42.4 38.82.2
FLAN-T5-Rep(En)-ClUn(Sc) 33.92.2 36.30.8 35.91.7 36.21.0 36.42.0 37.21.1 37.52.9 37.61.3 36.81.3 38.21.4
FLAN-T5-Rep(En)-ClUn(En) 33.92.2 35.12.9 36.01.7 37.02.9 38.01.6 38.71.7 38.32.0 39.51.5 38.71.9 39.71.8
In-Context Learning
Gemma 2-Random 32.0 32.34.1 32.82.6 33.22.6 34.61.9
Gemma 2-Custom 33.54.9 33.84.8
Llama 3.1-Random 23.9 26.91.0 31.32.2 31.62.5 31.82.2 31.20.7 30.61.7 31.01.9
Llama 3.1-Custom 32.42.3 33.02.9 31.43.3 31.44.4
Mistral v0.3-Random 22.9 30.84.8 28.92.4 28.52.4 29.62.1 29.70.6 29.30.6 28.72.1
Mistral v0.3-Custom 29.47.2 30.77.7 32.65.3 29.75.0

Table 11: The average micro-F1 (%) results for MPQA Intensity when M = 10 (i.e., selection size) in iterative
approaches, calculated over five different seeds for the sampling phase. The sub-columns denote K (i.e., total
support set size), and the subscripts indicate the standard deviation.

6693

Model Name 0 5 10 20 30 40 50 60 70 80 90 100 Full
Majority Baseline 25.0
Random Sampling
BART-Random 75.17.3 80.94.2 84.03.0 84.32.5 85.11.0 85.31.5 86.71.6 86.51.0 86.50.9 86.81.2 94.2
FLAN-T5-Random 71.86.3 87.31.2 87.81.5 88.31.0 88.41.2 88.70.9 88.91.0 89.40.7 89.40.5 89.30.7 94.4
Representative Sampling
BART-Rep(En) 61.40.3 75.911.9 79.27.3 86.50.8 86.30.4 87.10.5 86.41.8 86.50.4 86.81.0 86.61.5
FLAN-T5-Rep(En) 86.90.7 86.31.4 87.80.6 89.30.4 88.42.1 89.60.3 89.00.4 89.50.4 89.40.4 89.10.3
Iterative Approaches
FLAN-T5-Rep(En)-Un 86.90.7 87.71.0 88.10.9 88.00.9 88.50.6 88.20.9 88.90.4 88.71.1 88.61.0 88.71.4
FLAN-T5-Rep(En)-Rep(Sc) 86.90.7 87.51.2 88.50.8 88.90.7 88.71.1 89.00.8 89.10.5 89.20.4 89.80.5 89.70.2
FLAN-T5-Rep(En)-Rep(En) 86.90.7 86.62.4 88.11.1 87.42.1 88.60.4 89.10.5 89.20.3 89.10.4 89.30.4 89.30.2
FLAN-T5-Rep(En)-UnRep 86.90.7 87.60.3 88.21.0 89.01.1 88.51.2 89.01.0 89.11.4 89.20.5 89.30.8 89.30.5
FLAN-T5-Rep(En)-ClUn(Sc) 86.90.7 86.41.8 86.21.8 87.61.3 87.61.0 87.31.6 88.41.1 88.31.1 88.50.7 88.80.7
FLAN-T5-Rep(En)-ClUn(En) 86.90.7 87.50.7 86.92.1 87.31.8 88.12.0 88.41.3 88.80.9 88.81.3 88.90.7 89.10.8
In-Context Learning
Gemma 2-Random 84.6 85.71.3 85.21.6 86.81.4 87.70.9
Gemma 2-Custom 87.20.5 88.10.6
Llama 3.1-Random 82.5 84.41.5 85.81.4 85.11.4 86.00.6 86.10.8 86.31.3 86.51.3
Llama 3.1-Custom 84.81.0 85.70.7 86.00.9 85.31.4
Mistral v0.3-Random 84.9 82.33.9 82.92.6 85.31.4 85.51.7 84.92.3 86.10.8 86.41.4
Mistral v0.3-Custom 80.42.8 86.20.7 83.22.9 81.93.6

Table 12: The average micro-F1 (%) results for AG News when M = 10 (i.e., selection size) in iterative approaches,
calculated over five different seeds for the sampling phase. The sub-columns denote K (i.e., total support set size),
and the subscripts indicate the standard deviation.

Model Name 0 5 10 20 30 40 50 60 70 80 90 100 Full
Majority Baseline 20.0
Random Sampling
BART-Random 32.13.0 35.72.7 37.12.7 37.82.7 41.11.8 42.33.0 44.02.2 46.02.3 47.01.8 45.32.7 63.2
FLAN-T5-Random 47.24.8 52.74.3 54.33.5 55.62.1 55.90.7 56.80.8 57.41.0 58.00.8 58.50.9 58.81.5 65.7
Representative Sampling
BART-Rep(En) 29.90.0 34.91.7 35.31.5 35.52.6 38.72.6 42.12.5 43.82.4 43.03.3 43.82.1 45.92.7
FLAN-T5-Rep(En) 51.50.2 51.51.8 50.91.9 51.62.4 55.02.9 55.72.7 57.30.7 57.61.2 57.91.3 59.30.9
Iterative Approaches
FLAN-T5-Rep(En)-Un 51.50.2 54.73.1 53.93.3 56.23.7 57.01.7 56.13.6 57.61.7 57.52.1 57.41.9 57.52.8
FLAN-T5-Rep(En)-Rep(Sc) 51.50.2 52.82.2 55.71.4 56.61.1 57.41.1 58.00.8 58.70.6 59.41.6 59.70.6 59.51.4
FLAN-T5-Rep(En)-Rep(En) 51.50.2 52.62.9 55.41.0 56.70.9 57.31.0 57.21.1 57.30.9 57.70.6 57.70.6 58.70.9
FLAN-T5-Rep(En)-UnRep 51.50.2 45.74.2 47.84.9 50.04.6 52.43.2 52.84.4 52.34.2 53.03.1 54.33.2 55.03.1
FLAN-T5-Rep(En)-ClUn(Sc) 51.50.2 54.71.8 55.51.7 58.11.4 58.40.9 58.41.6 58.91.2 58.42.0 59.50.8 59.40.4
FLAN-T5-Rep(En)-ClUn(En) 51.50.2 52.03.5 55.32.3 57.10.7 58.31.6 58.00.7 59.20.8 59.90.6 59.11.3 59.91.1
In-Context Learning
Gemma 2-Random 62.2 60.31.5 60.61.6 60.11.9 60.52.6
Gemma 2-Custom 61.90.6 60.50.6
Llama 3.1-Random 59.4 52.23.7 53.35.4 54.74.8 55.54.5 55.34.4 57.02.7 55.63.1
Llama 3.1-Custom 50.42.4 52.22.6 56.12.4 54.51.2
Mistral v0.3-Random 54.3 59.81.1 59.41.2 58.52.2 54.04.9 49.65.0 49.77.9 46.19.0
Mistral v0.3-Custom 60.00.9 56.92.2 45.66.6 47.72.8

Table 13: The average micro-F1 (%) results for Amazon Reviews when M = 10 (i.e., selection size) in iterative
approaches, calculated over five different seeds for the sampling phase. The sub-columns denote K (i.e., total
support set size), and the subscripts indicate the standard deviation.

6694

