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Abstract

Role-playing agents (RPAs) powered by large
language models (LLMs) have been widely uti-
lized in dialogue systems for their capability
to deliver personalized interactions. Current
evaluations of RPAs mainly focus on person-
ality fidelity, tone imitation, and knowledge
consistency, while overlooking emotional fi-
delity, a key factor that affects user experience.
To this end, we propose a benchmark called
EmoCharacter to assess emotional fidelity of
RPAs in dialogues. EmoCharacter includes two
benchmark datasets (single-turn and multi-turn
dialogues), three evaluation settings, and six
metrics to measure the emotional fidelity be-
tween RPAs and the characters they portray.
Based on EmoCharacter, we conduct extensive
evaluations on RPAs powered by seven widely
used LLMs with representative role-playing
methods. Our empirical findings reveal that:
(1) Contrary to intuition, current role-playing
methods often reduce the emotional fidelity of
LLMs in dialogues; (2) Enhancing the general
capabilities of LLMs does not necessarily im-
prove the emotional fidelity of RPAs; (3) Fine-
tuning or In-Context Learning based on real
dialogue data can enhance emotional fidelity.

1 Introduction

The rise of large language models (LLMs) has rev-
olutionized dialogue systems, enabling more dy-
namic and personalized interactions (Wang et al.,
2023a; Yi et al., 2024). Among these advance-
ments, role-playing agents (RPAs) have emerged,
with agents assigned specific characters or personas.
RPAs have been successfully deployed in various
applications, ranging from entertainment to men-
tal health support (Tseng et al., 2024; Park et al.,
2023; Gan et al., 2023; Yang et al., 2024). Current
evaluations of RPAs primarily focus on personality
fidelity, tone imitation, and knowledge consistency
(Wang et al., 2024b, 2023b; Shao et al., 2023),

*Corresponding authors.

while overlooking a critical aspect of human-like
interaction: emotional fidelity.

Emotional fidelity refers to the degree to which
an RPA can simulate the emotional dynamics of
the character it portrays. Human beings naturally
display emotional shifts based on the context, tone,
and flow of conversation (Chang et al., 2023; Chen
et al., 2017). Psychological research indicates that
personality is closely linked to emotions, with dif-
ferent characters exhibiting varying emotional dy-
namics in dialogues (Poria et al., 2018; Kokko-
nen and Pulkkinen, 1999). The ability to exhibit
emotional variability and coherence throughout a
dialogue is essential for achieving realistic and en-
gaging role-playing experiences.

However, existing RPAs often fail to capture
these nuances, offering static emotional responses
or inaccurately portraying emotions, thereby break-
ing the illusion of authenticity. To address this
gap, we propose EmoCharacter, a novel benchmark
designed to assess the emotional fidelity of RPAs.
EmoCharacter includes two benchmark datasets de-
rived from classic TV dialogues and introduces six
metrics across three evaluation settings to quantita-
tively measure how well RPAs maintain emotional
fidelity with the characters they portray.

Through extensive experiments (§4) and analy-
sis (§5) of RPAs powered by seven widely used
LLMs with three different role-playing methods
(None, RoleLLM and Chat-Haruhi), we pinpoint
three key insights: (1) Contrary to intuition, role-
playing methods often reduce the emotional fidelity
of LLMs in dialogues; (2) Enhancing the general
capabilities of LLMs does not necessarily improve
the emotional fidelity in RPAs; (3) Supervised Fine-
tuning (SFT) or In-Context Learning (ICL) using
real dialogue data annotated with emotional states
can enhance emotional fidelity.

Our contributions are as follows:
(1) To the best of our knowledge, we are the first

to systematically study the emotional fidelity of
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Figure 1: Framework of EmoCharacter. Left: format of evaluation tasks for assessing emotional fidelity in RPAs.
Upper right: three evaluation settings. Lower right: metrics designed from both micro and macro perspectives.

RPAs in dialogue.
(2) We design six metrics to quantify emo-

tional fidelity from both macro and micro perspec-
tives and conduct extensive experiments on various
LLMs with role-playing methods, drawing conclu-
sions that benefit future research.

(3) We conduct an in-depth exploration of meth-
ods to enhance emotional fidelity, including SFT
and ICL. Results indicate their efficacy in improv-
ing emotional fidelity.

2 Related Work

LLM-based Role-Playing. Role-playing agents
(RPAs), typically powered by LLMs, are AI sys-
tems capable of simulating and interacting as their
assigned roles (Chen et al., 2024). Current research
mainly focuses on two directions: (1) Developing
RPAs for specific roles, such as RoleLLM (Wang
et al., 2023b) and Chat-Haruhi (Li et al., 2023), and
(2) Training foundation models specialized in role-
playing, such as Doubao-Character and character.ai
(DoubaoTeam, 2024; character.ai, 2024). To enable
RPAs to fully learn and utilize role data, various
methods are employed to enhance the role-playing
capabilities of LLMs, including setting the role de-
scription as a system prompt (Shao et al., 2023; Lu
et al., 2024), training with role dialogue data (Shao
et al., 2023), and retrieving relevant experiences

from role databases (Wang et al., 2023b).

Evaluation of RPAs. Previous work on evaluat-
ing RPAs has mainly focused on two aspects: (1)
Role fidelity, including personality fidelity (Wang
et al., 2024b) and consistency in role knowledge,
experience, and language patterns (Wang et al.,
2023b; Shao et al., 2023), and (2) Natural abilities
a role should possess, such as multi-turn dialogue
capability (Duan et al., 2024), human-likeness (Xie
et al., 2024), and attractiveness (Zhou et al., 2023).
An ideal RPA should mimic the assigned charac-
ter’s tone, embody its personality, and respond with
appropriate emotions to enhance immersion and
appeal (Chen et al., 2024). However, current evalu-
ations overlook emotional fidelity, a crucial aspect
of emotional intelligence that significantly affects
user experience, thereby motivating the work pre-
sented in this paper.

3 EmoCharacter

To evaluate the emotional fidelity between RPAs
and their assigned characters, EmoCharacter incor-
porates three components, as shown in Figure 1:
evaluation task and settings, single-turn and multi-
turn dialogue datasets, and evaluation metrics.
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3.1 Evaluation Task and Settings
Preliminaries. To assess the emotional fidelity
of RPAs, we first need to obtain the responses
and emotions generated by the RPA during di-
alogue. Formally, given a turn-taking dialogue
between a target character R and a partici-
pant. We define the ground-truth dialogue as
Cn = {U1

gt, U
2
gt, . . . , U

n
gt} and the set of emo-

tions associated with each utterance as En =
{E1

gt, E
2
gt, . . . , E

n−1
gt , En

gt}. Both the first and last
utterances, U1

gt and Un
gt, are from character R. The

process of obtaining the responses and emotions
generated by the RPA playing role R is defined as:

(Un
R, E

n
R) = RPA(R,Cn−1, En−1) (1)

We call each (R,Cn−1, En−1) triplet a test point.

Evaluation settings. Due to the autoregressive
nature of LLMs, variations in the output format
can result in significantly different generation out-
comes in the subsequent text. To ensure that the
obtained emotional response (Un

R, E
n
R) of the RPA

is stable and consistent with those in the RPA’s
regular dialogues, we design three evaluation set-
tings to capture (Un

R, E
n
R) from the conversation:

(1) Emotion First: RPA first expresses its current
emotion, followed by a response based on that emo-
tion. (2) Emotion and Response: RPA simultane-
ously expresses its current emotion and response.
(3) Response First: RPA first provides a response,
then expresses the associated emotion.

Task definition. After obtaining the emotional
response (Un

R, E
n
R), we define the evaluation task

as assessing the consistency between the RPA’s
dialogue (Un

R, E
n
R, Cn−1, En−1) and ground truth

dialogue (Cn, En) using the metrics from §3.3.

3.2 Single-turn and Multi-turn Dataset
3.2.1 PELD-single and PELD-multi
Our single-turn and multi-turn dialogue datasets
are derived from the script of classic TV show

“Friends”. Datasets MELD (Poria et al., 2018) and
EmoryNLP (Zahiri and Choi, 2017) contributed
manually annotated emotion labels for each line.
Building on those, (Wen et al., 2021) introduced
Personality EmotionLines Dataset (PELD). Each
sample in PELD consists of a single-turn dialogue
triplet C3 = {U1

gt, U
2
gt, U

3
gt} with corresponding

emotion labels E3 = {E1
gt, E

2
gt, E

3
gt}. We adopt

PELD as our single-turn dialogue dataset, naming
it PELD-single.

Since multi-turn dialogues are a more common
application scenario for RPAs, we restructure the
MELD dataset to extract all two-person multi-turn
dialogues to address the lack of multi-turn data in
PELD. This results in Cn = {U1

gt, U
2
gt, . . . , U

n
gt},

where n > 3. We refer to this restructured multi-
turn dialogue dataset as PELD-multi. Figure 16
illustrates one example of a multi-turn dialogue.

Similar to the MELD and EmoryNLP datasets,
both PELD-single and PELD-multi face the class
imbalance issue. This imbalance reflects how hu-
mans typically express emotions in natural conver-
sations, where the majority of dialogue tends to
be emotionally neutral. Table 1 shows the specific
statistics. Here, “sentiment” refers to a coarser-
grained emotional state, while “emotion” is finer-
grained (see Appendix A.1 for details).

Category PELD-single PELD-multi

# Basic Statistics
Test Points 6510 1391

Avg. Uttr. Len. 9.32 7.67
Avg. Dialog Len. 3 6.92

# Emotion
Joy 3533 1667

Surprise 1889 1341
Neutral 8701 4544
Anger 2340 968

Disgust 376 285
Fear 1346 266

Sadness 1345 601
# Sentiment

Positive 5422 3008
Neutral 8701 4544

Negative 5407 2120

Table 1: Statistics for PELD-single and PELD-multi.

3.2.2 Emotion Transition in Dialogue
Characters with different personalities exhibit
unique emotional changes during conversations,
and these dynamic shifts cannot be captured
through simple categorical statistics. Therefore,
we further calculate the emotional transitions for
each character in PELD-single and PELD-multi.
Specifically, we define an emotional transition as
the change from emotion Ei

gt associated with the
previous utterance U i

gt to emotion Ei+2
gt associated

with the next utterance U i+2
gt by character R in a

dynamic conversation Cn = {U1
gt, U

2
gt, . . . , U

n
gt},

where 0 < i < n− 2.
The emotion transition matrix is a probability

transition matrix, which describes the probability
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distribution of character R transitioning from the
initial emotion Ei

gt to emotion Ei+2
gt . As shown in

Figure 2, in the two transition matrices depicted,
the darker areas are primarily concentrated in the
first column and along the diagonal, indicating that
most transitions occur towards a neutral emotion or
remain the same. However, there are subtle differ-
ences in the matrices among different characters,
especially in the transitions of negative emotions
such as anger, sadness, fear, and disgust, where the
differences between the two characters are more
pronounced. This also indirectly suggests a correla-
tion between personality differences and emotional
changes. Complete illustration of the matrices are
presented in Figures 5 and 6 in Appendix A.2.

Figure 2: Emotion transition matrices for characters
“Chandler” (sarcastic and insecure) and “Joey” (charm-
ing and naïve) from PELD-single .

3.3 Evaluation Metrics
To comprehensively assess the emotional fidelity
of roles in dialogue, we design six metrics at both
the micro and macro levels.

3.3.1 Micro Emotional Fidelity
At the micro level, we focus on the consistency
between the emotions attached to each utterance by
RPAs in the dialogue and those of the original char-
acters. We introduce Emotional Consistency Score
(EC), along with its lower bound (EClow), upper
bound (ECupp), and Relative Emotional Consis-
tency Score (REC), with Semantic Similarity (SS)
added as a reference.

Emotional Consistency (EC). EC score quanti-
fies the alignment between the emotions expressed
by RPAs in each response and the emotions of the
original characters. Traditional dialogue emotion
recognition studies typically treat emotion align-
ment as a multi-class classification problem, using
weighted F1 score as a metric for model perfor-
mance (Zheng et al., 2023; Shi and Huang, 2023;
Hu et al., 2023). However, the degree of differ-
ence between emotions varies. For instance, the

emotional states of “surprise” are quite close to
“joy” but significantly differ from “sadness”. The
F1 score does not effectively capture these differ-
ences between emotions. Therefore, we introduce
the concept of emotional similarity (ES) based on
the Valence-Arousal-Dominance (VAD) emotional
state space (Russell and Mehrabian, 1977), where
more similar emotions are closer in distance within
the VAD space. We define the ES between different
emotions Ei and Ej as:

ES(Ei, Ej) =
e−2×∥E⃗i−E⃗j∥2

∑7
k=1,k ̸=i e

−2×∥E⃗i−E⃗k∥2
, (2)

where E⃗i represents the vector of Ei in the VAD
space, and || ∗ ||2 is the L2 norm of the vector.

When the RPA playing role R responds with
emotion En

R based on context Cn−1, and En
R differs

from the character R’s true emotion En
gt, we calcu-

late the emotionally consistent portion and inconsis-
tent portion between En

gt and En
R as ES(En

gt, E
n
R)

and 1− ES(En
gt, E

n
R), respectively. The final EC

score is obtained as the weight F1 score sum of
ES(En

gt, E
n
R) and 1 − ES(En

gt, E
n
R). More de-

tails are provided in the Appendix B. The original
weight F1 score is the loose lower bound of EC,
denoted as EClow.

Furthermore, we can calculate the EC score at a
coarser granularity. The seven emotion categories
(Table 1) in PLED-single and PLED-multi can be
grouped into Positive, Neutral, and Negative senti-
ment categories. For the RPA playing role R, when
its En

R and En
gt fall within the same sentiment cat-

egory, they are considered the same emotion; oth-
erwise, the calculation follows the same method
as EC. We call this coarser-grained EC score the
upper bound of EC, ECupp.

In summary, EClow is the traditional weight F1
score, EC is the weight F1 score adjusted by ES,
and ECupp is the EC for sentiment category clas-
sification. Their relationship is: 0 ≤ EClow <
EC ≤ ECupp ≤ 1. ECupp, as the coarsest emo-
tional consistency metric, can be seen as the upper
limit of RPAs’ current emotional consistency ca-
pability. EC is the metric that best reflects user
experience, while EClow is the finest emotional
consistency metric, reflecting the lower bound of
the RPA’s capability.

Relative Emotional Consistency (REC). When
EC is closer to EClow, it indicates that RPAs con-
sistently select emotions that are less aligned with
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the ground truth, even though they fall within the
correct sentiment category. This suggests that
while the RPAs have the right general emotional
direction, they struggle to select the most granular
emotion. It also implies that there is greater poten-
tial to improve EC through optimization techniques
such as prompt engineering or in-context learning.
Conversely, when EC approaches ECupp, it shows
that RPAs are better at selecting the most precise
emotion within the correct sentiment category, in-
dicating that the limiting factor for improving EC
is the capability of the base model. To reflect how
well RPAs are utilizing the capabilities of the un-
derlying LLMs, we introduce REC, defined as:

REC =
EC − EClow

ECupp − EClow
(3)

As REC approaches 0, EC gets closer to its lower
bound EClow; conversely, as it approaches 1, EC
nears its upper bound ECupp.

Semantic Similarity (SS). We define semantic
similarity (SS) between two utterances as the co-
sine similarity of their embedding vectors, which
are generated by the text-embedding-3-small model
(OpenAI, 2024).

3.3.2 Macro Emotional Fidelity
At the Macro Level, we focus on whether the emo-
tional transition distribution of RPAs during dia-
logues aligns with that of the original characters,
while also capturing the emotional differences be-
tween characters. To evaluate this, we introduce
two metrics: the Emotional Distribution Diver-
gence (EDD) score and the Relative Character Di-
vergence (RCD) score.

Emotional Distribution Divergence (EDD).
For a given character, the probabilities of differ-
ent emotional transitions in dialogues vary, and the
emotional transition probability matrix effectively
quantifies this variation. Let Mgt be the emotional
probability transition matrix of the target charac-
ter R, and MR be the emotional transition matrix
generated by the RPA playing R in dialogues. We
define the KL divergence from Mgt to MR as the
EDD score for the RPA playing R:

EDD = DKL(Mgt ∥ MR), (4)

where ∥ denotes the divergence between two prob-
ability distributions. A smaller EDD score indi-
cates a higher consistency in emotional distribu-
tion. To reduce the impact of many zeros in the

emotional probability transition matrix, we apply
Laplace smoothing in the calculations.

Relative Character Divergence (RCD). As
shown in Figure 2, the emotional transition prob-
ability matrices for the characters in PELD-single
exhibit slight differences, reflecting the unique char-
acteristics of each role. Ideally, RPAs should also
demonstrate such differences, providing more per-
sonalized dialogues. Let MRi and MRj be the emo-
tional transition matrices of two characters Ri and
Rj , respectively. We define Character Divergence
(CD) as the average Jeffreys divergence (Jeffreys,
1946) between their emotional transition matrices:

CD =

∑
i

∑
j J(MRi ∥ MRj )

N
, (5)

where N is the number of characters in dataset.
Based on CD scores, the RCD score is further

defined as the difference between the divergence
scores of the RPA and the original role:

RCD = CDRPA − CDgt (6)

When RCD is closer to 0, it indicates that the dif-
ferences between roles played by RPAs align more
closely with the original characters. If RCD > 0,
it suggests that the RPAs overly emphasize the
character differences. Conversely, if RCD < 0, it
implies that the emotional distributions between
the roles played by the RPAs are too similar, failing
to capture their distinct personalities.

4 Experiments

4.1 Experimental Setup

Foundation LLMs for RPAs. We select seven
commonly used LLMs from three categories to
serve as the foundation LLMs for RPAs: (1) closed-
source models from the GPT series, including GPT-
4o, GPT-3.5, and GPT-4o-mini (Achiam et al.,
2023), (2) Open-source models from the Llama
series, such as Llama3-8b-instruct and Llama3-
70b-instruct 1(Dubey et al., 2024), and (3) Models
specifically trained for role-playing tasks, includ-
ing Doubao-character (DoubaoTeam, 2024) and
Westlake-7b-v2 (Senseable, 2023).

Prompting Strategies. For the role-playing
methods, we use the system prompt-based ap-
proaches proposed in RoleLLM and Chat-Haruhi

1For convenience, we abbreviate Llama3-8b-instruct and
Llama3-70b-instruct as Llama3-8b and Llama3-70b.
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to portray the six main characters from “Friends”,
and compare their performance with that of a blank
LLM (where the model has no information about
the character, referred to as “None”).

Data. For each combination of LLMs and role-
playing methods, we evaluate their performance
across the three evaluation settings (§3.1) and re-
port the results of the best-performing setting. To
ensure consistency in test scale, we use 10% of
PELD-single and 50% of PELD-multi as single-
turn and multi-turn test sets, respectively, with the
remaining data used for the fine-tuning (§5.1.1).
See Appendix C for details.

4.2 Main Results

Table 2 presents the results of our evaluation of
LLMs and RPAs using EmoCharacter. Based on
these results, we observe that:

(1) In both single-turn or multi-turn dialogues,
the EC scores of LLMs using role-playing meth-
ods are lower compared to blank LLMs. Addi-
tionally, the EDD scores tend to increase, with
the exception of Doubao. For instance, GPT-4o
model without role-playing (None) achieves an EC
of 0.484, but this drops to 0.422 and 0.423 with
RoleLLM and Chat-Haruhi role-playing prompts,
respectively. This indicates that LLMs struggle
with emotional expression during role-playing, re-
sulting in reduced emotional fidelity.

(2) Regarding RCD, all LLMs show negative val-
ues when not engaged in role-playing and positive
values when they are, indicating that RPAs indeed
reflect the personality traits of characters. However,
this also results in excessive differences between
characters.

(3) Counterintuitively, enhancing the general ca-
pabilities of LLMs does not lead to an improve-
ment in the emotional fidelity of RPAs. For exam-
ple, among the foundation LLMs, GPT-3.5 shows
higher EC than GPT-4o-mini, and LLaMA3-70b
outperforms LLaMA3-8b in EC, yet both perform
worse during role-playing than weaker LLMs.

(4) LLMs specifically optimized for role-playing
tasks, such as Doubao and Westlake, demonstrate
stronger emotional fidelity. For instance, West-
lake achieves an EC score during role-playing that
surpasses both GPT-4o and Doubao, attaining the
highest ECupp.

Table 3 presents the semantic similarity (SS) re-
sults of GPT-3.5 under different settings. It can
be observed that while emotional fidelity (ES and

EDD) decreases with the RoleLLM prompting
strategy, the semantic similarity increases from
0.208 to 0.230. This suggests that RPAs indeed
become more similar to the role in certain aspects,
such as tone and catchphrases. However, when we
specify the same emotion to match the role, as in
the ‘emo’ setting in the table, the semantic sim-
ilarity further improves to 0.289. This indicates
that improving emotional fidelity can enhance the
quality of responses.

4.3 Relative Emotional Consistency Analysis

Figure 3 illustrates the distribution of REC and
EC for different LLMs under the None, RoleLLM,
and Chat-Haruhi methods. Full results are avail-
able in Appendix C.3. REC indicates the position
of EC within the interval (EClow, ECupp) and re-
flects the potential for LLMs to improve EC. We
observe that Westlake maintains a high REC across
all three methods, with scores of 70.7%, 72.6%,
and 67.0%, respectively, achieving good EC even
without a high ECupp. In contrast, Doubao main-
tains a high ECupp across all methods, but its EC
is less impressive, resulting in relatively low REC
scores of 52.0%, 55.9%, and 55.7%. This indi-
cates that current role-playing methods have not
yet fully utilized Doubao’s potential, and Doubao
has greater potential than Westlake to improve EC
through prompting and other techniques. The limi-
tation in further improving Westlake’s EC may be
due to the capabilities of its foundation model.

5 Analysis

5.1 How to Improve Emotional Fidelity?

5.1.1 Real Dialogue Data
Extensive experiments show that the emotional fi-
delity of LLMs decreases during role-playing (as
shown in Table 2). To address this, we further
explore whether using real dialogue data for SFT
could improve emotional fidelity. Specifically, we
construct three forms of fine-tuning datasets from
40% of PELD-single dataset according to the three
task settings outlined in §3.1 (Emo-First, Emo &
Resp, and Resp-First). We select Llama3-8b model
for fine-tuning with LoRA (Hu et al., 2021), as
it is a widely used general-purpose open-source
model for role-playing, and has impressive capa-
bilities despite having a relatively small number of
parameters.

Table 4 presents the emotional fidelity metrics
of the fine-tuned models. We observe that fine-
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Single-turn Dialogue Muti-turn Dialogue

Eomtion Consistency Eomtion ConsistencyModel Type
lower ↑ EC ↑ upper ↑ EDD ↓ RCD ↔ lower ↑ EC ↑ upper ↑ EDD ↓ RCD ↔

GPT - series
None 0.340 0.484 0.523 1.300 -0.260 0.343 0.467 0.553 1.554 -0.319

RoleLLM 0.312 0.422 0.489 1.667 2.801 0.300 0.419 0.500 1.813 2.617GPT-4o
Chat-Haruhi 0.283 0.423 0.477 1.874 1.960 0.303 0.433 0.505 1.870 0.503

None 0.318 0.439 0.506 1.007 -1.905 0.328 0.466 0.526 1.550 -0.778
RoleLLM 0.261 0.397 0.454 1.660 0.757 0.290 0.425 0.483 1.983 1.117GPT-3.5

Chat-Haruhi 0.275 0.399 0.473 1.874 0.347 0.310 0.426 0.486 1.710 1.352

None 0.300 0.420 0.502 1.111 -1.414 0.321 0.436 0.502 1.364 -0.566
RoleLLM 0.264 0.404 0.473 1.760 0.519 0.285 0.414 0.475 1.838 1.790GPT-4o-mini

Chat-Haruhi 0.280 0.407 0.484 1.356 1.460 0.266 0.394 0.476 1.867 2.032

Llama - series
None 0.287 0.427 0.494 1.367 -1.173 0.309 0.437 0.500 1.822 -1.265

RoleLLM 0.169 0.356 0.434 2.910 0.749 0.243 0.402 0.472 2.399 1.360Llama3-70b
Chat-Haruhi 0.317 0.417 0.516 1.244 1.998 0.269 0.410 0.485 2.010 0.507

None 0.260 0.423 0.514 1.742 -1.205 0.303 0.436 0.509 1.845 -0.288
RoleLLM 0.218 0.408 0.489 2.766 0.246 0.224 0.382 0.462 2.511 4.037Llama-8b

Chat-Haruhi 0.307 0.414 0.501 1.260 2.001 0.256 0.430 0.523 1.942 3.322

Role Play LLMs
None 0.313 0.430 0.538 1.410 -0.886 0.288 0.423 0.535 2.420 0.206

RoleLLM 0.290 0.409 0.503 1.185 1.305 0.246 0.384 0.490 2.187 1.094
Doubao-
character

Chat-Haruhi 0.288 0.406 0.500 1.159 0.646 0.257 0.391 0.497 2.009 0.524

None 0.326 0.471 0.531 1.152 -2.440
RoleLLM 0.303 0.433 0.482 1.346 0.267Westlake-7b

Chat-Haruhi 0.303 0.429 0.491 1.348 -0.263
*

Table 2: Performance results of base LLMs with role-playing methods on PELD-single and PELD-multi. Best
results are in bold. ↔: The closer to zero, the better. *: Results for Westlake are not presented for fairness, as it
frequently deviates from the setup (e.g., providing irrelevant responses). See Appendix C.3 for complete results.

RPA Method EC ↑ EDD ↓ SS ↑

GPT-3.5-None 0.439 1.007 0.208 ,
RoleLLM (GPT-3.5) 0.399 1.660 0.230

RoleLLM (GPT-3.5, emo) 1.000 0.000 0.289

Table 3: Results of EC, EDD, and SS for LLMs in
single-turn dialogues. “emo” indicates that the LLM is
provided with ground truth emotion prior to responding.

tuning LLMs with real dialogue data can signifi-
cantly enhance their EC, EClow, ECupp, and EDD
during role-playing, even surpassing powerful gen-
eral models like GPT-4o. However, fine-tuning re-
duces the role differentiation of LLMs, with RCD
becoming negative regardless of the fine-tuning ap-
proach. See Appendix C.4 for fine-tuning details.

5.1.2 In-Context Learning (ICL)
Existing RPA work often enhances role-playing
abilities by retrieving a character’s historical expe-
riences (such as related dialogues from a character
database) during interactions, leveraging the ICL

Model SFT Dataset
Eomtion Consistency

EDD ↓ RCD ↔
lower ↑ EC ↑ upper ↑

GPT-4o / 0.312 0.422 0.489 1.667 2.801
Llama3-8b / 0.218 0.408 0.489 2.766 0.246

Llama3-8b
-sft

Emo - First 0.284 0.454 0.489 1.973 -1.678
Emo & Resp 0.340 0.499 0.551 1.680 -0.556
Resp - First 0.311 0.468 0.506 1.695 -0.717

Table 4: Results of fine-tuning Llama3-8b using three
different datasets.

capability of LLMs. To further explore the impact
of different ICL settings on the emotional fidelity
of RPAs, we select 192 test points from PELD-
multi and define n-shot as adding n rounds of real
dialogues before the test point as a reference. Ta-
ble 5 shows the performance of RPAs using the
RoleLLM and Chat-Haruhi prompting strategies
in terms of EC, EClow, ECupp, and REC under
different shot settings. We observe that as the num-
ber of shots increases, the model’s EC shows an
upward trend, but the improvement is limited.
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Figure 3: Relative emotional consistency results for different role-playing methods on PELD-single (ordered by EC
in ascending order). Besides REC bar charts, colored lines show EC and its upper and lower bounds for comparison.

Shot lower ↑ EC ↑ upper ↑
RoleLLM (GPT-3.5 base)

0-shot 0.276 0.410 0.488
1-shot 0.336 0.441 0.514
2-shot 0.309 0.436 0.544
3-shot 0.330 0.445 0.525

Chat-Haruhi (GPT-3.5 base)
0-shot 0.234 0.375 0.480
1-shot 0.269 0.389 0.480
2-shot 0.269 0.392 0.475
3-shot 0.307 0.418 0.495

Table 5: Emotional Consistency of GPT-3.5 with
RoleLLM and Chat-Haruhi under 0-3 ICL shot settings.

5.2 Case Study: Why Emotional Infidelity?

In extensive experiments, we observe that even the
most advanced LLMs struggle to maintain high
emotional fidelity during role-playing dialogues.
The emotional fidelity of LLMs is often lower than
when they are not engaging in role-playing. To
explore the reasons behind this decline and the
emotional discrepancies between RPAs and real
characters, we conduct a case study. We test the
GPT-3.5 model using RoleLLM and Chat-Haruhi
on the complete PELD-single dataset. Figure 4
shows the original emotion transition matrix for
character “Joey” and the matrices for the LLM
itself (None) and when it plays the character of
“Joey” using RoleLLM and Chat-Haruhi.

As seen in Figure 4, the first three columns of
the emotional transition matrices for RoleLLM and
Chat-Haruhi are notably dark, indicating that RPAs
tend to use neutral and positive emotions like ‘Neu-
tral’, ‘Joy’, and ‘Surprise’ in their responses, while
rarely employing negative emotions. This signifi-
cantly diverges from the character’s original emo-
tional state, which may result from emotional bias

Figure 4: Real emotion transformation matrix of “Joey”
in PELD-single and matrices generated using RoleLLM
and Chat-Haruhi. “None” indicates use of blank LLMs.

introduced during the RLHF (Reinforcement Learn-
ing from Human Feedback) phase of training LLMs
(e.g., certain emotional biases are already evident
in the emotion transition matrix for None.) (Bai
et al., 2022; Ouyang et al., 2022; Cao et al., 2024),
or from an over-adherence to the system prompt
(as character descriptions often emphasize positive
traits) (Wang et al., 2024a; Lou et al., 2024). See
more case studies in Appendix C.5.

6 Conclusion

We proposed EmoCharacter to evaluate the emo-
tional fidelity of RPAs from both macro and mi-
cro perspectives. With extensive evaluations of
multiple LLMs and role-playing methods, we pin-
pointed that even state-of-the-art LLMs like GPT-
4o experience a decline in emotional fidelity during
role-playing dialogues. Our case studies revealed
that LLMs often use overly distinct emotions to

6225



express character traits, leading to low emotional fi-
delity. Additionally, we found that fine-tuning with
real dialogue data and using in-context learning
both benefit the RPAs’ emotional fidelity. We hope
EmoCharacter will facilitate research on building
RPAs with greater emotional intelligence.

7 Limitations

In this study, we conducted a comprehensive evalu-
ation of the emotional fidelity of RPAs, but some
limitations remain. Firstly, to obtain emotional
labels for each response in RPA dialogues, we es-
tablished three test settings to ensure the validity of
our conclusions as much as possible, though biases
may still exist. Secondly, due to computational
constraints, we only fine-tuned Llama3-8b with
LoRA in §5.1.1. Future efforts will aim to extend
these results to larger LLMs, such as Llama3-70b.
Lastly, this study focuses solely on the text modal-
ity, whereas in real emotional interactions, informa-
tion such as voice, gestures, and facial expressions
is equally crucial. Therefore, future research will
expand to multimodal dialogue.

8 Ethical Considerations

In this study, we used dialogue datasets sourced
from publicly available and widely researched re-
sources, and the LLMs employed were accessed
via publicly available APIs or parameters. There-
fore, we do not anticipate any ethical issues arising
from the research. Additionally, evaluating the
emotional fidelity of RPAs can reveal their emo-
tional state distribution and, to some extent, predict
the probability of generating toxic content. If RPAs
exhibit a significant amount of negative emotions,
caution should be exercised, and measures should
be taken to mitigate associated risks. Lastly, we
confirm that all authors are aware of and adhere to
the ACL ethics guidelines.
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A More Details on Datasets

A.1 Categories of Emotion and VAD Space

In this paper, we classify emotions in dialogue into
six basic categories: anger, disgust, fear, joy, sad-
ness, surprise, along with the intermediate emotion,
neutral (Ekman and Davidson, 1994). Furthermore,
we group these emotions into Positive, Negative,
and Neutral categories. Russell and Mehrabian
(1977) projected these emotions onto the Valence-
Arousal-Dominance (VAD) space, quantifying the
intensity of emotions across three dimensions. De-
tails are presented in Table 6.

Basic Emotion (Valence, Arousal, Dominance)

Positive
Joy (0.81, 0.51, 0.46)

Surprise (0.40, 0.67, -0.13)

Neutral Neutral (0.00, 0.00, 0.00)

Negative

Anger (-0.51, 0.59, 0.25)

Disgust (-0.60, 0.35, 0.11)

Fear (-0.62, 0.82, -0.43)

Sadness (-0.63, -0.27, -0.33)

Table 6: Emotions in VAD space

A.2 Emotion probability transition matrices
in PELD-single and PELD-multi

Figures 5 and Figures 6 show the emotion transition
matrices for the six main characters in the PLED-
single and PLED-multi datasets, respectively.

B More Details on Evaluation Metrics

Lower bound of EC (EClow). In §3.3.1 we use
the weighted F1 score as EClow. Specifically, for
each emotion category, we calculate its true posi-
tives (TP), false positives (FP), and false negatives
(FN). Here, TP refers to the number of samples
where the actual value is positive and is also pre-
dicted as positive by the classifier. FP refers to
the number of samples where the actual value is
negative but is predicted as positive by the classi-
fier. FN refers to the number of samples where the
actual value is positive but is predicted as negative
by the classifier. Then, we calculate precision and
recall for each emotion category as follows:

Precision =
TP

TP + FP
(7)

recall =
TP

TP + FN
(8)

F1 = 2 · Precision ·Recall

Precision+Recall
(9)

Let the number of samples in the seven differ-
ent emotion categories be n1, n2, . . . , n7, and their
respective F1 scores be F11, F12, . . . , F17. We
derive EClow by calculating the weighted F1 score
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Figure 5: Emotion transition matrices of the main characters in PELD-single.

Figure 6: Emotion transition matrices for the main characters in PELD-multi.

as follows:

EClow = Weighted F1 =

7∑

i=1

ni × F1i

7∑

i=1

ni

(10)

EC. In our calculation of EClow, we review the
method for computing the weighted F1 score. It
is evident that EClow serves as a stringent metric
due to its strict evaluation criteria. For example,
when the target emotion is “joy”, any prediction of
a different emotion is automatically classified as a
FP, leading to an increment in the FP count while
the TP count remains unchanged. Only when the
predicted emotion matches the target “joy” does the
TP count increase by one. This stringent criterion
limits the metric’s ability to account for potential
correlations among emotions. As illustrated in Fig-

Figure 7: Emotional similarity between different emo-
tions. The left diagram shows a high emotional similar-
ity between “joy” (Ei) and “surprise” (Ej), indicated by
a larger overlap (ES(Ei, Ej)). The right diagram illus-
trates a lower similarity between “joy” and “sadness”,
with a smaller overlap, highlighting varying degrees of
emotional correlation.

ure 7, the similarity between “joy” and “surprise”
is evidently higher than that between “joy” and
“sadness”, yet such nuances are not captured by the
current approach.

To address this, we introduce ES to quantify
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the degree of similarity between different emo-
tions and adjust TP , FP , and FN accordingly.
For instance, if “joy” is predicted as “surprise”
in a sample, the TP for “joy” category is up-
dated to TP + ES(joy, surprise), FP is up-
dated to FP + (1 − ES(joy, surprise)), and
the FN for “surprise” category is updated to
FN +(1−ES(joy, surprise)). We denote these
adjusted values as TP ′, FP ′, and FN ′. Based on
these adjusted values, we calculate the ES-adjusted
F1 score, F1′, using Eq.9. Finally, the formula for
calculating EC is:

EC =

7∑

i=1

ni × F1′i

7∑

i=1

ni

(11)

From Eq. 2, it follows that 0 < ES < 1, leading
to the inequalities:




TP ′ > TP
FP ′ < FP
FN ′ < FN

⇒ F1′ > F1 ⇒ ES > ESlow.

(12)
Therefore, we refer to EClow as a loose lower

bound of EC. Since EC considers the similarity be-
tween emotions, it better reflects the true emotional
consistency of RPAs in dialogue, more accurately
representing the user’s real experience.

Upper bound of EC (ECupp). As shown in Fig-
ure 6, the seven emotions can be grouped into three
coarse-grained sentiments: Positive, Neutral, and
Negative. Given the ground truth emotion Egt and
the emotion generated by the RPA, ERPA, the eval-
uation approach depends on whether Egt and ERPA
fall within the same sentiment category. If they
belong to different sentiment groups, the calcula-
tion follows the original EC metric. Conversely, if
Egt and ERPA are within the same sentiment group,
they are treated as the same emotion. For instance,
when Egt is “joy” and ERPA is “surprise”, the true
positive (TP ) count for the “joy” category is in-
cremented by one. However, if ERPA is “sadness”,
the calculation reverts to the original EC metric.
This modified metric, ECupp, can be interpreted as
a sentiment-consistency (coarse-grained) adjusted
version of the original EC, representing the upper
bound of the RPA’s performance.

EDD and RCD In §3.3.2, we use KL divergence
between probability matrices to calculate EDD.

The KL divergence between probability matrices
M1 and M2 is defined as:

DKL(M1 ∥ M2) =
∑

i

∑

j

M ij
1 log

(
M ij

1

M ij
2

)
,

(13)
Since KL divergence is asymmetric, we use Jef-
freys divergence to calculate RCD:

J(M1 ∥ M2) =
1

2
DKL(M1||M2)

+
1

2
DKL(M2||M1) (14)

Validity of the metric To further validate the
effectiveness of our evaluation framework, we con-
ducted additional experiments to verify the similar-
ity between experimental conclusions and human
preferences. We enlisted three graduate student
volunteers to score the model’s responses by com-
paring them with the ground truth (i.e., the original
character’s responses). The volunteers were asked
to determine which response’s emotional expres-
sion was more aligned with the emotions the target
character might likely exhibit (scoring from 0 to
1; if one response received a score of x, the other
would receive a score of 1-x). Table 7 presents the
results of the human preferences.

Method EC_low EC EC_upp HF

None 0.318 0.439 0.506 0.382

RoleLLM 0.261 0.397 0.454 0.264

Chat-haruhi 0.275 0.399 0.473 0.270

Table 7: Human feedback (HF) on responses from dif-
ferent methods. (based on GPT-3.5)

Application strategy of metrics or evaluation
frameworks. Since our metrics rely on manually
annotated emotion labels in the dialogue dataset as
ground truth, there are instances where this ground
truth might be missing. To address this, we propose
two strategies to enhance the applicability of our
evaluation framework: (1) using a dialogue emo-
tion recognition model to generate pseudo-labels
for dialogues. (2) Employing a character dataset
with ground truth as a validation set to optimize
the emotional fidelity of role-playing methods, and
then using the optimized methods to portray the
target character.
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C More Details and Results from
Experiments

C.1 Versions and System Prompts of LLMs

Table 8 shows the versions of all LLMs used in the
experimental section. Figure 8 shows the prompts
used in the RoleLLM and Chat-Haruhi prompting
strategies. Figures 9 and 10 display the descriptive
information for different characters.

Model Version

GPT - series

GPT-4o gpt-4o-2024-05-13

GPT-3.5 gpt-3.5-turbo-0125

GPT-4o-mini gpt-4o-mini-2024-07-18

Llama - series

Llama3-8b Llama3-8b-instruct

Llama3-70b Llama3-70b-instruct

Role Play LLMs

Westlake-7b WestLake-7B-v2

Doubao-character Doubao-pro-4k-character-240728

Table 8: Versions of LLMs.

C.2 More Details for Evaluation Settings

Figures 11, 12, and 13 show the prompts used in
different evaluation settings. In fact, to refine the
experiment further, the Emotion and Response (ER)
in the evaluation settings can be be further bro-
ken down into Simultaneous-Emotion First (SEF)
and Simultaneous-Response First (SRF). However,
since the results obtained from these two setups are
quite similar in most scenarios, we use SEF as the
ER result.

C.3 Complete Experimental Results.

Tables 9, 10, and 11 present the full test results of
different series of LLMs on PELD-single, while
Tables 12, 13, and 14 show the complete test results
on PELD-multi. Here, EF stands for “Emotion
First”, ER for “Emotion and Respond”, and RF
for “Respond First”. We highlight the relatively
better results from these three test settings in the
main results. The error rate indicates the proportion
of instances where the model’s response contains
emotions outside our predefined range or irrelevant
content. We do not consider results with an error
rate exceeding 10%. The REC results for multi-
turn dialogues are shown in Figure 14.

C.4 More Details on the Supervised
Fine-Tuning.

We use LoRA to fine-tune Llama3-8b-instruct
with the following parameter settings: epoch:
3; att_dropout: 0.1; learning_rate: 0.00001;
lora_alpha: 64; lora_dropout: 0.1; lora_rank: 64;
warmup_step_rate: 0.05.

C.5 Additional Case Studies.
Figure 15 presents additional case studies.
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Prompt for RoleLLM

You are {role_name}, your description is: {role_description}. Now please answer some
questions to accurately show your personality traits! Your speaking style should fully
imitate the personality role assigned to you! You must always remember that you are
only assigned one personality role. Don’t be verbose or too formal or polite when
speaking.

Prompt for Chat-Haruhi

I want you to act like {role_name} from ‘Friends’. I want you to respond and answer
like {role_name} using the tone, manner, and vocabulary {role_name}. Your description
is: {role_description}.

Figure 8: Prompts used in RoleLLM and Chat-Haruhi prompting strategies.

Chandler’s Description

Chandler Bing is known for his quick-witted and sarcastic humor, which defines much
of his personality in the TV series ‘Friends’. He often uses humor as a shield to avoid
dealing with his emotions and insecurities stemming from his parents’ tumultuous
divorce and his father’s unconventional lifestyle. Despite his penchant for sarcasm,
Chandler is also incredibly loyal and caring. He values his friendships deeply and is
always ready to support his friends in times of need.

Joey’s Description

Joey Tribbiani from ‘Friends’ is affable, simple-minded, and loyal. He’s an aspiring
actor, known for his love of food and optimistic outlook. Despite appearing naive,
Joey is empathetic and caring. He often provides comic relief but also shows deep
emotional depth. His charm and protective nature make him beloved among his friends,
emphasizing his loyalty and affection.

Ross’s Description

Ross Geller from ‘Friends’ is intellectual, sensitive, and socially awkward. He’s a
paleontologist known for his rationality and scientific mindset, contrasting with his
friends’ laid-back attitudes. He is loving and devoted, especially to his family and son,
though he can be overly serious and jealous. His passion for dinosaurs and history, nerdy
traits, and occasional anger add complexity to his character.

Figure 9: Descriptions of the three main characters (Chandler, Joey, and Ross) in ‘Friends’
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Monica’s Description

Monica Geller from ‘Friends’ is competitive, highly organized, and obsessively clean.
She is a professional chef, showcasing her passion and perfectionism. Monica often
acts as the mother hen of her group, being nurturing yet sometimes overly controlling.
Despite her strong-willed nature, she is loyal and humorous, especially about her
compulsiveness. Her story includes personal growth, dealing with family and love
issues. Monica’s mix of strength, vulnerability, and maternal qualities make her a central
and beloved character.

Phoebe’s Description

Phoebe Buffay from ‘Friends’ is quirky, eccentric, and free-spirited. She’s a masseuse
and self-taught musician known for her humorous and bizarre songs. Phoebe’s un-
conventional past, including living on the streets, shapes her unique worldview. She’s
empathetic, connected to spirituality, and refreshingly honest. Despite her oddities,
Phoebe is fiercely loyal, compassionate, and protective of her friends. Her resilience
and individuality make her a beloved and standout character in the series.

Rachel’s Description

Rachel Green from ‘Friends’ starts as a spoiled, naive woman and evolves into an
independent, successful fashion professional. Initially a waitress, she climbs the fashion
industry ladder, showcasing her style and personal growth. Rachel is warm, affectionate,
and romantic. She’s also humorous and quirky, endearing her to her friends and the
audience. Rachel values her friendships deeply, displaying loyalty and compassion. Her
journey from dependency to independence, coupled with her loving nature, makes her a
cherished character.

Figure 10: Descriptions of the other three main characters (Monica, Phoebe, and Rachel) in ‘Friends’
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Prompt Template for Emotion First (EF)

System Prompt:
{System_prompt_for_character R}
Assistant Prompt:
{utterance_1}
User Prompt:
{utterance_2}
...
Assistant Prompt:
{utterance_n-2}
User Prompt:
{utterance_n-1}
User Prompt:
Please state the emotion you are experiencing after the previous exchange, selecting one
of the following seven emotions: {’anger’, ’disgust’, ’fear’, ’joy’, ’neutral’, ’sadness’,
’surprise’}. !!Note: do not respond with any emotion categories other than these seven,
simply answer with the word for the emotion you choose.
Assistant Prompt (waiting for responses from RPAs):
{RPA’s response_1}
User Prompt:
Please respond to the previous exchange using the emotion of {RPA’s response_1}.
Assistant (waiting for responses from RPAs):
{RPA’s response_2}

Figure 11: Prompt Template for Emotion First (EF)

Prompt Template for Emotion and Response (ER)

System Prompt:
{System_prompt_for_character R} + "When responding, use the JSON format, for
example, {’emotion’: ’fear’, ’content’: ’No don’t, I beg of you!’}. ’emotion’ represents
the emotion used in the response, which has seven types: ’anger’, ’disgust’, ’fear’, ’joy’,
’neutral’, ’sadness’, ’surprise’. ’content’ represents the content of the reply."
Assistant Prompt:
{’emotion’: emotion_1, ’content’: utterance_1}
User Prompt:
{’emotion’: emotion_2, ’content’: utterance_2}
...
Assistant Prompt:
{’emotion’: emotion_n-2, ’content’: utterance_n-2}
User Prompt:
{’emotion’: emotion_n-1, ’content’: utterance_n-1}
Assistant (waiting for responses from RPAs):
{RPA’s response}

Figure 12: Prompt Template for Emotion and Response (ER)
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Prompt Template for Response First (RF)

System Prompt:
{System_prompt_for_character R}
Assistant Prompt:
{utterance_1}
User Prompt:
{utterance_2}
...
Assistant Prompt:
{utterance_n-2}
User Prompt:
{utterance_n-1}
Assistant Prompt (waiting for responses from RPAs):
{RPA’s response_1}
User Prompt:
Please state the emotion you attached to your response to the previous sentence,
selecting one of the following seven emotions:{’anger’, ’disgust’, ’fear’, ’joy’, ’neutral’,
’sadness’, ’surprise’}. !!Note: do not respond with any emotion categories other than
these seven, simply answer with the word for the emotion you choose."
Assistant (waiting for responses from RPAs):
{RPA’s response_2}

Figure 13: Prompt Template for Response First (RF)

Figure 14: Relative emotional consistency results for different role-playing methods on PELD-multi (ordered by EC
in ascending order). Besides REC bar charts, colored lines show EC and its upper and lower bounds for comparison.
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Model Type Eomtion Consistency EDD RCD Error
ratelower EC upper REC

GPT4o

None
EF 0.336 0.479 0.521 0.773 1.286 -1.183 0.005
ER 0.340 0.484 0.523 0.787 1.300 -0.260 0.027
RF 0.317 0.454 0.505 0.729 1.352 -2.605 0.008

RoleLLM
EF 0.312 0.422 0.489 0.621 1.667 2.801 0.008
ER 0.306 0.424 0.495 0.624 1.672 4.582 0.018
RF 0.304 0.418 0.471 0.683 1.682 1.422 0.016

Chat-
Haruhi

EF 0.292 0.419 0.475 0.694 1.418 1.691 0.002
ER 0.283 0.423 0.477 0.722 1.874 1.960 0.029
RF 0.257 0.390 0.459 0.658 1.773 1.267 0.005

GPT3.5

None
EF 0.318 0.439 0.506 0.644 1.007 -1.905 0.000
ER 0.317 0.432 0.509 0.599 1.047 -0.621 0.003
RF 0.286 0.426 0.474 0.745 1.517 -3.379 0.005

RoleLLM
EF 0.261 0.397 0.454 0.705 1.660 0.757 0.008
ER 0.256 0.373 0.442 0.629 1.812 4.283 0.002
RF 0.250 0.376 0.449 0.633 1.858 3.670 0.010

Chat-
Haruhi

EF 0.275 0.399 0.473 0.626 1.360 0.347 0.006
ER 0.256 0.371 0.442 0.618 1.930 4.263 0.003
RF 0.254 0.383 0.455 0.642 1.731 1.860 0.005

GPT4o-mini

None
EF 0.300 0.420 0.502 0.594 1.111 -1.414 0.009
ER 0.281 0.398 0.509 0.513 1.452 -0.348 0.012
RF 0.277 0.414 0.472 0.703 1.487 -3.054 0.067

RoleLLM
EF 0.264 0.404 0.473 0.670 1.760 0.519 0.017
ER 0.169 0.315 0.416 0.591 2.544 3.862 0.015
RF 0.226 0.361 0.433 0.652 1.978 4.363 0.012

Chat-
Haruhi

EF 0.280 0.407 0.484 0.623 1.356 1.460 0.000
ER 0.185 0.322 0.410 0.609 2.529 1.890 0.029
RF 0.240 0.371 0.459 0.598 1.739 1.993 0.015

Table 9: Evaluation results of GPT series models on PELD-single. EF stands for “Emotion First”, ER for “Emotion
and Respond”, and RF for “Respond First”. Error rate indicates the proportion of instances where the model’s
response contains emotions outside predefined range or irrelevant content.

6236



Model Type Eomtion Consistency EDD RCD Error
ratelower EC upper REC

Llama3-70b

None
EF 0.287 0.427 0.494 0.676 1.367 -1.173 0.033
ER 0.214 0.358 0.461 0.583 1.724 -2.067 0.178
RF 0.296 0.427 0.472 0.744 1.418 -2.245 0.005

RoleLLM
EF 0.169 0.356 0.434 0.706 2.910 0.749 0.012
ER 0.205 0.350 0.420 0.674 2.281 3.479 0.315
RF 0.174 0.320 0.396 0.658 2.858 3.753 0.011

Chat-
Haruhi

EF 0.317 0.417 0.516 0.503 1.244 1.998 0.009
ER 0.230 0.402 0.512 0.610 2.500 7.904 0.263
RF 0.262 0.396 0.486 0.598 1.864 6.920 0.015

Llama3-8b

None
EF 0.260 0.423 0.514 0.642 1.742 -1.205 0.022
ER 0.235 0.396 0.491 0.629 1.780 -2.603 0.336
RF 0.303 0.414 0.509 0.539 1.474 -0.896 0.018

RoleLLM
EF 0.218 0.408 0.489 0.701 2.766 0.246 0.075
ER 0.249 0.416 0.513 0.633 2.085 4.761 0.105
RF 0.219 0.371 0.457 0.639 2.225 4.804 0.024

Chat-
Haruhi

EF 0.307 0.414 0.501 0.552 1.260 2.001 0.006
ER 0.230 0.403 0.511 0.616 2.475 7.036 0.261
RF 0.265 0.401 0.495 0.591 1.815 6.862 0.017

Table 10: Evaluation results of Llama series models on PELD-single.

Model Type Eomtion Consistency EDD RCD Error
ratelower EC upper REC

Doubao-
character

None
EF 0.278 0.418 0.526 0.565 1.346 -1.024 0.006
ER 0.313 0.430 0.538 0.520 1.410 -0.886 0.017
RF 0.286 0.424 0.508 0.622 1.458 -0.331 0.005

RoleLLM
EF 0.257 0.402 0.517 0.558 1.606 0.098 0.006
ER 0.211 0.345 0.470 0.517 2.161 0.639 0.020
RF 0.290 0.409 0.503 0.559 1.185 1.305 0.017

Chat-
Haruhi

EF 0.288 0.406 0.500 0.557 1.159 0.646 0.000
ER 0.200 0.334 0.456 0.523 2.221 0.511 0.029
RF 0.256 0.381 0.486 0.543 1.656 1.413 0.023

Westlake-7b

None
EF 0.290 0.429 0.481 0.728 1.339 -1.492 0.049
ER 0.326 0.471 0.531 0.707 1.152 -2.440 0.457
RF 0.272 0.411 0.453 0.768 1.517 -2.444 0.083

RoleLLM
EF 0.303 0.433 0.482 0.726 1.346 0.267 0.065
ER 0.278 0.438 0.491 0.751 1.602 -2.148 0.598
RF 0.210 0.332 0.389 0.682 2.288 -0.384 0.066

Chat-
Haruhi

EF 0.303 0.429 0.491 0.670 1.348 -0.263 0.021
ER 0.282 0.423 0.476 0.727 1.314 -1.107 0.387
RF 0.188 0.314 0.372 0.685 2.259 -0.550 0.037

Table 11: Evaluation results of role-playing LLMs on PELD-single. EF stands for “Emotion First”, ER for
“Emotion and Respond”, and RF for “Respond First”. Error rate indicates the proportion of instances where
model’s response contains emotions outside predefined range or irrelevant content.
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Model Type Eomtion Consistency EDD RCD Error
ratelower EC upper REC

GPT4o

None
EF 0.338 0.456 0.528 0.621 1.423 -0.035 0.006
ER 0.308 0.432 0.531 0.556 1.929 0.903 0.026
RF 0.343 0.467 0.553 0.590 1.554 -0.319 0.006

RoleLLM
EF 0.294 0.419 0.493 0.628 1.775 1.066 0.001
ER 0.284 0.413 0.511 0.568 2.338 1.224 0.024
RF 0.300 0.419 0.500 0.595 1.813 2.617 0.022

Chat-
Haruhi

EF 0.303 0.433 0.505 0.644 1.870 0.503 0.001
ER 0.280 0.405 0.500 0.568 2.379 2.400 0.043
RF 0.267 0.403 0.472 0.663 2.109 1.317 0.013

GPT3.5

None
EF 0.317 0.448 0.514 0.665 1.823 -0.459 0.020
ER 0.324 0.454 0.552 0.570 1.816 -0.611 0.004
RF 0.328 0.466 0.526 0.697 1.550 -0.778 0.006

RoleLLM
EF 0.290 0.425 0.483 0.699 1.983 1.117 0.003
ER 0.301 0.424 0.505 0.603 1.947 2.926 0.009
RF 0.290 0.414 0.484 0.639 1.575 2.306 0.001

Chat-
Haruhi

EF 0.310 0.426 0.486 0.659 1.710 1.352 0.004
ER 0.225 0.383 0.469 0.648 2.067 3.807 0.001
RF 0.298 0.422 0.492 0.639 1.659 1.900 0.003

GPT4o-mini

None
EF 0.321 0.436 0.502 0.635 1.364 -0.566 0.006
ER 0.260 0.397 0.535 0.498 2.292 0.067 0.024
RF 0.313 0.435 0.517 0.598 1.658 -0.496 0.004

RoleLLM
EF 0.285 0.414 0.475 0.679 1.838 1.790 0.006
ER 0.224 0.362 0.478 0.543 3.179 4.410 0.009
RF 0.262 0.387 0.467 0.610 2.159 4.216 0.011

Chat-
Haruhi

EF 0.266 0.394 0.476 0.610 1.867 2.032 0.000
ER 0.186 0.330 0.440 0.567 3.629 4.503 0.030
RF 0.238 0.367 0.457 0.589 2.247 2.314 0.010

Table 12: Evaluation results of GPT series models on PELD-multi. EF stands for “Emotion First”, ER for “Emotion
and Respond”, and RF for “Respond First”. Error rate indicates the proportion of instances where model’s response
contains emotions outside predefined range or irrelevant content.
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Model Type Eomtion Consistency EDD RCD Error
ratelower EC upper REC

LLama3-70b

None
EF 0.309 0.437 0.500 0.670 1.822 -1.265 0.060
ER 0.234 0.375 0.476 0.583 2.936 0.002 0.130
RF 0.293 0.415 0.479 0.656 1.681 -0.413 0.012

RoleLLM
EF 0.243 0.402 0.472 0.694 2.399 1.360 0.066
ER 0.239 0.373 0.471 0.578 3.014 3.457 0.229
RF 0.203 0.343 0.428 0.622 2.869 4.948 0.027

Chat-
Haruhi

EF 0.269 0.410 0.485 0.653 2.010 0.507 0.029
ER 0.240 0.374 0.466 0.593 2.969 3.124 0.258
RF 0.210 0.360 0.437 0.661 2.653 4.974 0.081

LLama3-8b

None
EF 0.235 0.416 0.507 0.665 2.637 -1.777 0.014
ER 0.274 0.438 0.554 0.586 2.909 -0.440 0.283
RF 0.303 0.436 0.509 0.646 1.845 -0.288 0.014

RoleLLM
EF 0.185 0.382 0.461 0.714 3.141 1.615 0.010
ER 0.281 0.440 0.537 0.621 3.153 5.667 0.281
RF 0.224 0.382 0.462 0.664 2.511 4.037 0.017

Chat-
Haruhi

EF 0.284 0.430 0.523 0.611 1.942 3.322 0.013
ER 0.256 0.418 0.520 0.614 3.309 7.953 0.305
RF 0.248 0.389 0.479 0.610 2.479 7.826 0.014

Table 13: Evaluation results of Llama series models on PELD-multi.

Model Type Eomtion Consistency EDD RCD Error
ratelower EC upper REC

Doubao-
Character

None
EF 0.227 0.374 0.480 0.581 2.403 -0.009 0.004
ER 0.288 0.423 0.535 0.547 2.420 0.206 0.018
RF 0.275 0.408 0.531 0.520 2.178 -0.772 0.012

RoleLLM
EF 0.226 0.381 0.490 0.587 2.422 -0.421 0.001
ER 0.254 0.386 0.503 0.530 2.744 2.488 0.044
RF 0.246 0.384 0.490 0.566 2.187 1.094 0.009

Chat-
Haruhi

EF 0.257 0.391 0.497 0.558 2.009 0.524 0.000
ER 0.246 0.372 0.501 0.494 2.794 1.469 0.009
RF 0.244 0.381 0.497 0.542 2.090 1.043 0.022

Westlake-7b

None
EF 0.330 0.457 0.517 0.679 1.314 -0.812 0.148
ER 0.329 0.471 0.545 0.657 2.099 -0.234 0.145
RF 0.312 0.440 0.494 0.703 1.729 -1.507 0.150

RoleLLM
EF 0.314 0.434 0.483 0.710 1.357 0.508 0.109
ER 0.313 0.462 0.549 0.631 2.644 0.471 0.139
RF 0.260 0.384 0.452 0.646 2.039 2.102 0.150

Chat-
Haruhi

EF 0.302 0.419 0.480 0.657 1.447 1.677 0.060
ER 0.320 0.460 0.536 0.648 2.433 1.225 0.118
RF 0.252 0.377 0.459 0.604 2.211 1.099 0.098

Table 14: Evaluation results of role-playing LLMs on PELD-multi. EF stands for “Emotion First”, ER for “Emotion
and Respond”, and RF for “Respond First”. Error rate indicates the proportion of instances where model’s response
contains emotions outside predefined range or irrelevant content.
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Figure 15: Emotional transition matrices of six characters for different role-playing methods on GPT-3.5.

Figure 16: A multi-turn dialogue case in PELD-multi.
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