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Abstract

In-Context Learning (ICL) typically utilizes
classification criteria from output probabilities
of manually selected label tokens. However,
we argue that such token-based classification
criteria lead to suboptimal decision boundaries,
despite delicate calibrations through translation
and constrained rotation applied. To address
this problem, we propose Hidden Calibration,
which renounces token probabilities and uses
the nearest centroid classifier on the LM’s last
hidden states. In detail, we assign the label
of the nearest centroid previously estimated
from a calibration set to the test sample as the
predicted label. Our experiments on 6 models
and 10 classification datasets indicate that Hid-
den Calibration consistently outperforms cur-
rent token-based baselines by about 20%∼50%,
achieving a strong state-of-the-art in ICL. Our
further analysis demonstrates that Hidden Cali-
bration finds better classification criteria with
less inter-class overlap, and LMs provide lin-
early separable intra-class clusters with the help
of demonstrations, which supports Hidden Cal-
ibration and gives new insights into the princi-
ple of ICL. Our official code implementation
can be found at https://github.com/hc495/
Hidden_Calibration.

1 Introduction

In-context Learning (ICL) (Dong et al., 2022) is
a few-shot learning paradigm without model pa-
rameter updates on Language Models (LMs). In
detail, as shown in Fig. 1-(A, B), given a prompt
consisting of demonstrations and a query, LMs con-
duct causal language modeling operation from the
prompt to assign probabilities to the label token
candidates designed by hand, and ICL chooses the
one with the highest probability as the prediction.

One well-known issue of ICL is that the pre-
dicted probabilities are biased (under-calibrated),
leading to a decrease in prediction perfor-
mance (Fei et al., 2023; Han et al., 2022; Zhao

Figure 1: In an ICL diagram, A. The prompt of ICL
consists of a concatenation of demonstrations and a
query. LMs encode the prompt into the last hidden
state h, then B. (previous works) use the un-embedding
vectors of the label tokens (EU

+ , EU
− ) to decode the

h to prediction ŷ, then calibrations are used to adjust
the predicted logits. C. Our work uses the calibration
dataset to calculate centroids (h̄+, h̄−) to decode the h.

et al., 2021; Zhou et al., 2023). To address this
issue, previous work calibrates the predicted label
token probabilities by performing affine transfor-
mations with estimated parameters to adjust these
probabilities for more precise predictions.

These previous works and also the vanilla ICL
are based on a potential assumption: the affine man-
ifolds spanned by the decoding vectors in the LM
head (un-embedding vectors) of manually selected
label tokens are good subspaces of the hidden space
to distinguish hidden vectors (i.e., the last hidden
states to be fed to the LM head) onto various la-
bel appropriately, so that the label token probabil-
ities decoded from these subspaces are accurate
classification logits. However, although using the
label un-embedding with task-related semantics
(e.g. “positive" and “negative") seems intuitive, it
should be noted that we have no reason to believe
that these label un-embeddings have any explicit
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guarantee for decoding the last hidden states into
accurate classification logits (token-based decision
criterion), even if various delicate calibrations are
used to move these boundaries inside the subspaces
(see §3.1). Also, some works have pointed out that
randomly changing label spaces doesn’t critically
influence ICL performance (Min et al., 2022c; Wei
et al., 2023), which means the selected label sub-
spaces are trivial and arbitrary, making a suspicion
of: using manually selected label un-embeddings
to decode the last hidden states, i.e., utilizing man-
ually selected label probabilities as classification
criteria may not be good ICL practices.

Previous work has shown that using the output
probabilities of the full vocabulary increases ICL
performance (Xu et al., 2022; Abbas et al., 2024).
This is a good start to avoid the manually selected
classification criteria, but there is still doubt that
output probability distributions are not informative
enough for classification (see §3.2). Therefore,
we utilize the last hidden states instead, which are
informative precursors of the token probabilities.

Concretely, we propose Hidden Calibration,
training centroid classifiers on the last hidden states
of ICL prompts. As shown in Fig. 3, during the
training, we build standard ICL prompts similarly
to Fig. 1-A from a supervised calibration set and
input them into the LM to get the last hidden states
of the last tokens of ICL prompts. Then, we cal-
culate the centroids of the last hidden states w.r.t.
the queries’ label to get a centroid for each label,
as an anchor for inference. During the inference,
we input the test prompt, find the nearest centroid
to the last hidden states of the test prompt, and as-
sign the corresponding label of the centroid as the
prediction.

Empirically, Hidden Calibration improves the
ICL performance by approximately more than 20%
on 10 text classification datasets and 6 modern LMs
(§4.1), with an equal computational cost with previ-
ous calibration methods. To the best of the author’s
knowledge, Hidden Calibration consistently outper-
forms the calibration baselines, achieving a strong
state-of-the-art in ICL. Additional experiments in-
dicate that Hidden Calibration effectively alleviates
the stress of prompt engineering, performing robust
accuracy under different prompt designs.

Moreover, our subsequent analysis indicates that
Hidden Calibration does find better logits-mapping
subspaces that effectively separate data points. In
detail, we find that the distribution of classifica-
tion logits calculated from Hidden Calibration have

less inter-class overlapping than from label proba-
bilities, while such overlapping is proportional to
the lower bound of the classification error. This
suggests Hidden Calibration finds subspaces with
essentially better classification performance.

Furthermore, we investigate the principle of Hid-
den Calibration, that is, the reason why a simple
centroid-based linear decision boundary can divide
the ICL hidden state properly. We find that LMs
provide linearly separable clusters in the hidden
states w.r.t. query labels, while more demonstra-
tions can promote such a process.

Our contributions can be summarized as:
• We analyze the previous calibration practices

on ICL, and find their consistent limitations:
using predicted probabilities of manually se-
lected label tokens for classification criteria,
which is often under-guaranteed.

• We propose Hidden Calibration to address the
problem before, eliminating the unreliable de-
coding on the hand-selected label, and using
a centroid classifier on the LM’s last hidden
states. Our experiments suggest that Hidden
Calibration reaches a strong state-of-the-art.

• Our further analysis indicates that Hidden Cal-
ibration does find better classification criteria
with less inter-class overlap, and LMs provide
linearly separable intra-class clusters with the
help of demonstrations, which supports Hid-
den Calibration to classify samples accurately.

2 Background

This section reviews previous work on ICL and
denotes their mathematical descriptions as an intro-
duction to the main motivation of this work.

2.1 In-context Learning

Prompting. Given a few-shot natural language
classification dataset (demonstration set) D ={(

x(i), y(i)
)
∈ X × Y

}n

i=1
, where x(i) and y(i)

are the input sequence and label token of i-
th data point, and X ,Y is the input and label
space, respectively, we sample a set of k samples
Dde =

{(
x(ci), y(ci)

)}k

i=1
from D with an index

set {ci}ki=1 for a given query xq as the demonstra-
tions. Then, we use a template T to concatenate
them in a natural language form into a prompt token
sequence: s = T

(
Dde, xq

)
, as shown in Fig. 1-A.

Encoding. A decoder-structured LM receives the
prompt token sequence s and encodes it into the
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Figure 2: Token probability-based decision boundaries
(original & batch calibrated) are suboptimal comparing
to centroid-based boundary. Points and contour lines
are ICL’s last hidden states and kernel densities mapped
by Principal Component Analysis. Oblique coordinate
axis is the direction of the un-embedding difference of
label tokens

(
EU

+ − EU
−
)
, where the kernel densities of

mapped data points are plotted. The rotating calibration
by A ̸= 1 (e.g. Contextual Calibration, Domain Cali-
bration) has a limited feasible mapping direction3 .

last (from the last Transformer layer) hidden state
matrix as H ∈ R|s|×d with a length of token |s| and
embedding dimension of d. We denote the hidden
state of the last token as h = H|s| ∈ Rd.
Constrained Decoding. In a typical ICL setup,
one chooses the un-embedding vectors of the label
candidates in the output head1 to decode h as the
prediction. That is, for each label l, the similarity
αl = sim(h,EU

l ) (usually the dot-product similar-
ity) between h and the un-embedding vector EU

l

is calculated as the output logits αl, as shown in
Fig. 1-B for a binary classification example. Then,
the label with the highest logits is chosen as the
prediction ŷ, that is: ŷ = argmax

l∈Y
sim(h,EU

l ).

2.2 Token-probability Calibration for ICL
However, Zhao et al. (2021) find that simply using
the original logits for classification can not lead to
a good ICL practice, since these logits have consid-
erable prior bias and often tend towards specific la-
bels even if the query is blank or meaningless (Zhao
et al., 2021; Fei et al., 2023). Some calibrations
have been proposed to mitigate such bias in a linear

1We omit the bias term in the output head (if any) for the
sake of simplicity, which can be overridden by a fixed-to-one
dimension, or covered by the calibration described below.

form: first, the logits are transformed into proba-
bilities as p = softmax

([
α1, α2, . . . , α|Y|

])
, then

affine-transformed as calibrated classification cri-
teria p′ = A ⊙ p + B, where A,B ∈ R|Y| is the
calibration terms estimated from m training exam-
ples from a calibration set, and ⊙ is the Hadamard
multiplication. Various estimations for A and B
are used: some practices use examples with pseudo
queries terms (Fei et al., 2023; Zhao et al., 2021),
while other practices use Gaussian estimation on
real prompts (Han et al., 2022) or the mean value
of p during the inference (Zhou et al., 2023).

However, as to be discussed in §3.1 current cali-
brations are affine transformations on label token
probability, without modifying the EU

l , causing
only limited improvement to ICL performance.

3 Methodology

Based on the above background, in this section,
we demonstrate the limitations of the above cali-
brations, and then propose Hidden Calibration to
address such limitations fundamentally.

3.1 Token Probabilities Are Not Good
Classification Criteria

To better understand the limitations of the label to-
ken probability-based ICL, we show a prototypical
visualization of the hidden states of ICL prompts
(aforementioned h). Specifically, we input 2,048
ICL prompts (with k = 8) built from of SemEval
2014-Task 4 Restaurant (Pontiki et al., 2014)
into OPT-2.7B (Zhang et al., 2022) and plot the
h on a 2D-Principal Component plane in Fig. 2
(detailed in Appendix A.4).

As a simple 2-way case, focusing on the data
points labeled “positive” and “negative”, we plot
the difference direction

(
EU

+ − EU
−
)

between the
un-embedding vectors of these two label tokens2.
Then, the coordinates of the projected hidden states
in this direction are the difference of predicted log-
its between these two labels, serving as a token-
based classification criteria, i.e., when the coor-
dinate is positive, a “positive” label will be as-
signed, and vise versa. Therefore, in this visu-
alized scenario, the orthogonal line at the zero
point is the original decision boundary, points be-
low this boundary are classified as “positive”, and

2Notice that Principal Component Analysis is an orthogo-
nal transformation, keeping the dot-product and normal line
fixed (In fact, beyond orthogonal transformations, they are
also centralized. Therefore, the projection axis does not neces-
sarily pass through the coordinate origin). See Appendix A.4.
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Figure 3: The diagram of Hidden Calibration. Step
1: Calculating the hidden state centroid of each label.
Step 2: Find the label of the nearest centroid of the text
sample to be the prediction.

vise versa. The batch calibrated boundary (Zhou
et al., 2023) is always parallel to the original
one, and the other calibrations (Contextual Calibra-
tion (Zhao et al., 2021), Domain Calibration (Fei
et al., 2023)) produce rotated mapping directions(
A+E

U
+ −A−EU

−
)
, by positive-definite term A

and thus rotated decision boundaries, with limited
direction3 between EU

+ and −EU
− .

Intuitively, as shown in Fig. 2, the token-based
decision boundaries cannot effectively classify
these data points, which is due to the inherent
direction of the token un-embedding vectors, re-
gardless of limited affine transformation by calibra-
tion. A straightforward better linear boundary is the
equidistant points between both classes’ centroids,
we try to find it as follows.

3.2 Hidden Calibration

Motivated by the visualization, we propose Hidden
Calibration, using the centroid similarity as the
classification logits. In practice, we use a 2-step
paradigm as shown in Fig. 3: first, as training, we
calculate the centroid of the last hidden states of
data points within each class on some (of amount
m) prompt-label training examples. Then, in the
inference, we select the closest centroid of the test
prompt’s hidden state as the prediction.

In detail, (1) Training: Given a calibra-
tion set with m supervised prompt-label pair{(

s(i), y(i)
)}m

i=1
, where the s(i)s (training exam-

ples) are standard ICL prompts with k demonstra-
tions, and y(i)s are the ground-truth labels of cor-
responding s(i)s’ query, we input each training
example s(i) to LM, and extract the last hidden
state h(i). Repeating on the whole training exam-
ple set, we can get a supervised hidden state set

3In current practices, the A are calculated from reciprocals
of probabilities, which are positive-definite (Note that the
calibration is trivial when A is not positively definite: the
label with negative A components will never be assigned),
and usually do not have significant relative values.

H =
{(

h(i), y(i)
)}m

i=1
. Then, we calculate the cen-

troids of label l as: h̄l = E(h(i),y(i))∈H,y(i)=l

[
h(i)

]
.

Then, we utilize the calculated centroids in (2)
Inference: Given a test ICL prompt, we input it
into the LM and get the last hidden state h, then cal-
culate the similarity between h and every centroid
h̄l as the centroid-based logits αl. In practice, the
additive inverse of Euclidean distance is used as
the similarity (that is, αl = −

∥∥h− h̄l
∥∥ 1

2
2

), while
Appendix C.1 shows that Hidden Calibration acts
equally on cosine similarity. We assign the label
with the highest logits as the prediction.

“Why hidden states?” Notice that another in-
tuitive solution to the problem in §3.1 is utilizing
the logits or probabilities of the whole vocabulary,
as shown in previous works (Xu et al., 2022; Ab-
bas et al., 2024). However, since the input, hidden
states, and logits form a Markov chain, no input-
relevant information gain is propagated to the full-
vocabulary logits. Moreover, the dimensionality of
the full-vocabulary logits is typically significantly
larger than the hidden states, therefore we choose
the hidden states, a dense and informative precursor
of token probabilities, as the classification feature.

“Why centroid classifier?” Moreover, more
complex classifiers, such as a KNN classifier, or a
multi-layer perceptron, can be used on the last hid-
den states instead of a centroid classifier. However,
we choose the centroid classifier as the simplest
implementation to avoid attribution confusion, that
is, if even a rudimentary classifier on hidden states
still outperforms, it is powerful enough to demon-
strate that our hypothesis is robust. Also, a centroid
classifier has a minimal computation cost to fit the
scenario of low-resource (§4.3).

4 Experiments & Main Results

In this section, we empirically prove the effective-
ness of Hidden Calibration by classification perfor-
mance on 6 models and 10 datasets. Hidden Cali-
bration outperforms all the baselines and reaches a
strong state-of-the-art of ICL with high efficiency
in calculation, data, and prompt engineering.

4.1 Experimental Settings

Models. We use 6 models: OPT-2.7B (Zhang et al.,
2022), Llama 2 (Touvron et al., 2023) (6.9B, 13B,
34B), Llama 3 (AI@Meta, 2024) (8B) and GPT2-
XL (Radford et al., 2019) (1.6B). Models larger
than 10B are quantized.
Baselines. We use 6 baselines from the previous
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Figure 4: The classification performance (Macro F1(%)) of 6 models averaged on 10 datasets. Hidden Calibra-
tion (Hidd.C) is a new state-of-the-art of ICL, where demonstrations consistently improve the performance.

works, with 4 label token-based methods: Vanilla
ICL (None) (Radford et al., 2019), Contextual
Calibration (Con.C) (Zhao et al., 2021), Batch
Calibration (Bat.C) (Zhou et al., 2023), and Do-
main Calibration (Dom.C) (Fei et al., 2023);
2 whole vocabulary probabilities-based methods
KNN (Xu et al., 2022) and Centroid Calibration
(Cent.C), which we propose as a fair comparison
with the same processing on the whole output vo-
cabulary probability vectors instead of the hidden
states. Details can be found in Appendix A.2.

Datasets. We use 10 commonly used classification
datasets with some of the overlength data points
excluded. See Appendix A.1 for details.

Other details. All the model checkpoints and
datasets are loaded from HuggingFace. Macro F1
is used as the classification metric. We use a simple
template to generate the prompt, see Appendix A.3.
We set m = 16|Y| training examples (16 examples
per class), and for fairness, every baseline is given
equal training examples for calibration. All the
experiments are repeated 5 times.

4.2 Main Results: Hidden Calibration is A
New State-of-the-art of ICL

The tested classification performance of Hidden
Calibration and baselines is shown in Fig. 4, where
Hidden Calibration (Hidd.C) consistently outper-

forms all the label token-based or vocabulary-based
baselines. Comparing to the vanilla ICL (None),
Hidden Calibration produces an improvement up to
around 100%. In general, compared to the strongest
baseline, Hidden Calibration improves the perfor-
mance by approximately 20%. Detailed numeric
and Accuracy results are in Appendix B.1.

Especially, compared to the Cent.C baseline pro-
posed by us for a controlled trial, which conducts
the same calculation but uses the whole output to-
ken probabilities instead of the hidden states, Hid-
den Calibration outperforms, which confirms our
idea that token probability distribution is a less in-
formative classification feature mentioned in §3.2.

4.3 Efficiency: Low Complexity towards
Time, Space, Data, and Prompting

Time and Space Complexity. Intuitively, Hidden
Calibration has little additional computational cost
compared to the calibration baselines, since they
require almost equivalent feedforward calculations,
making it competitively efficient as listed in Table 1.
Here, we are most concerned about the inference
time cost, and Hidden Calibration is the fastest
among all the non-label-based methods since the
product |Y|d is usually not very large.

Training Data Complexity. Hidden Calibration re-
quires additional annotated data compared to label
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Figure 5: Sensitivities on (left) prompt template, (middle) demonstration label distribution, and (right) demonstra-
tion order on Llama 2-6.9B and Rotten_Tomatoes. Legend is consistent with Fig. 4, omitted.
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Figure 6: Classification performance against the number
of training examples (m) of calibrations. As a compari-
son, we plotted the results of vanilla ICL using equiv-
alent demonstrations, due to the quadratic overhead
against the context length, we can test up to k = 4|Y|.

token-based calibration methods of the same scale
in an acceptable range. In detail, in Con.C and
Dom.C of k demonstrations, k supervised data is
needed with a synthetic query to build a training ex-
ample, while Hidden Calibration needs a real query
for each label, requiring one more supervised data.
However, for classification tasks, preparing an ex-
ample for each label can be easily done whether
in an industry or laboratory scenario, furthermore,
these data and trained centroids can be reused (Ap-
pendix C.2) to further reduce the requirement of
annotated data.

Training Sample Efficiency. Regarding the ef-
ficiency of training examples, we repeat the ex-
periments with various m on OPT-2.7B (see Ap-
pendix A.7 for details), from 1 to 128 calibration
examples per class. Also, for the vanilla ICL, we
give equivalent demonstrations for a fair compar-
ison. The results are shown in Fig. 6, which indi-
cate that Hidden Calibration stably benefits from
the size of the calibration set, while even one sam-
ple per class can still make it outperform. Mean-
while, vanilla ICL and label token-based methods
can not benefit from more available data, making

Table 1: The additional (compare to vanilla ICL) time
and space on calibration and inference cost of various
methods. Hidden Calibration has a similar cost upper
bound to other calibrations. |V| is the vocabulary size.

Method Training Cost Inference Cost

Add. Space Add. Time Add. Time

None 0 0 0
Con.C O(|Y|) O(m) O(|Y|)
Bat.C 0 0 O(m|Y|)

Dom.C O(|Y|) O(m) O(|Y|)
KNN O(m|V|) O(m) O(m|V|)

Cent.C O(|Y||V|) O(m) O(|Y||V|)
Hidd.C O(|Y|d) O(m) O(|Y|d)

Hidden Calibration a better practice no matter how
much supervised data can be accessed: data can be
used to estimate the centroid to improve the clas-
sification in a linear cost, rather than increase the
demonstrations in a quadratic cost with less benefit.
Prompting Complexity. We find Hidden Calibra-
tion reduces the pressure on prompt engineering
for Hidden Calibration and baselines on Llama
2-6.9B and Rotten_Tomatoes (k = 4) in three as-
pects: (1) Prompt template (Voronov et al., 2024).
We select 7 different prompt templates (shown
in Appendix A.3) and test ICL performance on
them, shown in Fig. 5 (left). (2) Label distribu-
tion in demonstrations. We construct prompts
with various numbers of “positive” demonstrations
presented, and test ICL performance shown in
Fig. 5 (middle), (3) Demonstration order (Lu
et al., 2022). We enumerate the full arrangements
from a fixed demonstration set of k = 4, and test
the ICL performance using each demonstration ar-
rangement, shown in Fig. 5 (right). All the results
show that: compared to baselines, Hidden Cali-
bration keeps narrow and high-performance distri-
bution against all the three variables, i.e., Hidden
Calibration stably works for various contexts, pro-
viding higher efficiency on prompt designing.
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Figure 7: Diagrammatic sketch of the overlap calculation with GPT2-XL on SemEval 2014-Task 4 Restaurant,
k = 4. Curves: The kernel density of probability difference of l1 =“positive” and l2 =“negative”. Heatmaps: The
overlap of 2-combinations (we plot the combination with the same label with overlap 1, but omit them in averaging).
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Figure 8: ICL hidden states clustering dynamics visualized on OPT-2.7B and SemEval 2014-Task 4 Laptops (Pon-
tiki et al., 2014). The densities of data points appear in clusters responding to their query labels originally when no
demonstrations are given, and gradually converge to the centroid w.r.t. the demonstrations number (k).

5 Analysis

This section attempts to enhance our understand-
ing of Hidden Calibration through comprehensive
observations: (1) Similar to Fig. 2, we measure
the inter-class overlapping area on data points pro-
jected into classification criteria, to find whether
Hidden Calibration maps data into logits with lower
inter-class overlap, i.e., better separability. (2) We
further investigate why simple linear boundaries
can effectively classify ICL hidden states, as ob-
served in Hidden Calibration. We find that LMs
provide a primary linear clustering in hidden states
responding to query classes, and such clustering is
enhanced by more demonstrations.

5.1 Effectiveness: Hidden Calibration Finds
Criteria with Lower Overlap

In Fig. 2, we projected the data points into the dif-
ference of the label logits (vanilla classification
criteria) on the oblique coordinate axis, then a sig-
nificant overlap between the projected data point
cloud in two classes can be observed, making it
difficult to find suitable classification boundaries
vertical to the projection direction. Therefore, such
overlap can be used to evaluate classification cri-
teria, so, in this section, we quantify the intuitive
observation as the area of overlap serving as a met-
ric for classification criteria.

In detail, we first decompose the multi-way clas-
sification dataset into all possible binary classi-

fication combinations w.r.t. the ground-truth la-
bels (for example, in a binary combination with
labels “positive” and “negative”, only “positive”
and “negative”-labeled data is obtained). Then, for
each combination, we build standard ICL prompts
with queries labeled with a specific one of the se-
lected binary combination. Input these prompts
into the LM and map the last hidden state of the
prompts onto the normal vector of the decision
boundary formed by the calibration method, we
get the mapped coordinate, as what is shown in
the oblique coordinate axis of Fig. 2. To get a con-
tinuous distribution of the distance, we run kernel
density estimations on the calculated coordinate,
then repeat this processing on the other label in the
binary combination, and get two density estima-
tions for both labels in a binary combination, as
shown in Fig. 7 (curves). Then, we calculate the
overlap area of these two kernel density curves. We
repeat such processing for each binary combination
as shown in Fig. 7 (heat maps), and the final Aver-
aged Overlap is the macro average of overlap area
among all possible binary combinations (operation
details are in Appendix A.5).

The overlap area of the two distribution curves
is double to the lower bound of the classifier’s er-
ror rate among these two labels (Appendix A.5.3),
so Averaged Overlap is an intuitive metric of the
classification criteria: the larger the overlap, the
more difficult it is for the classifier, even (further)
calibrated or ideal, to classify data points correctly,
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Figure 11: Hidden state clustering
w.r.t. k of Fig. 8 visualized on the di-
rection of principal component II.

resulting in a potential decrease in accuracy.
We measure the Averaged Overlap of 4

un-quantized models on 5 datasets (see Ap-
pendix A.5.2 for experimental details). The result
on GPT2-XL is shown in Fig. 9 (see Appendix B.2
for other models), where the Averaged Overlaps
from token-based methods are consistently high,
causing that better classification performance can-
not be achieved on such methods, which confirms
our hypothesis in §3.1. Meanwhile, the overlaps
from Hidden Calibration is much less than from
token-based methods, meaning that Hidden Cali-
bration produces better classification criteria with
better possible classification performance than the
token-based methods, even if delicate calibrations
transfer or rotate these classification boundaries.

5.2 Principle: The Inner Linear-separability

In the practice of Hidden Calibration, simple lin-
ear boundaries are used to classify ICL examples,
raising curious on the linear separability of hidden
states. In this section, We find that LMs primar-
ily produce linearly separable hidden state clusters
corresponding to the ground-truth label, and the
demonstrations facilitate this process.

As an intuitive visualization, we plot curves the
same as the Fig. 7 but with various numbers of
demonstrations k to visualize the clustering dynam-
ics of hidden states in Fig. 8, where we find that: (1)
the data points have a little linear separability when
k = 0, and (2) such linear separability is being
enhanced among the increment of k, performing
increasing intra-class converging tendency.

We further characterize this process. First, we
calculate the Averaged Overlap similar to §5.1
against k in Fig. 10. We find that the token-based
overlaps remain high and stable w.r.t. k, which
indicates that the token-based methods can not ben-
efit much from the demonstrations. However, the

overlaps from Hidden Calibration significantly de-
crease with the increase of k, indicating that Hid-
den Calibration benefits from the demonstrations
as expected, aligning with our observations in §4.2.

More generally, we visualize the distribution of
the last hidden states from similar inputs of Fig. 8
on the second principal components of hidden
states to get an essential observation in Fig. 11,
where as k increases, the hidden state shows more
clear intra-class clustering, enabling separability
through a linear boundary.

More directly, on the last hidden states, we mea-
sure the intra-class standard error and the inter-
class averaged centroid distance against k (see
Appendix A.6 for details), both are a first-order
moment for a joint measurement of intra-class
clustering and inter-class clustering. The results
are shown in Fig. 12, where the two curves are
both diminishing, showing an obvious intra- and
inter-class clustering trend w.r.t. k. However, the
inter-class clustering has weaker and less persis-
tent decreasing trends, presenting only in early
demonstrations, or even ascending, which indicates
that demonstration enhances intra-class clustering
stronger than the inter-class clustering, which is
beneficial to linear classification. Moreover, a
model with more parameters shows a stronger dif-
ference between these clustering.

6 Related Works

Given the topic of enhancing in-context learning,
we classify the literature into 3 categories.
Model parameter update-based method: Al-
though it is pointed out that the ICL objective
is implicitly included in pre-training data (Han
et al., 2023), explicitly fixing the gap between the
ICL objective and causal language modeling ob-
jective can still be beneficial. Such methods are
usually based on supervised fine-tuning (Min et al.,
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Figure 12: The averaged intra-class standard error of data points and the inter-class averaged centroid distance
against k. Solid curves: means on 5 datasets; Dashed and pale curves: Individual results for each dataset.

2022b; Gu et al., 2023; Wei et al., 2021, 2023;
Iyer et al., 2022; Wang et al., 2022), and also self-
supervised training (Chen et al., 2022) and non-
gradient method (Zhao et al., 2024). Such methods
usually require huge amounts of computation and
data overhead to update billions of LM parameters.

In contrast, lightweight solutions focus on classifi-
cation criteria-based method (calibration). Such
methods focus on re-calculating output label proba-
bilities, keeping the main feed-forward calculation
processes and model parameters un-modified. The
original motivation for these works is to eliminate
prior bias and unfaithful confidence in ICL, by cal-
ibrating the output label probabilities (Holtzman
et al., 2021; Shi et al., 2022; Fei et al., 2023; Zhao
et al., 2021; Han et al., 2022; Zhou et al., 2023;
Jiang et al., 2023). While, as described in the main
text, some practices without the usage of label-
specific probabilities have also been proposed (Xu
et al., 2022; Abbas et al., 2024; Min et al., 2022a).

Also, a careful design of input prompts can help
improve the ICL performance. (1) Demonstration
selection. Gonen et al. (2023) finds that selecting
the demonstrations with lower perplexity improves
the ICL performance, similarly, Kim et al. (2022)
generate the demonstrations from pre-trained LMs,
etc. (2) Demonstration ordering. It is found that
the ordering of demonstrations can significantly
influence the performance (Lu et al., 2022; Liu
et al., 2024; Xu et al., 2024), as also shown in
our experiments in Fig. 5. Specifically, Lu et al.
(2022) detect the optimal demonstration ordering
by some synthetic detecting sequences, while Liu
et al. (2024) orders the demonstrations from easy
to hard, following a curriculum learning form.

7 Discussion

Conclusion. In this paper, we analyze the current
token-based ICL decision boundaries and point out
a limitation of using token probability for ICL pre-

diction. To address such a drawback, We propose
Hidden Calibration by decoding the classification
logits from centroid classifiers on LM’s last hidden
states. Our experiments show that Hidden Cali-
bration is a new state-of-the-art of ICL, with high
efficiency on time & space, data, and prompt en-
gineering. Then, we confirm that Hidden Calibra-
tion indeed creates better classification logits by
reducing the inter-class overlap. Moreover, we dis-
cover the hidden state convergence promoted by
demonstrations, as an explanation of the principle
of the performance improvement by a single lin-
ear classification boundary in Hidden Calibration.
We hope this work can inspire exploration of the
ICL by investigating the hidden state instead of
token probabilities, and update the community’s
understanding of ICL calibration.
Comparison to Previous Works. (1) Comparison
to Probe Methods. One concern is that our work
can be regarded as a degraded linear probe (Ab-
bas et al., 2024) of the hidden states. However,
we believe our work has more advantages: In
terms of application, we use fewer samples and
require no gradient-based training, which makes
our method more user-friendly, efficient, elegant,
and interpretable. Moreover, compared to fitting a
universal approximation (Hornik et al., 1989), our
method and settings fully utilize the hidden state
convergence on decoder LMs (described in §5.2),
making it a true ICL practice. (2) Comparison
to Supervised Fine-tuning. Some practices (Gu
et al., 2023; Min et al., 2022b) build training ob-
jectives to fine-tune models for better ICL perfor-
mance. These efforts are efficient but costly, while
our work avoids such an enormous overhead, mak-
ing it more usable and elegant. (3) Comparison
to Other Calibrations. Our method can be seen
as a disruptive innovation for methods based on to-
ken probability (even the ones based on the whole
vocabulary). Experimental comparisons of these
methods have been given throughout this paper.
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8 Limitations

Due to computability limitations, we are not able
to compare the performance of Hidden Calibra-
tion with the baseline based on supervised fine-
tuning. However, we believe that Hidden Calibra-
tion is not within the same methodology as the fine-
tuning method, due to the significant difference in
computational cost. So such a lack of comparison
will not seriously hurt the soundness of this paper.

We argue that human intuition in the label token
choice is not reliable. However, we have not elim-
inated such human intuition completely from the
ICL loop: when we build prompts, we still choose
the label token. How to automatically select the
optimal label token in the prompt will be an impor-
tant issue, leaving as future research directions for
improving the performance of ICL further.

Other label probability calibrations (e.g. Batch
Calibration) can be combined with Hidden Calibra-
tion for further performance improvements, since
the 0-point is not necessarily an exact classification
boundary, as shown in Fig. 8. Also, more complex
prompts can be used. However, due to space con-
straints, we have not attempted this incremental
approach, remaining it for an empirically possible
practice.

Observation in §5.2 needs more theoretical and
experimental analysis. As we can see, some mod-
els (GPT2-XL) do not benefit from demonstrations
even through the lens of hidden state clustering or
Hidden Calibration, which needs to be explained.
An explanation of “why such clustering occurs or
not”, and “how to enhance the intra-class cluster-
ing by fine-tuning or prompt engineering” will be
considerably beneficial for understanding ICL.
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A Experimental Details

A.1 Datasets
In this paper, 10 datasets are used as shown in Ta-
ble 2. Some datasets do not provide valid splitting,
so we randomly split all of them into calibration
sets and test sets: For each dataset, we first shuf-
fle it with the random seed 42. Then, we choose
the 512 data at the tail as the testing data, and the
512 data at the head (all the datasets have more
than 1024 examples) as the calibration data. Each
data point in a test set is used once for each exper-
iment trial to build a prompt example and test for
performance.
AGNews and GLUE-RTE have over-length exam-

ples. So, in the main experiments, we filter out
those examples: for Llama 2-6.9B, when k = 8,
we filter out all the examples with a string length
greater than 512 in AGNews and 128 in GLUE-RTE.
Also, for Llama 3-8B, when k = 8, we filter out
all the examples with a string length greater than
128 in GLUE-RTE and omit the experiments on
AGNews. In the experiments in §5.2, for all the
models, we filter out all the examples with a string
length greater than 256 for all the k.

A.2 Baselines
6 baselines (1 vanilla and 5 improved) are used
in this paper. Here we introduce the 5 improved
baseline.
Contextual Calibration (Con.C). Proposed
by Zhao et al. (2021), Con.C uses empty queries
with normal demonstrations as calibration sam-
ples to estimate the calibration term A. In detail,
Con.C inputs m samples with empty queries into
the model and gets the averaged normalized label
probabilities p̄′ among m samples. We take the
reciprocal of the probabilities as calibration term
A = p̄′−1, while the B = 0.
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Batch Calibration (Bat.C). Proposed by Zhou
et al. (2023), Bat.C is an inference-time calibration,
using the negative averaged normalized label prob-
abilities −p̄ of m samples in inference time as the
calibration term B = −p̄, while the A = 1, where
1 is the all-one vector.

Domain Calibration (Dom.C). Proposed by Fei
et al. (2023), Dom.C acts similarly to the Con.C,
with the difference that it uses a random sequence
sampled on the random tokens from the calibration
dataset as queries instead of empty ones. We fix
the sampled length to 32.

KNN Prompt (KNN). Proposed by Xu et al.
(2022), KNN uses the whole output vocabulary
probability distribution as the classification feature,
instead of the label tokens. In detail, first, features
of calibration examples are calculated as k-NN an-
chors. Then, during the inference, a k-NN classifier
is used to classify the feature from the test samples.
We use m examples to calculate the anchors for
k-NN, and the nearest neighbor number is set to 3.

Central Calibration (Cent.C). This is the control
method proposed by us with a calculation process
completely consistent with the Hidden Calibration,
except that the usage of the hidden state is replaced
by the whole output vocabulary probability distribu-
tion consistent with KNN. This method compares
with Hidden Calibration to prove that the output
probability distribution is not a good classification
feature for ICL in a controlled setting.

Notice that: these label-probability-based meth-
ods (Con.C, Bat.C, Dom.C) use A or B along,
which may be another major drawback of these
calibration methods: According to Fig. 2, if a cali-
bration rotates the mapping direction suitably, and
transfer the 0-point properly, a decision boundary
close to the Hidden Calibration can be found. This
also leads to a new research direction for calibra-
tion: the simultaneous usage of translation and
rotation methods.

A.3 Prompts

In this paper, we use a minimum prompt template
shown in Table 3. The separator between demon-
strations is “\n”.

To facilitate the replication of label probability-
based methods, we limit all the labels in the la-
bel space to one token by synonymous conversion.
Note that Hidden Calibration does not need to meet
such a one-token requirement.

Especially, in §4.3, we use 6 more prompt tem-

Table 2: Datasets and Abbreviations used in this paper.

Dataset Abbr.

AGNews (Zhang et al., 2015) AGNews
SemEval 2014-Task 4 Restaurant (Pontiki et al., 2014) SemE.R
SemEval 2014-Task 4 Laptops (Pontiki et al., 2014) SemE.L
Poem Sentiment (Sheng and Uthus, 2020) PoemS
GLUE-RTE (Wang et al., 2019) RTE
tweet_eval_emotion (Mohammad et al., 2018) TEE
tweet_eval_hate (Basile et al., 2019) TEH
tweet_eval_sentiment (Rosenthal et al., 2017) TES
financial_phrasebank (all agree) (Malo et al., 2014) FP
rotten_tomatoes (Pang and Lee, 2005) Rott.T

Table 3: Prompt templates used in this paper.
Dataset Prompt Template Verbalizer

AGNews Input: <x>, Label: <y> world, sport, business, science
SemE.R Input: <x>, Aspect: <a>, Label: <y> positive, neutral, negative
SemE.L Input: <x>, Aspect: <a>, Label: <y> positive, neutral, negative
PoemS Input: <x>, Label: <y> positive, neutral, negative, mix
RTE Input: <x>, Text 2: <a>, Label: <y> include, neutral
TEE Input: <x>, Label: <y> anger, joy, positive, sad
TEH Input: <x>, Label: <y> normal, hate
TES Input: <x>, Label: <y> positive, neutral, negative
FP Input: <x>, Label: <y> positive, neutral, negative
Rott.T Input: <x>, Label: <y> positive, negative

plates to test the stability of each ICL method
against the prompt templates. We list these extra
templates in Table 4.

A.4 Details of Visualization in §3.1

Principle Component Analysis (PCA). Given
a hidden state set H =

{
h(i)

}n

i=1
, we span

all the hidden state vector into a matrix H ∈
Rn×d. The covariance matrix is cov (H) =
1
n

(
H − H̄

)T (
H − H̄

)
, where the H̄ is the ma-

trix spanned by the element-wise average vectors h̄
of hidden state set H. We conduct Eigenvalue De-
composition on cov (H) and adjust the dimensions
to arrange the eigenvalues Λ in a descending order
along the row:

cov (H) = PΛP T , (1)

where the P ∈ Rd×d is an orthogonal matrix.
Taking the top-d̃ lines of P and span them into
P̃ ∈ Rd×d̃, we get the principle component map-
ping:

PCAH(h) =
(
h− h̄

)
P̃ = hP̃ − h̄P̃ . (2)

Notice that P̃ P̃ T = I , where I is the identity ma-
trix.

Dot-product after PCA. Suppose we have dot-
product with vector4 h and E in the original space

4Due to excessive superscripts, in this section, we omit the
superscripts U in the notation of un-embedding EU

l .
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Table 4: The 7 prompt templates used in the experiment
(on Rotten_Tomatoes) of Fig. 5 (left).

# Prompt Template

Original Input: <x>, Label: <y>
1 Sentence: <x>, Label: <y>
2 sentence: <x>, Label: <y>
3 sentence:\n <x>, Label: <y>
4 Input: <x>, Sentiment: <y>
5 Input: <x>, sentiment: <y>
6 x: <x>, y: <y>

Rd, producing the dot-product similarity classifica-
tion criterion α:

α = h
(
ET − 0T

)
. (3)

When we conduct a same PCA on both h and ET

to get dot-product similarity in a dimensionality-
reduced space similar to Fig. 2:

α̃ = PCAH (h)
(
PCAH (E)T − PCAH (0)T

)

︸ ︷︷ ︸
Mapping direction selected after PCA

(4)

=
(
hP̃ − h̄P̃

)(
EP̃

)T
(5)

= hP̃ P̃ TET − h̄P̃ P̃ TET (6)

= α− h̄ET . (7)

Notice that we use the mapping direction(
PCAH (E)T − PCAH (0)T

)
after the PCA, in-

stead of
(
PCAH (E)T − 0T

)
, and this is the rea-

son why the oblique axis in Fig. 2 does not neces-
sarily pass through the coordinate origin. In such
a scenario, the dot productions after PCA only dif-
fer by a fixed constant bias −h̄ET from the ones
before PCA. This is the reason why the normal
line of oblique axis on the 0-point doesn’t pass the
coordinate origin of the 2D-plane in Fig. 2.
Decision Boundary after PCA. Notice that the
decision boundary of two classes l1 and l2 in an
non-rotated ICL scenario is:

B =
{
h|hET

l1 − hET
l2 = C

}
. (8)

Where the C is the calibration term without rota-
tion. Notice that it is a hyperplane in Rd with nor-
mal vector (El1 − El2)

T . Also, the normal plane
which pass the 0-point of direction (El1 − El2)

T

in Rd̃ after PCA is:

B̃ = {PCAH(h)|PCAH(h)

(PCAH(El1 − El2)− PCAH(0))T = 0}.
(9)

By the aforementioned transformation, we have:

B̃ =
{
PCAH(h)|hET

l1 − hET
l2 = h̄

(
ET

l1 − ET
l2

)}
.

(10)
That is, the dimensionality-reduced decision bound-
ary B̃ is perpendicular to the mapped direc-
tion (PCAH (El1 − El2)− PCAH(0)), and bi-
ased only by a constant

(
h̄
(
ET

l1
− ET

l2

)
− C

)
on

the classification criteria comparing to the original
space. Specifically, in the two-dimensional case,
it is a straight line that may not necessarily pass
through the coordinate origin, as shown in Fig. 2.

A.5 Details of Experiment in §5.1
A.5.1 Calculation Details of Averaged

Overlap
First, we divide the |Y|-way classification task into
C(|Y|, 2) 2-way classification task5, to allow us
to use a scalar to characterize the classification
criteria for each 2-combination (similar to what
we do to the “positive” and “negative” examples
in Fig. 2). Then, for each chosen 2-combination,
w.l.o.g, given labels denoted as l1 and l2, we build
prompt-label sets6 as:

Slj =
{
T
(
Dde,(i), x(ci)

) ∣∣∣y(ci) = lj

}nlj

lj∈{l1,l2}
,

(11)
where ci is the sampled query index. That is, we
sample queries annotated with these two labels and
build prompt sets, then collect the prompts with the
same query label lj into Slj , with a size nlj .

Then, for each prompt s(i) = T
(
Dde,(i), x(i)

)
∈

Slj , we run decoders (vanilla, Con.C, Dom.C and
Hidden Calibration) with probability normlization
fl1(·) and fl2(·) to get the classification probabili-
ties of assigning label l1 and l2 as α(i)

1 = fl1
(
s(i)

)

and α
(i)
2 = fl2

(
s(i)

)
. We calculate the difference

between α
(i)
1 and α

(i)
2 and collect them into a set:

Alj =
{
α
(i)
1 − α

(i)
2

∣∣∣s(i) ∈ Slj

}nlj

i=1
. (12)

Now, for the 2-combination of labels (l1, l2), we
get Al1 and Al2 , whose elements are the probabili-
ties difference between assigning l1 and assigning
l2 to example s(i). The difference between Al1

and Al2 is: the elements in Al1 are from s(i)s with
queries labeled by ground-truth l1, and vice versa.
We obtain continuous probability density functions

5The C(m,n) is the n-combination number from m ele-
ments.

6Notice that the T is the prompting function.
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Figure 13: The classification performance (Accuracy(%)) of 3 models averaged on 10 datasets.

of Al1 and Al2 as pl1(·) and pl2(·) by kernel density
estimation, as the curves in Fig. 7.

Then, we calculate the overlap area of these
curves:

Sl1,l2 =

∫ 1

−1
min [pl1(x), pl2(x)] dx. (13)

For each combination7 in the C(|Y|, 2) 2-
combinations, we repeat to calculate the S·,·, and
average them as the Averaged Overlap S̄.

S̄ =
1

C(|Y|, 2)

|Y|∑

i=1

|Y|∑

j=i+1

Sli,lj . (14)

A.5.2 Experimental Details in §5.1
We conduct experiments resulting Fig. 9 on 3 mod-
els with SemEval 2014-Task 4 Restaurant,
SemEval 2014-Task 4 Laptops, AGNews, Poem
Sentiment, and fiancial_phrasebank, given the
demonstration number k = 4 and calibration ex-
ample numbers m = 16. We use the whole 512
examples on the test split for each dataset and re-
peat 5 times.

A.5.3 Proof: the Overlap Area is Double to the
Error’s Lower Bound

Suppose a label combination l1 and l2, w.l.o.g., we
have a ground truth probability density function

7Notice that on S·,·, the labels are rotational symmetry.

pl1(x) and pl2(x) on a criterion x ∈ X, same as the
curves in Fig. 7. Given a specific value of criterion
x, the upper-bound classification performance is
determined by majority vote, which is the most
accurate method on such a point, resulting in a
density of error classification:

e(x)l1,l2 ⩾ min [pl1(x), pl2(x)] . (15)

So, the integral error rate:

El1,l2 ⩾
∫
x∈Xmin [pl1(x), pl2(x)] dx∫

x∈X pl1(x)dx+
∫
x∈X pl2(x)dx

(16)

=
1

2

∫

x∈X
min [pl1(x), pl2(x)] dx (17)

=
1

2
Sl1,l2 . (18)

A.6 Details of Experiment in §5.2

A.6.1 Calculation of the Distance and
Standard Error

Averaged Centroid Distance. Given a |Y|-way
classification task, for each label l we build its cor-
responding prompt set Sl =

{
s(ci)|y(ci) = l

}nl

i=1
,

where s(ci) is the prompt with query labeled by l,
and ci is the sampled query index. We encode it
into a hidden state set Hl =

{
h(i)

}nl

i=1
, and cal-

culate its centroid h̄l, as what we do in Hidden
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Figure 14: The augmented results on 2 models of Fig. 9.

Table 5: Transferability of centroid among various
datasets with the same label space. Big numbers are the
averaged improvement (MF1) compared to vanilla ICL,
small numbers are standard error. Statistically signifi-
cant results (p < 0.1) are in bold.

Test
Cali. SemE.R SemE.L Fina.P TES

SemE.R (+38.75)
±2.28

+29.24
±3.19

+6.32
±10.55

+7.54
±8.96

SemE.L +20.78
±7.37

(+37.33)
±3.47

-0.40
±7.37

+8.94
±8.93

Fina.P +7.42
±4.98

+9.05
±11.14

(+37.29)
±2.30

-4.35
±6.34

TES +6.95
±7.00

+9.73
±5.68

-0.51
±3.83

(+11.83)
±3.59

Calibration:

h̄l =
1

nl

∑

h(i)∈Hl

h(i). (19)

For every 2-combination of labels l and l′, we calcu-
late the distance of their centroid, and the average
among all the 2-combination is used as the Aver-
aged Centroid Distance:

ACD =
1

C(|Y| , 2)

|Y|∑

i=1

|Y|∑

j=i+1

∥∥h̄i − h̄j
∥∥
2
. (20)

Averaged Intra-class Standard Error. Given
the hidden state set Hl =

{
h(i)

}nl

i=1
w.r.t. the

label l, we span all the hidden state vectors into
a matrix Hl ∈ Rnl×d. The covariance matrix is(
Hl − H̄l

)T (
Hl − H̄l

)
, where the H̄l is the ma-

trix spanned by the element-wise average vectors
of hidden state set Hl. Notice that the ACD is a
first-order moment, for a proper comparison, we
use the average on the diagonal elements of the
element-wise square root of the covariance matrix

Table 6: Transferability of centroid among various k on
the same dataset. k1 → k2 is to use centroids estimated
by k1 demonstrations for inference on test examples
with k2 demonstrations. Other annotations are the same
as Table. 5

0→1 4→1 (1→1) 1→4 (4→4)

SemE.R +9.46
±1.95

+22.50
±14.55

(+26.14)
±5.16

+17.95
±7.51

(+38.75)
±2.28

SemE.L +26.80
±3.20

+17.18
±5.61

(+26.65)
±2.72

+10.79
±14.86

(+37.33)
±3.47

AGNews +42.38
±2.42

+40.20
±1.24

(+41.02)
±2.49

+43.12
±2.02

(+46.66)
±3.77

PoemS +0.16
±1.87

+2.12
±6.18

(+21.49)
±2.54

+8.79
±1.84

(+12.96)
±1.52

Fina.P -0.13
±1.88

+21.40
±2.90

(+16.70)
±3.80

+10.00
±13.68

(+37.30)
±2.30

as the intra-class standard error metric for label
l. We average all the standard errors from all the
classes as the Averaged Intra-class Standard Error:

AIS =
1

|Y|d

|Y|∑

i=1

tr

[√(
Hi − H̄i

)T (
Hi − H̄i

)]
.

(21)

A.6.2 Experimental Details in §5.2
We conduct experiments resulting Fig. 12 on 4
models with SemEval 2014-Task 4 Restaurant,
SemEval 2014-Task 4 Laptops, AGNews, Poem
Sentiment, and fiancial_phrasebank, given the cal-
ibration example numbers m = 16. We use the
whole 512 examples on the test split for each
dataset and repeat 5 times.

A.7 Experimental Details for Fig. 6
We conduct experiments resulting Fig. 6 on OPT-
2.7B with 4 datasets: SemEval 2014-Task 4
Restaurant, SemEval 2014-Task 4 Laptops,
AGNews, and Poem Sentiment, given the demon-
stration numbers k = 4 and repeat 5 times.
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B Detailed Results

B.1 Details of Main Results
Numerical details of Fig. 4 are shown in Ta-
ble 8, 9, 10, 11, 12 and 13. Accuracy results are
shown in Fig. 13.

B.2 Details of Averaged Overlaps Results
The augmented results on the other 3 models (we
skip this experiment on the quantitated model) of
Fig. 9 are shown in Fig. 14.

C Additional Discussion

C.1 The Similarity Measures Used in Hidden
Calibration

In §3.2, we use the Euclidean distance as the simi-
larity measure, while this is not the only option. In-
tuitively, we can choose other similarity measures
as alternatives. Moreover, since we get inspired
by observation with dot-production similarity, we
should check the performance on such a measure
instead of the Euclidean distance. This section uses
cosine similarity as an example to illustrate that
there is no significant performance difference be-
tween these measures. We use cosine similarity
to repeat the results in §4.2 on Llama 2-6.9B and
GPT2-XL.

The results are shown in Fig. 15, where the per-
formance based on these two measures is close,
without statistical difference. This indicates that
the hidden space has good properties of both met-
ric and vector space, and Hidden Calibration acts
equally on these measures.

C.2 Transferability of the Centorid
We have proven that it is not advisable to use the
common token probability criteria, while, since the

centroid criteria are proven to be better than token
probability, we are curious: can the centroid calcu-
lated in one task be transferred to other tasks with
the same label space? Among the datasets shar-
ing the same label space “positive”, “neutral”, and
“negative”, we calculate centroids by one dataset
and evaluate Hidden Calibration with it on another
dataset, on OPT-2.7B, with k = 4, m = 16|Y|.
The results are shown in Table 5, where only lim-
ited transferability is demonstrated in different do-
mains of the same task (SemE.R and SemE.L),
whose behavior is similar to task vector (Ilharco
et al., 2022; Hendel et al., 2023), while other combi-
nation of datasets can not demonstrate considerable
transferability. This further exacerbates our doubts
about the token-based method: We find that the
hidden state distributions have significant differ-
ences among various datasets, even if they share a
common label space, then utilizing fixed token un-
embedding vectors to decode these classification
criteria is highly unreliable.

Moreover, we repeat this experiment on various
k, instead of various datasets, as shown in Table 6.
The transferabilities among k are better than on
datasets, but still worse than the un-transferred sce-
nario. Notice that 4 → 1 results are much better
than 0 → 1, which support our results in §5.2:
hidden states with higher k are further converged.

C.3 A Demonstration towards ICL Principles

Our findings may lead to an explanation of the
principle of ICL and traditional calibrations. LMs
generate distributed representations into separate
clusters in the last hidden state. At this point, by
dot-product, any non-collinear arbitrary or plausi-
ble mapping directions should be able to capture
and classify these clusters to some extent. Note:
The absolute distance in such a direction is not
faithful (since the centroids of these hidden states
and the coordinate origins in these mapping di-
rections are not necessarily aligned), which leads
to the generation of so-called bias, and calibrat-
ing these biases can improve the performance to
a certain extent. However, in such a paradigm,
high-dimensional features are discarded, resulting
in overlapping originally linearly separable features
in high-dimensional space, leading to a loss of clas-
sification accuracy, even if the calibration aligns
the coordinate origin.
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Table 7: Performance of all 6 models on TREC for a more-way classification, and on Hate_Speech18 for a biased
dataset. k = 4, top-2 results are in bold.

GPT2-XL-1.6B OPT-2.7B Llama 2-6.5B Llama 3-8B Llama 2-13B Llama 2-34B

TREC
None 13.02 15.85 23.12 16.79 23.22 21.13

Con.C 14.10 8.12 23.72 18.34 23.56 22.35
Bat.C 14.44 17.31 23.26 20.28 22.88 22.15

Dom.C 14.10 8.58 23.14 19.10 23.42 23.23
KNN 27.53 33.80 49.25 43.15 54.76 53.66

Cent.C 23.46 33.80 49.18 46.12 56.79 53.03
Hidd.C 55.91 61.14 64.90 71.59 75.64 68.39

Hate_Speech18
None 23.96 23.95 23.96 23.96 23.96 23.92

Con.C 21.57 25.47 14.68 23.74 21.49 21.25
Bat.C 20.59 21.25 20.54 18.25 20.66 23.68

Dom.C 21.23 23.68 20.73 23.67 24.36 23.28
KNN 17.30 16.74 16.50 16.26 16.23 27.05

Cent.C 16.32 25.47 15.42 5.46 9.15 22.23
Hidd.C 24.47 27.03 23.44 20.67 20.06 29.94

C.4 Applicability on More-way Classification
and Biased Dataset

To further verify the applicability of Hidden
Calibration on harder tasks, we test the per-
formance of Hidden Calibration and baseline
methods on TREC (Li and Roth, 2002; Hovy
et al., 2001) for more-way (|Y| = 6) classifica-
tion and Hate_Speech18 (de Gibert et al., 2018)
for a biased dataset (label frequency distribution:
[0.87, 0.11, 0.007, 0.015]), shown in Table 7. For
results on TREC, Hidden Calibration produces a
significant improvement compared to all the base-
lines on all the models. While, Hidden Calibra-
tion outperforms on Hate_Speech18 in most cases,
and sometimes Hidden Calibration is weaker than
baseline methods, but consistently produces com-
petitive results. However, we believe that this
slightly weaker result cannot be fully attributed to
biased datasets, given that there are biased datasets
among the 10 standard datasets where Hidden
Calibration perform SotA results (e.g. SemEval
2014-Task 4 Restaurant, refer §B.1).
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tweet_eval_emotion, tweet_eval_hate,
tweet_eval_hate

• CC-by-SA-3.0: financial_phrasebank,
GLUE-RTE

• Unknown: AGNews, rotten_tomatoes

Consistency of Usage. Models and data are used
with their original usage.

D.3 AI Agent Usage
AI Agents are only used for writing improving and
grammar checking in this paper.
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