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Abstract
Coherence is an essential property of well-
written texts, that refers to the way textual units
relate to one another. In the era of generative
AI, coherence assessment is essential for many
NLP tasks such as summarization, long-form
question-answering, and more. Current NLP
approaches for modeling coherence often rely
on a proxy task, specifically, sentence reorder-
ing. However, such an approach may not cap-
ture the full range of factors contributing to
coherence. To remedy this, in this work we em-
ploy the formal linguistic definition by Reinhart
of what makes a discourse coherent, consisting
of three conditions, cohesion, consistency and
relevance, and formalize these conditions as
respective computational tasks, which are in
turn jointly trained. We evaluate this model-
ing approach on two human-rated coherence
benchmarks: one of automatically-generated
stories and one of real-world texts. Our ex-
periments show that jointly training on the pro-
posed tasks leads to better performance on each
task compared with task-specific models, and
to better performance on assessing coherence
overall. Our proposed computational frame-
work thus paves the way for a more advanced,
broad-coverage coherence assessment.

1 Introduction

The concept of coherence refers to the quality of
textual flow, where sentences and paragraphs are
logically connected, enabling a clear and under-
standable progression of ideas. Coherence is crit-
ical for many NLP tasks like summarization and
question answering, directly impacting output ac-
curacy and naturalness (Wu and Hu, 2018; Wang
et al., 2021). As generative large language mod-
els (LLMs) become more prominent, coherence
assessment has become essential for evaluating and
improving text quality (Guan et al., 2021; Xu et al.,
2018; Yi et al., 2019). This study introduces a novel
approach to coherence assessment by leveraging
linguistic theory alongside established NLP tasks.

Developing a robust model capable of accurately
evaluating text coherence has been challenging due
to several reasons. First, the scarcity of large-scale
datasets specifically designed for training coher-
ence assessment models, which are very difficult
to produce (Lai and Tetreault, 2018; Maimon and
Tsarfaty, 2023). Additionally, existing methods for
coherence detection rely on a proxy task, and have
not been able to accurately capture the multifaceted
nature of coherence (Laban et al., 2021).

Our goal is to address these challenges by devel-
oping a model that assesses coherence effectively.
Our vantage point is the theoretical foundation pro-
vided by Reinhart’s linguistic framework, which
defines coherence through three essential condi-
tions: cohesion, consistency, and relevance (§2.2).
Guided by these principles, we designed our model
to integrate five carefully chosen NLP tasks that
reflect these conditions. Specifically, the model
incorporates sentence reordering (Lapata, 2003),
implicit discourse relation detection (Miltsakaki
et al., 2004), natural language inference (Dagan
et al., 2005), NP enrichment (Elazar et al., 2022),
and irrelevant-sentence detection (§3). Each task
is supported by a large-scale dataset, and an asso-
ciated multi-task model thereof enables capturing
the multifaceted nature of coherence.

We hypothesize that jointly fine-tuning a model
on these tasks will produce a model that effectively
captures the core properties of coherence as delin-
eated by the theoretical framework (§3). To test
this, we develop a unified model jointly fine-tuned
on the selected tasks that act proxies for the coher-
ence conditions (§4). We then evaluate the model’s
coherence assessment capabilities through an ad-
ditional fine-tuning stage on coherence-specific
tasks (§5). We use two human-annotated bench-
marks: the Grammarly Corpus of Discourse Co-
herence (GCDC) (Lai and Tetreault, 2018) for real-
world texts across domains, and CoheSentia (Mai-
mon and Tsarfaty, 2023) for synthetic texts.

5359



Our results (§6) demonstrate that models jointly
trained on our selected coherence proxy tasks out-
perform models without such training, achieving
new SOTA performances on various coherence as-
sessment benchmarks. We also show that training
on tasks unrelated to coherence offers little to no
value for coherence evaluation, validating our task
selection. Finally, given shared knowledge across
tasks, we expect the unified model to enhance in-
dividual proxy-task performances, and our experi-
ments indeed confirm this for most of the tasks.

All in all, our approach presents a promising
direction for future research to enable the develop-
ment of tools that not only detect (in)coherence but
also offer actionable insights into its causes. By
integrating coherence assessment into text genera-
tion, we envision significant improvements in the
quality and coherence of machine-generated texts.

2 Essential Preliminaries

2.1 Coherence in NLP

A key challenge in assessing coherence automati-
cally lies in the elusive nature of coherence. While
linguistic theories provide insights into the concept
of coherence (Halliday and Hasan (1976); Joshi
and Weinstein (1981); Givon (1995)), contempo-
rary methods for automatically assessing coherence
often rely on a proxy task, such as sentence re-
ordering (Lapata, 2003), assuming this task will
effectively capture the coherence mechanisms.

However, a single proxy task limits the models’
ability to handle real-world texts effectively (La-
ban et al., 2021). Coherence varies across genres,
contexts, and styles (Jurafsky, 2000), making it dif-
ficult for proxy tasks to generalize well across do-
mains. Additionally, such ‘coherence assessment’
models are often evaluated through a downstream
task (e.g., essay scoring) (Guinaudeau and Strube,
2013; Mesgar and Strube, 2016), which may intro-
duce profound task-specific biases.

Finally, while coherence-scoring datasets do ex-
ist (Lai and Tetreault, 2018; Maimon and Tsarfaty,
2023), their limited size makes them insufficient
for training a model solely on these resources.

2.2 Coherence in Linguistics

Our proposal is based on Reinhart’s theory, which
defines a text as coherent if and only if it meets
three formal conditions: Cohesion, Consistency,
and Relevance.

Cohesion The cohesion condition refers to the
formal elements that link sentences.1 According to
Reinhart, a text is cohesive if each two sentences
meet at least one of two conditions:

(1) Referentially linked: A pair of sentences
⟨S1, S2⟩ is referentially linked when S2 references
an entity mentioned in S1. For example:

“Dan is nice. Even Su likes him.”

Here, the underlined entities co-refer. Other ref-
erential links include prepositional links (Elazar
et al., 2022) and bridging anaphora (Hou, 2021).

(2) Linked by a semantic connector: A pair of
sentences ⟨S1, S2⟩ is connected if a discourse rela-
tion links them. These connectors indicate seman-
tic relations like cause and effect, comparison or
contrast (Prasad et al., 2008). For example:

“It was raining. So, we stayed inside.”

The sentences are cohesive due to the presence
of the connector “So”. These connectors can be
explicit or implicit (Pitler et al., 2009).

Consistency The consistency condition pertains
to the formal semantic aspects of a text, ensuring
logical coherence, which is crucial for interpreting
and deriving meanings. Formally, this condition
requires that for a set of sentences {Si}n−1

i=0 , the
meaning of each sentence Si must be consistent
with all preceding sentences {Sj}i−1

i=0. This means
all sentences can be true within a single world, not
violating this worlds assumptions and restrictions.
An example of a violation is as folllow:

“My father is dead now. That’s why he
has decided to smoke a pipe” (Freeman
and Gathercole, 1966)

Despite being cohesive, the passage lacks coher-
ence due to world knowledge violations (a de-
ceased cannot decide).2

Relevance The relevance condition involves
pragmatic aspects, imposing constraints on the rela-
tionships of all sentences {Si}n−1

i=0 to the discourse
topic and other contextual elements. An example
of a violation is:

“I poured some chemical into a beaker.
The chemical fell on my hand. The pro-
fessor immediately took me to the emer-
gency bath. He is a great musician.”

1To avoid confusion, ‘cohesion’ refers to surface elements
(e.g., connectors, pronouns), while ‘coherence’ concerns the
overall meaning and flow of ideas.

2Consistency has been explored by Honovich et al. (2021)
to assess the reliability of automatically generated texts.
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While the last sentence is cohesive and consistent,
it is irrelevant to the context and topic of the story.

Reinhart’s theory offers a comprehensive frame-
work for studying text coherence, encompassing its
fundamental aspects. Maimon and Tsarfaty (2023)
applied Reinhart’s framework for coherence bench-
marking on GPT-generated text using human raters.
In contrast, here we aim to directly model Rein-
hart’s conditions through a set of tasks, aiming to
predict these properties and develop effective mod-
els for overall coherence assessment.

3 Research Hypotheses and Tasks

To design the coherence assessment model, we
start by mapping Reinhart’s coherence conditions
to computational tasks, employing a minimal set
of NLP tasks designed to capture the key features
of cohesion, consistency, and relevance. Our hy-
pothesis is that a model jointly fine-tuned on all
of these tasks will effectively learn to capture co-
herence features. Additionally, we anticipate that
this unified architecture, when further fine-tuned on
coherence assessment tasks, will outperform mod-
els fine-tuned on those coherence assessment tasks
directly. To validate these hypotheses, we define
five tasks that reflect the coherence conditions:

The Sentence Reordering (SRO) Task This
task, proposed by Lapata (2003), involves reorder-
ing shuffled sentences to restore their original co-
herent form. For example, given the following
input: “(1) Finally, the parser is evaluated. (2) We
develop a useful parser. (3) Then we present our
parser. (4) We first describe the older one.” the
correct order is (2)→ (4)→ (3)→ (1).

A model excelling at paragraph reconstruction
should capture syntactic and semantic relationships
between sentences, reflecting both cohesion and
consistency (cf. Lin et al. (2011)).

The Implicit Discourse-Relation Recognition
(IDRR) Task Given a pair of sentences (dis-
course units; DUs), the aim is to predict the dis-
course relation between them, reflecting notions
such as cause and effect, comparison, and contrast
(Pitler et al., 2009). For example, with the follow-
ing input: “John worked all night. He slept all day
today.” the model is expected to detect a discourse
relation reflecting contingency (e.g., ‘so’, ‘hence’).

The discourse relation identification task en-
hances the model’s ability to connect sentences,
addressing the second sub-condition of cohesion.

The NP Enrichment (NPE) Task Introduced by
Elazar et al. (2022), the NPE task identifies implicit
prepositional links between noun phrase (NP) enti-
ties. Given two NP mentions in a text, it determines
the existence of a prepositional relation and identi-
fies the best preposition describing it p(NP1NP2)
(or NONE is no relation exists).

For example, in the paragraph: “[Crown Princess
Mary] of [Denmark] gives [birth] to a [male child].”
(Elazar et al., 2022) there are 4 NPs (marked by
[.]) and thus 12 potential NP pairs. Two examples
of valid prepositional pairs and their relations are
(1) in(birth, Denmark) and (2) of(birth, male child).

A model trained on this task captures referential
links between sentences, serving as a proxy for the
referential-linking sub-condition of cohesion.

The Natural Language Inference (NLI) Task
The NLI task (Bowman et al., 2015) aims to de-
termine the semantic relation between a premise-
hypothesis pair as entailment/contradiction/neutral.
For example, given the premise: “John inspects the
uniform of a figure in some East Asian country.”
and the hypothesis: “John is sleeping.” the output
will be a contradiction.

NLI evaluates NLP models’ ability to capture
logical relationships between sentences, serving as
a proxy for the consistency condition.

The Irrelevant Sentence Recognition (ISR) Task
We propose a self-supervised task where the model
aims to identify irrelevant sentences in an otherwise
coherent paragraph. Given a paragraph with N
sentences, the model aims to find the irrelevant
sentence. For example, given the following input:
“(1) Rick is helpful. (2) He does the dishes. (3) He
kicked his brother. (4) He helps older people.” The
irrelevant sentence is (3).

The model is trained to assess sentence relevance
to the overall topic and context, acting as a proxy
for the relevance condition.

Unlocking Coherence Modeling We employ a
Multi-Task Learning (MTL) approach, jointly fine-
tuning the model on those five coherence proxy
tasks to capture all aspects of coherence. Our ex-
periments explore two architectures: Classification-
Based (BERT (Devlin et al., 2019)) and Generation-
Based (T5 (Raffel et al., 2020)). The Classification-
Based model utilizes a shared encoder across all
tasks, with a dedicated classifier head for each task.
In the Generation-Based model, unique prompts
are crafted for each task and can be used either
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Figure 1: Illustration of the encoder-only model, which
takes a pair of sentences as input (for most tasks) or a
document with token IDs for the NPE task

independently or interleaved within the joint setup.
Both methods utilize shared information during
training to enhance overall coherence detection and
improve performance on individual tasks.

4 Joint Models of Coherence

This section presents the proposed coherence mod-
els, which are based on the proxy tasks described in
Section 3. We introduce both classification-based
(BERT) and generation-based (T5) variants, along
with the datasets and evaluation metrics used for
assessment.

4.1 Classification-Based Modeling
The Classification-Based model is an MTL (Caru-
ana, 1997) model where a shared encoder is used
across all proxy tasks, with each task having its
own distinct classification head which we detail
shortly. Each classification head is responsible for
predicting task-specific outputs, and the tasks are
trained jointly (see Fig. 1). To mitigate catastrophic
forgetting in MTL (Goodfellow et al., 2014), we
implement an interleaved training strategy, where
each batch contains samples from a single task that
differ from those in the preceding batch. To ad-
dress the diverse requirements of the proxy tasks,
we design distinct classification-heads tailored to
the nature and complexity of each task.

The NLI and IDRR tasks are well-suited for
a simple classification head. In both cases, the
model encodes a pair of sentences (or discourse
units (DUs)) and predicts the relationship between
them, an entailment label or a discourse relation
label, respectively.

The reordering (SRO) and relevance (ISR) tasks
require additional post-processing and we adopt a
two-stage architecture. In both tasks, the input ex-
amples consist of either five sentences (SRO) or six
sentences (ISR). For each pair of sentences, the first
stage processes the pair, while the second stage ag-
gregates the results into a unified prediction. In the
first stage, each sentence pair ⟨Si, Sj⟩ is encoded.
For SRO, we adopt the architecture proposed by
Shrimai Prabhumoye (2020), where a binary classi-
fication head predicts whether sentence Si precedes
or follows Sj . The overall predicted order is then
generated in the second stage using the topological
sort algorithm (Tarjan, 1976). For the ISR task, the
binary classification head identifies relevant and
irrelevant pairwise relationships, and in the second
stage, the sentence with the lowest cumulative rel-
evance score across all pairwise relationships is
deemed irrelevant.

Finally, for NPE, an intricate task, a more com-
plex model head is necessary. For this task, we ex-
tend the Bi-Affine architecture proposed by Dozat
and Manning (2017) to predict prepositional rela-
tions between candidate NP pairs. To construct
NP embeddings, we pool the token representations
corresponding to each NP within the text. Given
that the order of NPs within a pair is crucial for
preposition detection, we assign distinct represen-
tations to each NP based on its position as either
the first one (i.e. the anchor) or the second one (i.e.
the complement). The model then predicts the ap-
propriate preposition using these position-sensitive
representations (See also Figure 4 in Appendix A).

4.2 Generation-Based Modeling
The Generation-Based model is a generative model
fine-tuned on all the proxy tasks using task-specific
prompts we design (Appendix G detail the spe-
cific prompts). We utilize a T5 encoder-decoder ar-
chitecture, which allows simultaneous fine-tuning
across multiple tasks. We employ an interleaved
training strategy, where each batch contains sam-
ples from a specific task, different from the previ-
ous batch, to enhance multitask learning.

Here too, we describe the tasks based on the com-
plexity of formulating prompts from the input and
the extent to which post processing the model’s out-
put is required. For the SRO, ISR, and NLI tasks,
prompt construction is straightforward, with out-
put predictions directly corresponding to the input.
The model processes the text to generate the correct
sentence order for SRO, the premise-hypothesis re-
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lationship for NLI, or the identification of the irrele-
vant sentence for ISR. For the IDRR and NPE tasks,
the model requires more complex prompts and pro-
duces less straightforward outputs. In the IDRR
task, the input is an argument pair, and the model
uses a chain-of-thought method (Wei et al., 2023)
to predict the discourse relation, following a three-
stage structure: ⟨connector⟩ → ⟨l1 relation⟩ → ⟨l2
relation⟩.3 In the NPE task, the model indepen-
dently predicts prepositional relations for each NP
pair, using the document text and a prompt that
specifies the NP pair.

4.3 Datasets and Evaluation
Datasets For both the SRO and ISR tasks, we
use the RocStories dataset (Mostafazadeh et al.,
2016), which consists of five-sentence stories. For
the SRO task, we randomly shuffle the sentences
within each story. For the ISR task, each story is
augmented with a single, randomly inserted sen-
tence. The irrelevant sentence is selected from the
entire RocStories dataset, with the constraint that it
contains entities present in the target story.

For the IDRR task, we use the Penn Discourse
TreeBank 3 (PDTB3) dataset (Miltsakaki et al.,
2004; Prasad et al., 2008), specifically utilizing L2

discourse senses.
For the NPE task, we employ the TNE dataset

(Elazar et al., 2022), which consists of documents
annotated with relations between every NP pair.
The dataset includes approximately 190K nouns
and 1M NP relations, covering 28 possible relations
(including the ‘no relation’ class). A key advantage
of this dataset is that it provides real-world, long-
form paragraphs for evaluation.

Finally, for the NLI task, we use the MNLI
dataset (Williams et al., 2018).

Evaluation Metrics For all tasks, we employ
their standard evaluation metrics. Specifically, for
the SRO task, we use both Perfect Match Ratio
(PMR) (Chen et al., 2016) and sentence accu-
racy (Logeswaran et al., 2017). PMR measures
the proportion of samples for which the predicted
sequence exactly matches the ground truth:

PMR =
1

N

N∑

i=1

1{Ôi = Oi}

Sentence accuracy, on the other hand, evaluates the
proportion of sentences correctly placed in their

3CoT detection of discourse relations outperformed sim-
pler prompts in our preliminary experiments.

absolute positions:

Acc =
1

N

N∑

i=1

1

vi

vi∑

j=1

1{Ôi
j = Oi

j}

For the ISR, IDRR, and NLI tasks, we use accu-
racy as the primary evaluation metric. For the
NPE task, we assess performance using F1 score,
precision, and recall.

Table 1 summarizes datasets, metrics, and key
statistics we use for each task. (See extended de-
tails in Appendix A).

5 Overall Coherence Assessment

5.1 Coherence Assessment Tasks

To confirm that the proposed joint models effec-
tively capture coherence, we define two types of
coherence assessment tasks:

The Coherence Scoring Task: Here we aim to
evaluate the model’s ability to predict the coherence
score C for a given paragraph P , simulating the
judgment of a human reader.

The Coherence Reasoning Task: To analyze
specific coherence attributes, we leverage the co-
herence reasoning task, as proposed by Maimon
and Tsarfaty (2023). In this task, the model is pro-
vided with a paragraph P and a new sentence s,
and aims to make 3 binary decisions, whether s is
cohesive, consistent, or relevant with respect to P .

5.2 The Coherence Scoring Task Setup

Models: A coherence scoring model aims to pre-
dict a 3-way or 5-way score for the text input. We
develop two architectures for coherence scoring,
Classification-based (BERT (Devlin et al., 2019))
and Generation-based (T5 (Raffel et al., 2020)), as
described in the previous section. For both architec-
tures, we begin with our joint model fine-tuned on
the proxy tasks, and conduct an additional second
fine-tuning for the coherence scoring task. In the
Classification-based model, the second fine-tuning
stage involves predicting the coherence score C for
a given text P . In contrast, the Generation-based
model generates the coherence score C by process-
ing the input text combined with dataset-specific
prompts. Example prompts and outputs can be
found in Appendix G, while detailed hyperparame-
ters settings are given in Appendix B.
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Task Dataset Metrics Split Per Instance
Train Dev Test Max Avg Max Avg

#toks #toks #sent. #sent.
SRO RocStories PMR (Chen et al., 2016) 68k 14k 14k 135 57 5 5

(Mostafazadeh et al., 2016) Acc (Logeswaran et al., 2017)
ISR RocStories (Mostafazadeh et al., 2016) Accuracy 68k 14k 14k 152 77 6 6
IDRR PDTB3 (Prasad et al., 2019) Accuracy 17.5k 1.7k 1.5k 556 30 2 2
NPE TNE (Elazar et al., 2022) F1, Precision & Recall 3.5k 500 500 284 163 15 6.9
NLI MNLI (Williams et al., 2018) Accuracy 393k 7.5k 2.5k (194,70) (20,10) (8,8) (2,2)

Table 1: The datasets and metrics used for each task and the train/dev/test split size with the max and average
number of tokens and sentences. For the NLI task (x,y) refer to the numbers of (premise, hypothesis) respectively

Datasets and Evaluation: We evaluate our mod-
els on two datasets: GCDC (Lai and Tetreault,
2018) and CoheSentia (Maimon and Tsarfaty,
2023). GCDC includes real-world text from vari-
ous domains (Clinton emails, Enron emails, Yahoo
Answers, Yelp reviews) with coherence scores from
1 (not coherent) to 3 (highly coherent). Inn con-
trast, CoheSentia features GPT-3 generated stories,
spanning both fiction and non-fiction, with scores
ranging from 1 to 5. Accordingly, the model per-
forms 3-way classification for GCDC and 5-way
classification for CoheSentia.

Dataset sizes and splits are detailed in Table 7.
To remain compatible with Lai and Tetreault

(2018), we use accuracy as the metric for evaluating
the final coherence score of the text.

Baselines: We evaluate our model’s effective-
ness by comparing its performance against current
SOTA models on each dataset. For GCDC, Lai
and Tetreault (2018) introduced the ParSeq model,
using stacked LSTMs for sentence, paragraph, and
document embeddings, followed by a coherence
classifier. The latest SOTA by Liu et al. (2023) uses
a multi-step approach involving graph structures,
subgraphs, and GCN encoding. For CoheSentia,
Maimon and Tsarfaty (2023) achieved SOTA with
a prompt-based method using Flan-T5-large (the
prompt adds a question at the beginning of the text).

We compare two models fine-tuned on the co-
herence scoring task: the joint models previously
trained on coherence proxies (Ours-ALL), and the
respective base models with no such fine-tuning
(Ours-None). The comparison quantifies the effect
of the proxy tasks on coherence assessment.

5.3 The Coherence Reasoning Task Setup
Models: Similarly to coherence scoring, we em-
ploy Classification- and Generation-based architec-
tures, both built on our unified joint models fine-
tuned on the coherence proxy tasks. During the
second fine-tuning stage, the Classification-based

model employs separate binary classification heads
to predict each one of the coherence attribute for
a given paragraph P and sentence s. In contrast,
the Generation-based model produces outputs di-
rectly from prompted inputs (see Appendix G for
the prompts).

Datasets and Evaluation: We evaluate our
model on the CoheSentia corpus (Maimon and
Tsarfaty, 2023), which contains automatically
GPT3-generated stories with human annotations
for cohesion, consistency, and relevance. We use
precision, recall, and F1 scores for each property.

Baselines: We evaluate our model’s (Ours-ALL)
effectiveness on the CoheSentia dataset by com-
paring it to the current SOTA model by Maimon
and Tsarfaty (2023), which uses a prompt-based
approach with Flan-T5-large, adding a question at
the beginning of each text to assess coherence.

We also compare our model, which was fine-
tuned on coherence proxy tasks, with one that was
not (Ours-None), to quantify the impact of the pro-
posed joint fine-tuning on coherence reasoning.

6 Results

6.1 Coherence Scoring Results

We first test the hypothesis that fine-tuning a model
previously fine-tuned jointly on coherence proxy
tasks improves coherence scoring over fine-tuning
the base model. Table 3 shows that our jointly
fine-tuned model (Ours-ALL) outperforms SOTA
models, with 15% and 27% accuracy gains on
GCDC and CoheSentia, respectively, underscor-
ing the value of our approach and task selection, in
capturing core aspects of coherence. To isolate the
effect of proxy tasks, we compare fine-tuning our
MTL model (Ours-ALL) with fine-tuning the base
model without prior exposure to proxy tasks (Ours-
None). As shown, the proposed MTL fine-tuning
on proxy tasks significantly boosts performance.
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Dataset Split Per Instance
Train Validation Test Max #tokens Avg #tokens Max #sent. Avg #sent.

GCDC 3.6k 800 800 333 156 10 32
CoheSentia 350 75 75 226 150 15 6.5

Table 2: Main Statistics on the Datasets for Coherence Scoring

Model GCDC CoheSentia
Lai and Tetreault (2018) 57.5 —
SOTA 61.2 35.3
Ours-None (bert-large) 50.2 34.3
Ours-ALL (bert-large) 72.5 55.7
Ours-None (t5-large) 56.3 34.8
Ours-ALL (t5-large) 76.4 62.3
Controlled-nonCoherence (t5-large) 52.8 36.8

Table 3: Accuracy on Coherence Scoring The SOTA
for GCDC is by Liu et al. (2023) and for CoheSentia is
Maimon and Tsarfaty (2023)

6.2 Coherence Reasoning Results

We analyze our joint models’ success in assessing
the coherence conditions (cohesion, consistency,
relevance), by fine-tuning them on the coherence
reasoning task. We compare our results (Ours-
ALL) to SOTA from Maimon and Tsarfaty (2023),
who fine-tuned the Flan-T5 model with a simple
prompt, as well as to a model that was fine-tuned
on coherence reasoning tasks without prior MTL
fine-tuning on coherence proxy tasks (Ours-None).

Table 4 shows the coherence reasoning task re-
sults for all attributes and metrics. Our model
achieves SOTA performance across all coherence
conditions, demonstrating the efficacy of our ap-
proach. Maimon and Tsarfaty (2023) noted that
detecting relevance is more challenging than con-
sistency, which is harder than cohesion. While our
model still shows a disparity in the model’s capa-
bilities for identifying these different attributes, we
have significantly narrowed this gap.

6.3 Cross-Domain Generalization

To assess generalizability across different domains
and writing styles, we fine-tune the model on one
dataset (GCDC or CoheSentia) and evaluate co-
herence on the other. Table 5 presents results for
our MTL model (Ours-ALL) in Generation-Based
settings and the non-coherence fine-tuned model
(Ours-None) under three settings: fine-tuning on
CoheSentia only, GCDC only, and both combined.

Results demonstrate performance gains across
domains, highlighting the generalizability of our
method. Combining data improves performance,
with Ours-ALL showing a 12% and 14% error re-

duction on CoheSentia and GCDC, respectively,
compared to in-domain scenarios, underscoring the
utility and transferability of the learned features.

6.4 Task-Specific Results

We evaluate the task-specific performance of mod-
els trained with either individual (Ours-Individual)
or joint fine-tuning (Ours-ALL) on proxy tasks, us-
ing both the Classification- and Generation-Based
variations. Results are in Table 6, alongside com-
parisons to current SOTA on these benchmarks.

Our findings show that joint fine-tuning across
all tasks consistently surpasses individual fine-
tuning, particularly in the SRO, ISR, and IDRR
tasks, where it leads to significant performance im-
provements and even surpasses SOTA benchmarks.
For the NPE task, joint fine-tuning achieves sub-
stantial recall gains, though precision falls short
of SOTA results, offering a more balanced per-
formance. An exception is the NLI task, where
our model performs below SOTA. We conjecture
that this discrepancy is due to SOTA results being
achieved with T5-XXL (11B parameters), signifi-
cantly larger than our backbone model, T5-large.

Additionally, our findings consistently show
that Generation-Based models outperform the
Classification-Based ones.

7 Analysis

7.1 The Impact of Task Selection

A hypothesis may be raised, that the joint ALL
model outperforms the NONE model merely due
to its added complexity, regardless of the nature
of the tasks used (i.e., tasks reflecting coherence
conditions). To refute this, we compare our model
fine-tuned on the coherence proxy tasks with a
model that has been fine-tuned on tasks unrelated
to coherence. The tasks that are orthogonal to co-
herence are: (i) Part-of-Speech (POS) tagging: 14k
instances from the CoNLL2003 dataset (Sang and
Meulder, 2003); (ii) Named Entity Recognition
(NER): also using the CoNLL2003 dataset; and
(iii) Machine Translation (MT): 15k instances from
the WMT14 dataset (Bojar et al., 2014).
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Model Cohesion Consistency Relevance
Precision Recall F1 Precision Recall F1 Precision Recall F1

SOTA 72.4 72.1 72.2 59.6 67.5 63.3 56.4 74.6 59.5
Ours-None (bert-large) 66.4 59.4 62.7 60.4 56.5 59.6 49.2 49.9 49.5
Ours-ALL (bert-large) 74.7 70.5 72.5 70.6 68.2 69.3 59.8 61.1 60.4
Ours-None (t5-large) 81.1 80.3 80.7 60.4 62.6 61.5 48.1 49.6 48.8
Ours-ALL (t5-large) 83.1 83.2 83.1 78.5 80.3 79.4 70.8 76.9 73.7

Table 4: Results for Coherence Reasoning Task. The SOTA is by Maimon and Tsarfaty (2023)

Model GCDC CoheSentia
Ours-None-CoheSentia 52.8 34.8
Ours-None-GCDC 56.3 28.5
Ours-None-Both 57.5 35.4
Ours-ALL-CoheSentia 71.8 62.3
Ours-ALL-GCDC 76.4 59.5
Ours-ALL-Both 79.8 66.7

Table 5: Accuracy on coherence scoring on both datasets
when fine-tuned based on T5-model on only one dataset

For these experiments, we employed a
Generation-Based model, specifically T5-large, as
the backbone model, and used distinct prompt and
output designs for each task. For NER and POS,
we adapted the “Sentinel + Tag” architecture by
Raman et al. (2022). Detailed prompts and sample
outputs are in Appendix G.

Using our primary experimental protocol, we
evaluated the fine-tuned models on the GCDC and
CoheSentia benchmarks through coherence scor-
ing fine-tuning. As shown in Table 3, fine-tuning
on unrelated tasks yielded minimal improvements
over the baseline (Controlled-nonCoherence) and
is significantly underperformed compared to our
final joint model (Ours-ALL). This highlights the
critical importance of selecting coherence-specific
proxy tasks for effective coherence detection, as
unrelated tasks can hinder performance.

7.2 The Effect of Different Tasks on the
Overall Coherence Scoring

To examine how fine-tuning on diverse subsets of
coherence proxy tasks affects coherence scoring,
we fine-tune models on various combinations of
these tasks, and then perform final fine-tuning and
evaluation on the coherence scoring task.

Figure 2 shows the impact of fine-tuning proxy
coherence tasks on coherence scoring performance.
Models fine-tuned on any one of the coherence
proxy task outperform those without fine-tuning
(Ours-None), highlighting their effectiveness. Per-
formance generally improves with the addition of
more tasks, particularly after three, suggesting cu-

mulative benefits. Notably, fine-tuning with NLI
significantly boosts performance, likely enhancing
the model’s ability to capture consistency, which is
essential for coherence assessment. Furthermore,
ISR fine-tuning is more impactful when combined
with other tasks. These findings emphasize the im-
portance of task selection and interaction during
fine-tuning for optimal coherence scoring.

7.3 The Effects of Different Tasks on One
Another

We also investigate how fine-tuning on diverse sub-
sets of coherence proxy tasks influence the perfor-
mance of individual proxy tasks. The model was
trained on different task combinations with increas-
ing numbers of tasks and evaluated on each task
separately. Figure 3 shows the empirical results.

Figure 3 shows consistent performance gains
in the Sentence Reordering (SRO) task for BERT
models as more tasks are jointly fine-tuned (see
Appendix F for other tasks). This supports our hy-
pothesis that fine-tuning on coherence proxy tasks
facilitates knowledge transfer and promotes learn-
ing of shared, generalizable representations.

The impact of specific tasks varies; for example,
IDRR has a minimal impact on SRO, likely due to
limited training data, whereas NPE substantially
improve SRO performance. The ISR task notably
improves performance on other tasks. We thus
emphasize the introduction of this self-supervised
ISR task and advocate for its exploration in future
research to enhance coherence assessment.

Regarding the model size, overall performance
trends are similar for both BERT-base and BERT-
large models, suggesting that the influence of spe-
cific tasks remains consistent regardless of the size.

7.4 Qualitative Analysis
To gain qualitative insights, we sampled 50 misclas-
sified examples by SOTA models, from CoheSentia
and GCDC. We then assessed these examples on
various models, including our MTL model (Ours-
ALL) and the non-coherence fine-tuning version

5366



Model SRO ISR IDRR NPE NLI
PMR ACC Accuracy Accuracy F1 P R Accuracy

SOTA 81.9 90.8 - 64.7 64.0 80.5 53.1 92.0
Ours-Individual (bert-large) 51.8 69.5 60.4 60.0 53.1 67.1 44.0 87.4
Ours-ALL (bert-large) 67.1 83.2 78.6 65.7 64.4 79.8 54.2 90.2
Ours-Individual (t5-large) 75.7 87.8 80.4 64.8 59.8 68.5 53.1 89.9
Ours-ALL (t5-large) 83.8 92.1 82.2 67.3 76.7 76.7 76.7 91.5

Table 6: Results for all proxy tasks compared to SOTA performances. The SOTA model for SRO is ReBART (Basu
Roy Chowdhury et al., 2021), for IDRR is Contrastive Learning (Long and Webber, 2023), for NPE is TNE (Elazar
et al., 2022) and for NLI T5-11B (Raffel et al., 2020)

Figure 2: Accuracy for Coherence Scoring Task for both GCDC and CoheSentia with different proxy coherence
task-subsets. The labels are tasks IDs (1-SRO, 2-ISR, 3-DRR, 4-NPE, 5-NLI)

Figure 3: Results for SRO task, for different subsets
of coherence tasks fine-tuned upon. The labels are the
number of tasks and in curly brackets which tasks (1 -
SRO, 2 - ISR, 3 - IDRR, 4 - NPE, 5 - NLI)

(Ours-None).

For CoheSentia, previous SOTA models tend to
favor extreme scores, likely due to imbalances in
the training data. In contrast, our model demon-
strates greater robustness by predicting a more bal-
anced distribution of scores. Appendix E provides
qualitative examples of this behavior for both Cohe-
Sentia and GCDC, further highlighting our model’s

ability to achieve a more evenly distributed scoring
pattern compared to existing approaches.

8 Conclusion and Future Work

In this paper we propose a new coherence modeling
method, based on Reinhart (1980)’s theory, which
reflects the conditions needed for coherence: cohe-
sion, consistency, and relevance. We use five NLP
tasks as proxies of these conditions, and train an
MTL model on them jointly, in both classification-
based and generation-based architectures. In both
cased, our unified coherence model achieves SOTA
results on these individual tasks, and excels in co-
herence scoring for both natural and generated texts.
We propose this framework to enhance NLP sys-
tems’ ability to evaluate text quality automatically.
Future follow-up research will focus on using these
conditions for improved coherent-text generation,
and for automatically detecting particular causes
of incoherence. Our code and models are publicly
available to encourage further research on broad-
coverage coherence scoring and coherence reason-
ing.
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Limitations

While this work advances the modeling and auto-
matic evaluation of coherence, there are limitations
that suggest promising avenues for future research.

Existing coherence evaluation datasets like
GCDC and CoheSentia, along with datasets for
our proxy tasks, primarily focus on relatively short
texts. To address this, we analyzed the perfor-
mance of our joint models (Ours-ALL) and the
non-coherence version (Ours-None) on GCDC and
CoheSentia across various text lengths after fine-
tuning for coherence scoring (see Figure 7 in the
Appendix). As expected, for both models and
datasets, accuracy decreased with longer texts,
highlighting the increased difficulty of assigning co-
herence scores for complex passages. This observa-
tion aligns with recent work suggesting that while
LLMs can handle longer texts, their reasoning abili-
ties might decline with increasing text length (Levy
et al., 2024; Maimon and Tsarfaty, 2023). Addition-
ally, Goldman et al. (2024) argue that long-context
evaluation has not been properly addressed, as it
involves two distinct axes: scope and dispersion.
Based on their definitions, coherence evaluation
can be categorized as a task with both high scope
and high dispersion, making it particularly chal-
lenging to evaluate for long contexts. This dual
nature highlights not only the difficulty but also
the importance of coherence evaluation as a critical
component of assessing LLM capabilities.

Our current study focused on short texts (≤ 512
tokens). The effectiveness of our approach on
longer documents remains an open question for
future exploration. We hypothesize that incorporat-
ing coherence proxy tasks could benefit the model’s
performance on longer texts, but further investiga-
tion is necessary.
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A Tasks Specific Experimental Settings

In this section, we further elaborate on the datasets
and evaluation metrics used for each one of the
coherence proxy tasks.

A.1 The Sentence Reordering Task Setup

Topological Sort: A topological sort (Tarjan,
1976) linearly orders vertices in a DAG. The al-
gorithm is presented in Algo 1.

Dataset: We use the ROCStories (Mostafazadeh
et al., 2016) dataset (Licence ID is CC-BY 4.0.)
which contains 5-sentence stories. We use the stan-
dard 85:15 train/test split and randomly select a
subset of the train for validation.
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Algorithm 1 Topological Sort Algorithm
Input: A digraph G with n vertices
Output: A topological ordering v1,v2...vn of G.

L← Empty list that will contain the sorted nodes
S← Set of all nodes with no incoming edge
while S is not empty do

remove a node n from S
add n to L
for each node m with an edge e from n to m

do
remove edge e from the graph
if m has no other incoming edges then

insert m into S
end if

end for
end while
if graph has edges then

return error (graph has at least one cycle)
else

return L (a topologically sorted order)
end if

Evaluation: We use two common evaluation met-
rics for the reordering task:4

• Perfect Match Ratio (PMR): Chen et al. (2016)
calculate the percentage of samples for which
the entire sequence was correctly predicted.

PMR =
1

N

N∑

i=1

1{Ôi = Oi}

• Sentence Accuracy (Acc): Logeswaran et al.
(2017) calculate the percentage of sentences
for which their absolute position was correctly
predicted.

Acc =
1

N

N∑

i=1

1

vi

vi∑

j=1

1{Ôi
j = Oi

j}

A.2 The Discourse-Relation Recognition Task
Setup

Dataset: We use the Penn Discourse TreeBank3
(PDTB3) Level 2 dataset (Miltsakaki et al., 2004;
Prasad et al., 2008; Liang et al., 2020). We only
used labels with more than 100 instances, which
leaves us with 14 senses from L2. The variabil-
ity of data splits used in the literature is substan-
tial, therefore, we follow earlier work by Ji and

4There are 5 metrics, we used the most common 2.

Eisenstein (2015); Bai and Zhao (2018); Liu et al.
(2020); Xiang et al. (2022) using Sections 2-20,
0-1 and 21-22 for training, validation and testing
respectively. When multiple annotated labels are
present, we adopt the approach described by Qin
et al. (2016) and consider them as distinct instances
during the training phase. During testing, if a pre-
diction matches any of the reference labels, it is
considered correct.

Evaluation: We use the accuracy metric on the
number of sentence pairs the model correctly pre-
dicted the L2 discourse relation:

Accuracy =
1

N

N∑

i=1

1{R̂i = Ri}

A.3 The NP Enrichment Task Setup
Token Classification Head: Figure 4 is an illus-
tration of the token classification head for the NPE
task.

Figure 4: Illustration of the token head which contains
several stages: starting with (1) embedding for each
token in the text, (2) creating an embedding for each
NP when it acts as the complement and the anchor sepa-
rately, (3) a representation for each NP pair and finally
(4) a classification layer

Dataset: We use the TNE dataset (Elazar et al.,
2022) (Licence Free) which contains documents
and relations between every noun pair in it (with
a total number of nouns of 190k and a total num-
ber of NP relations of 1M). There are 28 possible
relations (including ‘no relation’). This dataset’s
advantage is that it contains real-world long para-
graphs. As in the original publication split the data
at the document level.

The distribution of the possible preposition be-
tween pair of nouns in TNE dataset is in Figure 5
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Figure 5: Distribution of the main prepositions in the
NP Enrichment test set

Evaluation: We report precision, recall & F1 on
NP pairs with prepositional links between them.

A.4 The NL Inference (NLI) Task Setup
Dataset and Evaluation: We use the MNLI
dataset (Williams et al., 2018) (Licence ID CC-BY-
3.0). with the accuracy metric on the amount of
hypothesis-premise pairs that the model correctly
predicts their relation R:

Accuracy =
1

N

N∑

i=1

1{R̂i = Ri}

A.5 The Irrelevant Sentence Recognition Task
Setup

Dataset: We again use ROCStories as in sen-
tence reordering. Each story within the ROCStories
dataset was augmented with a single, randomly in-
serted sentence. The irrelevant sentence for each
story was randomly selected from the entire ROC-
Stories dataset, with the sole constraint that it con-
tained entities present in the target story. Both this
and the sentence reordering task leverage the same
benchmark, retaining the same train/dev/test splits.

Evaluation: We use the accuracy metric on the
percentage of paragraphs where the model correctly
detected the irrelevant sentence S:

Accuracy =
1

N

N∑

i=1

1{Ŝi = Si}

A.6 Overall Experimental Settings
We trained each model three times, reporting the
mean performance. Training utilized multiple Tesla

V100 GPUs (up to 4) with 32GB memory each. For
each architecture, the settings are:

1. Classification-Based: BERT (base and large)
served as the encoder with fine-tuning across
all layers. We used Adam optimizer with a
learning rate of 5e-5 and a dropout of 0.5.
For tasks requiring classification (SRO, ISR,
IDRR, NLI), we employed a linear classifica-
tion head with 512 hidden dimensions and 0.3
dropouts. The NPE utilized a different head
structure (details omitted for brevity). Cross-
Entropy loss was used for all datasets.

2. Generation-Based: T5 (base and large) mod-
els were used as the backbone. Training em-
ployed Adam optimizer with a learning rate of
5e-5. Models were trained with task-specific
prompts and corresponding ground truth la-
bels for supervised learning.

Both architectures shared the following hyper-
parameters: fine-tuning for 3 epochs with early
stopping, batch size of 4, and gradient accumula-
tion steps of 2. The hyper-parameters were chosen
using parameters-grid. Our code is based on the
Huggingface library (Wolf et al., 2020).

B Coherence Assessment Experimental
Settings

For each architecture, the settings are:

1. Classification-Based (BERT base and large):
Encoder with fine-tuning across all layers,
Adam optimizer (learning rate 5e-4), dropout
(0.3). Each dataset used a linear classification
head (512 hidden dimensions, 0.1 dropout).
Cross-Entropy loss was used.

2. Generation-Based (T5 base and large):
Encoder-decoder architecture, Adam opti-
mizer (learning rate 2e-5). Inputs included
prompts specific to each dataset (GCDC or
CoheSentia) and the paragraph text.

The models share hyperparameters: 50 epochs
with early stopping (accuracy), batch size of 4,
and gradient accumulation steps of 2. We em-
ployed 10-fold cross-validation on both datasets
(following Lai and Tetreault (2018)) using a sin-
gle Tesla V100 GPU with 32GB memory. The
hyper-parameters were chosen using parameters-
grid. Our code is based on the Huggingface library
(Wolf et al., 2020).
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Figure 6: Accuracy For GCDC based on number of
words

Figure 7: Accuracy For CoheSentia based on number
of words

C Coherence Assessment Datasets
Statistics

Dataset sizes and splits are detailed in Table 7.

D Text Length vs. Coherence Score

The accuracy of the models on both coherence
datasets based on different lengths is in Figure 7.

E Qualitative Analysis

Figure 8a and Table 8 present an example of a text
from the CoheSentia dataset and the predictions
of the models. In this example, the base model
(Ours-None) failed on coherence prediction, while
our final model (Ours-ALL) succeeded. Figure 8b
presents an example of text from GCDC dataset and
Table 9 the predictions of different models on the
coherence scoring task. This example highlights
a complex case with cohesion and relevance vio-
lations. Both the baseline and ISR-trained models

missed this issue, while our MTL model achieved
accurate prediction.

F Results for Subsets of Tasks

Figures 9a, 9b, 9c, 10a and 10b visualize the perfor-
mance of coherence proxy tasks across fine-tuning
settings for BERT-base and BERT-large models. It
highlights how subsets of tasks impacts target task
performance.

G T5 Prompts and Outputs for Different
Tasks

In Table 10 we detail the various prompts used for
fine-tuning T5 models on all explored tasks in this
work.

In Table 11 we detail the various outputs used
for fine-tuning T5 models on all explored tasks in
this work.
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Dataset Split Per Instance
Train Validation Test Max #tokens Avg #tokens Max #sent. Avg #sent.

GCDC 3.6k 800 800 333 156 10 32
CoheSentia 350 75 75 226 150 15 6.5

Table 7: Main Statistics on the Datasets for Coherence Scoring

(a) CoheSentia

(b) GCDC

Figure 8: Sample Texts for coherence scoring tasks: GCDC & CoheSentia benchmarks

Model Prediction
Ground Truth Medium

SOTA High
Ours-None (BERT-large) High

Ours-None (T5-large) High
Ours-ALL (BERT-large) Medium

Ours-ALL (T5-large) Medium

Table 8: Predicted Coherence scores for the text in
Figure 8a

Model Prediction
Ground Truth Low

SOTA Medium
Ours-None (BERT-large) Medium

Ours-None (T5-large) Medium
Ours-ALL (BERT-large) Low

Ours-ALL (T5-large) Low

Table 9: Predicted Coherence scores for the text in
Figure 8b
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(a) SRO

(b) ISR

(c) DRR

Figure 9: Results for all tasks, for different permutations
of tasks fine-tuned upon. The labels are the number of
tasks and in curly brackets which tasks (1 - SRO, 2 -
ISR, 3 - IDRR, 4 - NPE, 5 - NLI)

(a) NPE

(b) NLI

Figure 10: Results for all tasks, for different permuta-
tions of tasks fine-tuned upon. The labels are the number
of tasks and in curly brackets which tasks (1 - SRO, 2 -
ISR, 3 - IDRR, 4 - NPE, 5 - NLI)
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Task Name Dataset Name Prompt
SRO ROCStories “reorder: what is the order of the sentences so that the

paragraph is coherent? sentence 1: ⟨S1⟩ sentence 2: ⟨S2⟩
... ⟨SN ⟩”

ISR ROCStories “relevance: what is the irrelevant sentence in the text?
sentence1: ⟨S1⟩ sentence2: ⟨S2⟩ sentence3: ...⟨SN ⟩”

IDRR PDTB3 “discourse relation: what is the discourse relation between
⟨DU1⟩⟨DU2⟩”

NPE TNE “coreference text: what are the preposition relations be-
tween <NPi> and <NPj>? text: <P>”

NLI MNLI “mnli: does this hypothesis contradict, entail, or neutral
with the premise? hypothesis: ⟨H⟩ premise: ⟨P ⟩”

Coherence Scoring GCDC “GCDC coherence: what is the coherence score of the text
(3 - high, 1 - low)? text: ⟨P ⟩”

Coherence Scoring CoheSentia “CoheSentia coherence: what is the coherence score of the
text (5 - high, 1 - low)? title: ⟨T ⟩ text: ⟨P ⟩”

MT WMT14 “Machine Translation: what is the translation of the
next text from language < source_language > to <
target_language >?: text in source language”

NER Conll2003 “NER task: what is the entity recognition tagging of
each token in the next text? < extra_id_0 > token1
< extra_id_1 > token2 ...”

POS Conll2003 “POS task: What is the part of speech tagging of each
token in the next text? < extra_id_0 > token1 <
extra_id_1 > token2 ...”

Cohesion Reasoning CoheSentia “Cohesion reasoning: previous data: <di> new sentence:
<si>. Task: is the new sentence cohesive in regard to the
previous data? give a yes or no answer to each item ”

Consistency Reasoning CoheSentia “Consistency reasoning: previous data: <di> new sentence:
<si>. Task: is the new sentence consistent in regard to the
previous data? give a yes or no answer to each item ”

Relevance Reasoning CoheSentia “Relevance reasoning: previous data: <di> new sentence:
<si>. Task: is the new sentence relevant in regard to the
previous data? give a yes or no answer to each item ”

Table 10: Prompts for all tasks in this paper when using T5 model as the backbone model
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Task Dataset Outputs
SRO ROCStories list of position markers [Y1, Y2, ..., YN ] (Yi-position of the

ith sentence of the corresponding ordered sequence Si in the
shuffled input)

ISR ROCStories the index of the irrelevant sentence in the paragraph
IDRR PDTB3 “⟨connector⟩ → ⟨l1 relation⟩ → ⟨l2⟩”
NPE TNE the preposition
NLI MNLI Contradict / Entails / Neutral
Coherence scoring GCDC the score
Coherence scoring CoheSentia the score
MT WMT14 the translated text
NER Conll2003 “< extra_id_0 > ner_tag_token1 < extra_id_2 >

ner_tag_token2 ...”
POS Conll2003 “< extra_id_0 > pos_tag_token1 < extra_id_2 >

pos_tag_token2 ...”
Cohesion reasoning CoheSentia Yes / No
Consistency reasoning CoheSentia Yes / No
Relevance reasoning CoheSentia Yes / No

Table 11: Outputs for all tasks in this paper when using T5 model as the backbone model
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