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Abstract

Existing information retrieval (IR) models of-
ten assume a homogeneous structure for knowl-
edge sources and user queries, limiting their
applicability in real-world settings where re-
trieval is inherently heterogeneous and diverse.
In this paper, we introduce UniHGKR, a uni-
fied instruction-aware heterogeneous knowl-
edge retriever that (1) builds a unified retrieval
space for heterogeneous knowledge and (2) fol-
lows diverse user instructions to retrieve knowl-
edge of specified types. UniHGKR consists
of three principal stages: heterogeneous self-
supervised pretraining, text-anchored embed-
ding alignment, and instruction-aware retriever
fine-tuning, enabling it to generalize across
varied retrieval contexts. This framework is
highly scalable, with a BERT-based version and
a UniHGKR-7B version trained on large lan-
guage models. Also, we introduce CompMix-
IR, the first native heterogeneous knowledge
retrieval benchmark. It includes two retrieval
scenarios with various instructions, over 9,400
question-answer (QA) pairs, and a corpus of
10 million entries, covering four different types
of data. Extensive experiments show that Uni-
HGKR consistently outperforms state-of-the-
art methods on CompMix-IR, achieving up to
6.36% and 54.23% relative improvements in
two scenarios, respectively. Finally, by equip-
ping our retriever for open-domain heteroge-
neous QA systems, we achieve a new state-of-
the-art result on the popular ConvMix (Christ-
mann et al., 2022b) task, with an absolute im-
provement of up to 5.90 points.1

1 Introduction

Retrieval-Augmented Generation (RAG (Lewis
et al., 2020; Gao et al., 2023; Qi et al., 2024))
has become a pivotal technique for improving the
faithfulness of generative large language models

1Our code, datasets and model checkpoints are available
at: https://github.com/ZhishanQ/UniHGKR
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Figure 1: Compared to traditional methods, UniHGKR
follows user instructions to process queries and retrieves
from a heterogeneous knowledge candidates pool.

(LLMs (Achiam et al., 2023)). By leveraging re-
trievers to extract relevant knowledge from large-
scale knowledge corpus, RAG effectively reduces
the hallucinations often produced by LLMs (Ayala
and Bechard, 2024; Muennighoff et al., 2024).

Although existing information retrieval (IR)
methods(Yang et al., 2024; Zhao et al., 2024) have
demonstrated effectiveness in retrieving informa-
tion from homogeneous knowledge corpus, where
knowledge is stored in a single structure, such as
tables (Kong et al., 2024) or text (BehnamGhader
et al., 2024), most of these systems fail to recog-
nize diverse user retrieval intents and retrieve het-
erogeneous knowledge from multiple sources. In
heterogeneous IR, knowledge comes from multi-
ple structures, making retrieval much more com-
plex. Relying solely on homogeneous knowledge
often results in partial or incomplete retrieval re-
sults, limiting the applicability of these systems
to a wider range of downstream tasks (Asai et al.,
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2023; Christmann et al., 2022b). For example, a re-
triever specialized in table-based retrieval (Herzig
et al., 2021) cannot be easily applied to downstream
tasks such as question answering (QA) based on
knowledge graphs (Huang et al., 2023).

In this paper, we propose the Unified Hetero-
Geneous Knowledge Retriever (UniHGKR), a
novel framework designed to retrieve information
from heterogeneous knowledge corpus by follow-
ing user instructions, as depicted in Figure 1. The
UniHGKR framework consists of three training
stages: (1) Unified Embedding Self-Supervised
Pre-training: This stage addresses the lack of
structured data in the original pretraining of the lan-
guage model, laying the foundation for the creation
of a unified embedding space. (2) Text-Anchored
Heterogeneous Embedding Alignment: In this
stage, natural language text that shares the same se-
mantic content as heterogeneous data is collected,
and their embeddings are aligned using contrastive
learning. This process creates a unified embed-
ding space that captures semantic information, in-
dependent of the format in which the knowledge is
presented. (3) Instruction-Aware Heterogeneous
Retriever Fine-tuning: At this final stage, the re-
triever is fine-tuned on heterogeneous knowledge
retrieval tasks. To enhance the model’s capability
to follow user instructions, we introduce two spe-
cialized contrastive losses, termed ‘type-balanced
loss’ and ‘type-preferred loss’, which are designed
to optimize retrieval performance according to user
instructions.

In addition, existing heterogeneous IR bench-
marks have limited knowledge coverage (Petroni
et al., 2021; Muennighoff et al., 2023). For exam-
ple, studies like (Chen et al., 2021b; Zhong et al.,
2022) focus only on two types of knowledge: ta-
bles and text. To address this gap, we introduce
CompMix-IR, the first-ever benchmark for hetero-
geneous knowledge retrieval. CompMix-IR has
over 9,400 QA pairs and a corpus of 10 million en-
tries spanning four distinct knowledge types: Text,
Knowledge Graphs (KG), Tables, and Infoboxes.
Derived from the open-domain QA dataset Comp-
Mix (Christmann et al., 2024), CompMix-IR trans-
forms this QA task into a standard IR task (as de-
tailed in Section 3). To better reflect real-world
retrieval needs, we define two distinct scenarios in
this benchmark: (1) retrieving relevant evidence
across all knowledge types, and (2) retrieving ev-
idence of a specific type, as specified by user in-
structions. Both scenarios utilize the same evi-

dence pool, requiring the retriever to adapt query-
evidence similarity based on the instructions. This
setup mirrors the complexities of real-world re-
trieval tasks, offering enhanced practical relevance
and utility for diverse applications.

Experimental results demonstrate the effective-
ness of our proposed UniHGKR over the exist-
ing methods, with relative improvements of up to
6.36% and 54.23% in two different scenarios. In
addition to the BERT-based UniHGKR-base model,
we also extend our framework to an LLM-based
retriever and train the UniHGKR-7B model to ver-
ify scalability. Both models achieve state-of-the-art
(SOTA) performance on CompMix-IR respective
to their parameter scales. Furthermore, in the con-
text of open-domain heterogeneous QA, systems
equipped with UniHGKR retriever set a new SOTA
on the ConvMix task (Christmann et al., 2022b),
with an absolute gain of up to 5.90 points, further
validating its real-world applicability.

2 Related Work

IR on Heterogeneous Knowledge. Several efforts
have been make in this field, but they come with
notable limitations. For example, Li et al. (2021);
Kostić et al. (2021) create separate retrieval indices
for different data types, retrieving them individu-
ally. This approach fails to compare relevance of
evidence across knowledge sources, and maintain-
ing multiple indices increases system complexity.
On the other hand, UDT-QA (Ma et al., 2022b)
introduces a verbalizer-retriever-reader framework,
using a finetuned data-to-text generator (Nan et al.,
2021) to convert heterogeneous scenarios into ho-
mogeneous text scenarios. However, this leads to
answer coverage loss and limits downstream reader
models from utilizing the structured of data, essen-
tial for tasks like KG-based and Table-based QA
(Hu et al., 2023; Kweon et al., 2023). Additionally,
these retrievers are typically designed for prede-
fined single tasks, failing to accommodate users
diverse retrieval needs.
QA over Heterogeneous Knowledge. Each data
type has its own characteristics and provides unique
benefits. Some studies explores the integration
of knowledge sources to QA (Ma et al., 2022a;
Min et al., 2024; You et al., 2020a,b, 2021c,a,b;
Chen et al., 2021a; You et al., 2022). For in-
stance, HybridQA (Chen et al., 2020b) and OTT-
QA (Chen et al., 2021b) investigate the task of ex-
tracting answers from the combination of tables and
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text. Going further, CONVINSE (Christmann et al.,
2022b), Explaignn (Christmann et al., 2023) and
FAITH (Jia et al., 2024) consider four knowledge
sources like this paper. However, their primary fo-
cus is on the answer generation parts of the system.
Their retrieval approach is a time-consuming on-
line pipeline: identifying entity IDs in questions,
then conducting online searches in Wikipedia and
Wikidata (Vrandečić and Krötzsch, 2014), and fi-
nally employing BM25 (Robertson et al., 2009) to
rank a small set of evidence.

3 CompMix-IR Benchmark

In this section, we provide a detailed description of
the construction of CompMix-IR, the definition of
retrieval scenarios, and their instruction schema.

3.1 Heterogeneous Knowledge Collection

We introduce CompMix-IR, the first native het-
erogeneous knowledge retrieval dataset, built on
the CompMix dataset (Christmann et al., 2024), a
recent crowdsourced open-domain QA task span-
ning four knowledge sources. However, the origi-
nal dataset lacks a heterogeneous corpus suitable
for retrieval tasks. To address this, we construct
a heterogeneous knowledge corpus related to the
CompMix QA set, extending it for IR tasks. Specif-
ically, we collect and store four types of knowledge
using the following methods for each question:
• KG facts. We use CLOCQ (Christmann et al.,

2022a) to retrieve the top-1000 KG triples re-
lated to each question from the Wikidata dump.
We also store the disambiguations and wikidata
entities information returned by CLOCQ. This
information helps us evaluate the relevance be-
tween the evidence and the question. To feed the
structured data into the language model, the re-
trieved KG facts are linearized, with entities and
relations separated by commas.

• Text, Tables and Infoboxes. We use the entities
mentioned in questions to retrieve the correspond-
ing Wikipedia pages. Subsequently, a parser is
used to extracts natural language paragraphs (text
evidence), tables, and infoboxes from the pages.
Also, we utilize hyperlinks from Wikipedia pages
to map the corresponding entity mentions to Wiki-
data IDs. This achieves the same labeling format
as KG evidence. Following (Oguz et al., 2022),
both tables and infoboxes are linearized using
simple templates. Specifically, we concatenate
the properties and values from the table using

the word "is". The entity name described by the
infobox and the properties and values are strung
together by a comma ",", forming a text string.
Additionally, Wikipedia page titles are added at
the beginning of the evidence for clearer informa-
tion.

Types Avg. length Count Percentage
Text 19.86 5,916,596 57.74%
KG 11.40 2,214,854 21.61%
Table 20.32 1,043,105 10.18%
Infobox 11.05 1,072,440 10.47%
Sum 17.18 10,246,995 100.00%

Table 1: Statistics of CompMix-IR. ‘Avg. length’ refers
to the average number of words.

To align with the standard IR task setup, we
use automated scripts to label relevant evidence
(golden labels) for each question. The relevance be-
tween the evidence and the question is of a boolean
type (True/False). Specifically, if the entities in
the evidence contain the answer to the question,
the relevance is marked as True; otherwise, it is
marked as False. Each question has at least one
piece of evidence that provides the answer. The
evidence retrieved for all questions in CompMix
is combined into a heterogeneous knowledge pool,
forming the corpus for the IR task. This corpus
includes over 10 million pieces of evidence, cov-
ering knowledge about 137,808 different entities.
Detailed statistics of CompMix-IR are presented in
Table 1, and examples of linearized evidence and
QA pair, as well as their annotation information
examples, provided in Appendix A.

3.2 Retrieval Scenarios and Instructions

To address real-world heterogeneous knowledge
retrieval needs, we define two distinct retrieval sce-
narios:
• Scenario 1: retrieving evidence from all types of

knowledge.
• Scenario 2: retrieving type-specific evidence, as

instructed by the user.
Both scenarios use the same evidence pool, re-

quiring retrievers to consider not only the relevance
of candidates but also whether these candidates
match the data type specified in the instructions.
Based on these two scenarios, we define an in-
struction schema (as shown in Table 2), inspired
by (Asai et al., 2023; Wei et al., 2023). Users
can customize retrieval by adjusting the [domain]
and [source] options, where [domain] specifies
the topic of evidence and [source] defines the type
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Template Given a question in the [domain] domain, retrieve relevant evidence to answer the question from the [source].

[domain] options: books, movies, music, television series, and football
[source] options: All Knowledge Sources, Knowledge Graph Triples, Infobox, Table, and Text

Example 1: Given a question in the music domain, retrieve ... from Knowledge Graph Triples.
Example 2: Given a question in the football domain, retrieve relevant ... from All Knowledge Sources.

Paraphrased 1: For a question related to the music domain, find pertinent information from Knowledge Graph Triples.
Paraphrased 2: For a question in the football domain, extract helpful ... to address it from All Knowledge Sources.

Table 2: Schema and examples of instructions for heterogeneous retrieval. The template contains two placeholders:
[domain] and [source]. Users can select options for these based on their specific needs.

of knowledge. Instructions are categorized into
five groups: IAll, IText, IKG, ITable, and IInfo. Here,
IAll corresponds to our retrieval scenario 1, while
the others correspond to scenario 2. Addition-
ally, to enhance the robustness of the instructions,
each instruction was rewritten into 20 different ex-
pressions with the help of GPT-4o-mini (OpenAI,
2024).

4 UniHGKR

In this section, we introduce our problem for-
mulation and the UniHGKR framework. Our
UniHGKR-base model adopts a single shared-
encoder architecture, with parameters initialized
from the BERT-base model (Devlin et al., 2019).
The [CLS] token from the final hidden layer
is trained to serve as the embedding, following
(Karpukhin et al., 2020; Xiao et al., 2022a).

4.1 Problem Formulation
Given a vase candidate pool of heterogeneous
evidence E , defined as: E =

⋃
τ∈H Eτ , where

H = {Text, Info, Table, KG} represents the set
of evidence types. For each type τ , Eτ = {eiτ}Nτ

i=1

is the set of evidence of type τ . The problem of
retrieval with instructions is to find evidence e ∈ E
that is relevant to q according to the instruction
I . The instruction and question are concatenated
as q̃ = [I; q], and the evidence e is encoded into
embedding vectors by a shared encoder, denoted as
Enc. The similarity between q̃ and e, is calculated
as follows:

f(q̃, e) = Enc (q̃)⊤ Enc(e), (1)

where ⊤ denotes the transpose operation. The re-
triever returns the top k evidence with the highest
similarity as the retrieval results.

4.2 UniHGKR Framework
An overview of our framework is presented in Fig-
ure 2, which comprises the following three training

stages:

Stage 1: Unified Embedding Self-Supervised
Pretraining. Pretrained Language Models (PLMs)
are primarily trained on text, making them ineffec-
tive at generating embeddings for heterogeneous
data, which is critical for IR tasks (Li et al., 2022,
2023b). To this end, we design this stage to train
PLMs with a token masking reconstruction task
on heterogeneous data-text pairs as inputs. Specif-
ically, we first construct a set of data-text pairs
based on the CompMix-IR corpus with the help of
LLMs, as illustrated in Figure 3:

D =
{
⟨di, ti⟩ | di ∈ Ê , ti = F(di)

}N

i=1
, (2)

where, Ê = EKG ∪ ETable ∪ EInfo, F is the data-
to-text generator, which in our setting is GPT-4o-
mini. The di is the linearized structured data, and
the text ti is a well-written natural language sen-
tences with the same semantic information as di.
At this stage, they are concatenated to form train-
ing inputs. This approach enables the model to ac-
cept input sequences in heterogeneous formats as
self-supervised signals. Furthermore, di and ti can
serve as distant supervision signals for each other,
providing an indirect supervisory signal that en-
hances the model’s learning from heterogeneous in-
puts (Sun et al., 2021; Mintz et al., 2009). We adopt
the token masking reconstruction task from Retro-
MAE (Xiao et al., 2022b): an additional single-
layer Transformer (Vaswani et al., 2017) as a tem-
porary decoder with a 50% masking ratio, while
our model serving as the encoder with a 15% mask-
ing ratio. The training objective is:

min
θ

∑

x∈X
− logDec (x | Enc (x̃; θ) ; θ) . (3)

Here, x represents the original clean input, and x̃
denotes the masked input. After this stage training
is completed, only the weights of the encoder are
retained for subsequent training.
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Instruction Retrieve from All Knowledge Sources … In which year was the book Rabbit at Rest published ?

Stage 1: Unified Embedding Self-Supervised Pretraining

Linearized data: 

Maverick County, [Mask1], +57706, determination [Mask2],   …

NL Sentence:

As [Mask3] 2015, the population of Maverick [Mask4] was … 

Masked Tokens 
Prediction

Pair

UniHGKR

Maverick County, population, 
+57706, determination method, 
demographic… As of 2015, the 
population of…

Contrastive training

Positive samples:
[KG triple] Rabbit at Rest, publication date, 1990 
[Text] The two final installments of the Rabbit series, … and Rabbit at Rest (1990), …

Hard Negative samples:
[Infobox] Rabbit Redux, , Publication date, 1971 
[KG triple] Rabbit Is Rich, followed by, Rabbit at Rest … 
[Table] Newbery Medal, Year is 1945, Author is Lawson, Book is Rabbit Hill, Award…

…

concat

UniHGKR repel

align

Instruction Retrieve from Text (or Table/Infobox …) … Question In which year was the book Rabbit at Rest published ?

Positive samples:

[Text] The Rabbit at Rest is a 1990 novel by John Updike…. 
[Text] The two final installments of the Rabbit series, … and Rabbit at 
Rest (1990), … 
[Text]  John Updike, In 1990, he published a novel, Rabbit at Rest, 

Hard Negative samples:

[Infobox] Rabbit Redux, , Publication date, 1971 
[Table] Newbery Medal, Year is 1945, Author is Lawson, Book is Rabbit Hill,… 
[KG triple] Rabbit at Rest, publication date, 1990 ( instruction-unfollowing 
negative sample) 

Question
Scenario 1

Scenario 2

concat

Figure 2: Illustration of our UniHGKR training framework.

Stage 2: Text-anchored Heterogeneous Embed-
ding Alignment. Given that user instructions
and questions are typically in text form, we fur-
ther leverage the collected data-text pairs to opti-
mize the embedding space anchored in text embed-
ding representations. We apply contrastive learn-
ing (Chen et al., 2020a) to align the embedding
of structured data di and text ti that convey the
same semantic information but differ in expression.
Meanwhile, we repel embedding with different se-
mantic information using in-batch negative samples
B− (samples that do not share semantic similarity
with di) (Sohn, 2016). This results in a unified
embedding space focused on semantic information
rather than the form of knowledge representation.
The training objective is to minimize:

∑

⟨di,ti⟩∈D
− log

ef(di,ti)/τ

ef(di,ti)/τ +
∑

b−∈B−
ef(di,b−)/τ

,

(4)
where f() is a similarity function and τ is the tem-
perature parameter.
Stage 3: Instruction-aware Heterogeneous Re-
triever Fine-Tuning. In this stage, we fine-tune
our retriever on the heterogeneous knowledge re-
trieval task. For each question q and its golden
evidence e+, we generate two training samples:

(IAll, q, e
+) and (Iλ, q, e

+), where λ is the data
type of the positive sample e+. Additionally, we
use the BGE model (Xiao et al., 2024) to mine
hard negative samples set, denoted as E−. For the
contrastive training loss L:

L = − log
ef(q̃,e

+)/τ

ef(q̃,e+)/τ +
∑

d−∈E− ef(q̃,e−)/τ

= − f(q̃, e+)/τ︸ ︷︷ ︸
Lalign

+ log
(
ef(q̃,e

+)/τ + Lrepel

)

︸ ︷︷ ︸
Luniformity

(5)
Here, Lalign is the alignment loss encouraging
higher similarity between the query and the posi-
tive evidence. Meanwhile, Luniformity denotes the
uniformity loss applied over all samples, aiming to
push the query away from negative samples (Wang
and Isola, 2020). We can simplify Lrepel :

Lrepel =
∑

λ̃∈H

∑

e−
λ̃
∈E−

λ̃

e
f(q̃,e−

λ̃
)/τ (6)

where H = {Text, Info, Table, KG}, and E−
λ̃

is

the set of hard negative samples of type λ̃. We
define: kλ̃ = |E−

λ̃
|, λ̃ ∈ H to represent the number

of negative samples for each type.
To enhance the model’s ability to follow user in-

structions, we design distinct contrastive losses:
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Data-Text Pairs Collecting

Infobox Entry:

The film "Love Hard" was produced by the production company Wonderland Sound and Vision.NL Sentence:

Table Entry:

NL Sentence:

KG Triple:

NL Sentence:

Prompt

GPT-4o-mini

Love Hard (film), Love Hard, Production company, Wonderland Sound and Vision.

Maverick County, population, "+57706", determination method, demographic balance, point in time, "2015'

New York City Ballet, Name is Tyler Angle, Nationality is United States, Training is Allegheny Ballet 
Academy School of American Ballet, Joined NYCB is 2004, Promoted to Principal is 2009.

Tyler Angle, a dancer from the United States, trained at the Allegheny Ballet Academy and the School of American 
Ballet. He joined the New York City Ballet in 2004 and was promoted to Principal in 2009.

As of 2015, the population of Maverick County was approximately 57,706, determined through demographic balance.

Figure 3: Illustration of Data-Text Pair Collection. The bold red is and the comma , are used in concatenation
template when linearizing structured data. The prompts used for GPT-4o-mini can be found in Appendix B.

a type-balanced loss Lbalanced for training sam-
ples wtih instruction IAll (Scenario 1), and a type-
preferred loss Lpreferred for training samples with
instruction Iλ (Scenario 2). Specifically, for type-
balanced loss Lbalanced, we make kText ≈ kInfo ≈
kTable ≈ kKG depend on their numbers in E−. In
contrast, for type-preferred loss Lpreferred, in order
to make the model learn the priority of evidence
with specified-type λ, we deliberately make kλ sig-
nificantly lower than the quantity of other types.
For example, when a training sample with instruc-
tions ITable, we set kText ≈ kInfo ≈ kKG > kTable =
0, by filtering out e−Table from E−. By adjusting kλ,
the training samples with Iλ have fewer negative
samples of type λ, thereby forming a preference
for evidence of type λ in the global heterogeneous
candidate pool. Since we also use in-batch neg-
ative samples B− during training, the model can
still learn to repel e−λ , which are of the correct type
but irrelevant evidences. Additionally, we also add
a small number of instruction-unfollowing nega-
tive samples, which are related to q but not of the
type λ, to encourage the model to decrease their
similarity with q̃.

5 Experimental Methodology

In our main experiments, we train and evaluate
retrievers on the CompMix-IR, following the train,
dev, and test set divisions in CompMix.

5.1 Baselines

Zero-shot SoTA Retriever. Referring to the
MTEB leaderboard2, we select some top-ranking
and SOTA models as baselines, including Mp-
net (Song et al., 2020), Contriever (Izacard et al.,

2https://huggingface.co/spaces/mteb/leaderboard

2022), DPR (Karpukhin et al., 2020), GTR-
T5 (Ni et al., 2022), SimLM (Wang et al., 2023),
BGE (Xiao et al., 2024), and Instructor (Su et al.,
2023). For Mpnet, we use the strong version3

released by Sentence-Transformers (Reimers and
Gurevych, 2019). Additionally, we evaluate the
classic sparse retriever BM25 (Robertson et al.,
2009). For retrievers that undergo instruction fine-
tuning (see Table 3), we use the instructions pro-
vided in their respective papers for evaluation.

Fine-tuned Baselines. We follow the verbalizer-
retriever approach from UDT-QA (Ma et al.,
2022b) to fine-tune a BERT-base model, serving as
the UDT retriever. Since UDT focuses on homo-
geneous textual representations of heterogeneous
data, we replace di with ti from the data-text pairs
D during its training and evaluation, ensuring this
model only interacts with the natural language cor-
pus. This also means that in our experiments, we
fine-tune the UDT-retriever baseline using exactly
the same GPT-4o-mini synthesized data-text pairs
D as utilized by our UniHGKR. For comparison,
we also fine-tune a BERT-base model on the origi-
nal CompMix-IR. Additionally, we finetune a DPR
model using the UniK-QA method (Oguz et al.,
2022), serving as the UniK retriever. All fine-
tuning uses the same positive and hard negative
samples as UniHGKR. For baseline models lacking
instruction-following capabilities, we input only
the query across all retrieval scenarios to ensure
optimal performance.

5.2 Evaluation Metrics

For retrieval scenario 1, we employ common met-
rics in the IR task: Hit@K (K=5,10,100) and

3https://huggingface.co/sentence-transformers/all-mpnet-
base-v2
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Retrieval Scenario 1 (instruction IAll) Retrieval Scenario 2 (instruction Iτ )
Method Size Ins Hit@5 Hit@10 Hit@100 MRR@100 KG-Hit Text-Hit Table-Hit Info-Hit
BM25 - ✗ 11.51 17.40 52.39 8.54 24.20 34.55 8.50 19.79
DPR 109M ✗ 24.89 36.32 78.76 17.51 49.13 63.68 15.63 41.57
Mpnet 109M ✗ 26.23 37.99 82.67 18.46 63.02 61.11 18.96 52.1
GTR-T5-base 110M ✗ 24.46 36.54 80.32 16.73 57.78 59.8 22.87 46.09
Contriever 109M ✗ 28.58 40.70 83.79 20.07 62.26 63.86 18.63 55.64
SimLM 109M ✗ 25.11 37.08 80.61 17.68 59.59 59.01 17.69 52.06
Instructor-base 110M ✓ 24.86 36.22 81.55 17.80 65.63 50.25 16.82 53.36
Instructor-large 336M ✓ 25.98 36.87 81.51 18.54 68.78 44.61 17.11 53.98
BGE 109M ✓ 26.66 39.04 84.15 19.40 68.42 57.96 22.58 56.58
BERT-finetuned 109M ✗ 24.46 35.38 78.51 17.04 57.63 54.67 17.55 48.41
UDT-retriever 109M ✗ 24.96 35.49 76.52 18.24 66.10 62.48 25.90 57.05
UniK-retriever 109M ✗ 30.68 43.42 85.20 21.22 67.40 63.21 26.74 56.04
UniHGKR-base 109M ✓ 32.38 45.55 85.75 22.57 75.43 70.30 41.24 66.21
▲ Relative gain +5.54% +4.91% +0.65% +6.36% +9.67% +10.08% +54.23% +16.06%

Table 3: the experimental results for the two retrieval scenarios on CompMix-IR. The relative gain is calculated
based on the performance of UniHGKR-base compared to the best baseline, highlighted by underlines.

MRR@K (Mean Reciprocal Rank, K=100) to eval-
uate model performance (Zhao et al., 2024). More
detailed descriptions are provided in Appendix C.
For scenario 2, which uses type-specified instruc-
tions Iτ , where type τ ∈ H, we introduce the met-
ric Type-Hit (Type-Hit@100), indicate whether rel-
evant evidence of the correct type is included in the
top 100 retrieval result.

5.3 Implementation Details.
In our experiments, all contrastive training utilizes
in-batch negatives across GPU devices. We utilize
the maximum batch size that the GPU memory
can fit and conduct all our training experiments
on 8 A800-80GB GPUs. In the training stage 3,
each training sample has a group size of 16, which
includes 1 positive sample and 15 hard negative
samples. More detailed training settings can be
found in Appendix D.

6 Evaluation Results

In this section, we focus on comparing and dis-
cussing the performance of UniHGKR with base-
lines on heterogeneous retrieval tasks and the ap-
plication of UniHGKR models in the open-domain
QA task. We also explore the robustness and zero-
shot performance of UniHGKR in Appendix E.

6.1 Main Results
Table 3 presents the retrieval performance of var-
ious models on the CompMix-IR test set. Our
UniHGKR model outperforms all baselines in
both scenarios, with a maximum relative improve-
ment of 6.36% in scenario 1 and 54.23% in sce-
nario 2, demonstrating its effectiveness in hetero-

geneous knowledge retrieval. Notably, powerful
open-source retrievers like BGE (trained on over
200 million high-quality text pairs, (Xiao et al.,
2024)) only achieve an MRR@100 below 20.0 in
scenario 1 and a Table-Hit of 22.58 in scenario
2, highlighting the challenges of our constructed
benchmark. Although the UDT-retriever shows sig-
nificant improvement over its counterpart model,
BERT-finetuned, in Scenario 2, the improvement
in Scenario 1 is minimal. Also, it is clearly infe-
rior to our UniHGKR-base, which was trained on
the same synthetic data from GPT-4o-mini. More-
over, UniK-retriever, fine-tuned the DPR model on
CompMix-IR, performs well across several metrics
but is suboptimal on structured data (like Table and
Infobox) in scenario 2. In contrast, our UniHGKR
shows the greatest improvements on metrics where
existing methods struggle, particularly in retriev-
ing structured knowledge in scenario 2. This in-
dicates that our three-stage training approach not
only creates an effective representation space for
heterogeneous knowledge retrieval but also excels
at following diverse user instructions.

6.2 Ablation Study

In this subsection, we conduct ablation studies
to examine the roles of different training stages
and components in UniHGKR for heterogeneous
knowledge retrieval. Table 4 presents the perfor-
mance of various UniHGKR variants, obtained
by removing specific components or a particular
training stage. Results show that removing any
training stage or component leads to a significant
drop in performance. For retrieval scenario 1, train-
ing stage 1 (Unified Embedding Self-Supervised
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Retrieval Scenario 1 (instruction IAll) Retrieval Scenario 2 (instruction Iτ )
Method Hit@5 Hit@10 Hit@100 MRR@100 KG-Hit Text-Hit Table-Hit Info-Hit
UniHGKR-base 32.38 45.55 85.75 22.57 75.43 70.30 41.24 66.21

w/o training stage 1 (pretrain) 29.78 42.80 84.88 21.54 72.97 68.60 34.01 60.06
w/o NL sentence during stage 1 31.30 44.36 85.46 21.83 74.07 69.01 40.13 65.16
w/o training stage 2 (alignment) 31.41 45.02 85.14 21.92 74.75 70.01 37.99 66.04

In the training stage 3 (finetune)
w/o type-preferred loss Lpreferred 31.77 44.97 85.24 22.27 73.26 69.90 33.86 61.22
w/o instructions and Lpreferred 31.98 44.39 85.24 22.18 68.20 65.59 29.20 58.65
w/o rewritten instructions 31.11 44.14 84.48 21.86 67.66 65.16 27.82 57.96

Table 4: The results of the ablation study for the UniHGKR-base. We use blue color to indicate the largest decrease.

Retrieval Scenario 1 (instruction IAll) Retrieval Scenario 2 (instruction Iτ )
Method Hit@5 Hit@10 Hit@100 MRR@100 KG-Hit Text-Hit Table-Hit Info-Hit
UniHGKR-base 32.38 45.55 85.75 22.57 75.43 70.30 41.24 66.21
E5-mistral-7B 31.3 43.49 83.36 22.97 69.03 41.46 33.03 62.92
LLARA-passage 37.45 51.59 86.61 26.11 68.23 70.48 37.88 60.64
LLARA-finetuned 42.19 55.35 87.81 30.83 74.38 69.86 36.40 64.40
UniHGKR-7B 49.78 59.23 88.21 38.20 81.80 76.05 49.57 73.88
▲Relative gain +17.99% +7.01% +0.46% +23.91% +9.98% +7.90% +30.86% +14.72%

Table 5: Retrieval performances of UniHGKR-7B and LLM-based retrievers baselines. The relative gain is
calculated based on the performance of UniHGKR-7B compared to the best baseline, highlighted by underlines.

Pretraining) is crucial, while for scenario 2, both
rewritten (paraphrased) instructions and instruction-
aware type-preferred loss Lpreferred are key. Remov-
ing them will result in a performance drop of up
to 13.42 points in the Table-Hit metric. Addition-
ally, we present some extra ablation studies in Ap-
pendix F, such as exploring the role of different
instructions in retrieving from specific sources and
the performance gains of different training stages
in an unsupervised setting.

6.3 Extending UniHGKR to LLM Retrievers

Recent works, such as E5-mistral-7B (Wang et al.,
2024) and LLARA (Li et al., 2023a), have explored
converting decoder-only LLMs into dense retriev-
ers, leveraging their extensive pre-trained knowl-
edge to achieve improvements on various IR tasks.
Our UniHGKR framework is plug-and-play and
can seamlessly adapt to training LLM retrievers
by adjusting the training objectives. To demon-
strate this, we adapt UniHGKR framework to train
our UniHGKR-7B retrievers based on the LLARA
architecture. More adaptation details are in Ap-
pendix G.

Table 5 presents the evaluation results of
UniHGKR-7B alongside other LLM-based base-
lines, including E5-mistral-7B, LLARA-passage
(LLARA-pretrain fine-tuned on MS MARCO pas-
sage), and LLARA-finetuned (LLARA-pretrain
fine-tuned on CompMix-IR). We can observe that
our UniHGKR-7B significantly outperforms the

LLM-based baselines and UniHGKR-base, achiev-
ing SOTA performance on all metrics across two
scenarios. In particular, it achieves a 23.91% rel-
ative improvement on the MRR@100 metric in
Scenario 1 and reaches 49.57 on the Table-Hit in
Scenario 2. These results further validate the effec-
tiveness and scalability of our UniHGKR method,
as well as the potential of LLMs as retrievers.

6.4 Employing UniHGKR on QA systems

In this section, we explore the application of Uni-
HGKR retrievers in open-domain QA systems
over heterogeneous sources. We select a popular
task, ConvMix (Christmann et al., 2022b), which
is a conversational format variant of the Comp-
Mix. This task is more challenging because it re-
quires systems to consider both the current turn’s
question and the dialogue history. Baseline mod-
els such as QuReTeC (Voskarides et al., 2020),
CONVINSE (Christmann et al., 2022b), and EX-
PLAIGNN (Christmann et al., 2023), along with
their results, are sourced from the ConvMix leader-
board4. Note that in the QA system experiment,
we replace the entire retrieval component (e.g.,
CLOCQ+BM25) of the baseline with our Uni-
HGKR model, not just BM25. The retrieval com-
ponent of EXPLAIGNN and CONVINSE can be
seen as a combination of coarse retrieval (CLOCQ)
and re-ranking (BM25). All baseline methods and

4https://convinse.mpi-inf.mpg.de/
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Methods Retriever Reader P@1 MRR
BM25+FiD BM25 FiD 25.3 27.5
QuReTeC QuReTeC FiD 28.2 28.9
CONVINSE CLOCQ+BM25 FiD 34.3 37.8
EXPLAIGNN CLOCQ+BM25 GNN 40.6 47.1
Ours UniHGKR-base FiD 42.4 46.6
▲Abs. gain +8.10 +8.80

UniHGKR-7B FiD 46.5 51.4
▲Abs. gain +12.20 +13.60
▲SOTA gain +5.90 +4.30

Table 6: The QA performance of systems using the Uni-
HGKR retriever and baselines on the ConvMix dataset.
‘Abs. gain’ represents the absolute improvement brought
by the retriever under the same Reader setting (com-
pared to CONVINSE). ‘SOTA gain’ indicates the abso-
lute improvement over the previous SOTA system.

our UniHGKR use the same corpus to ensure a fair
comparison. In the reasoning part after retrieval,
we follow CONVINSE and use Fusion-in-Decoder
(FiD) (Izacard and Grave, 2021) as the reader. We
input the top 100 relevant evidences returned by
the retriever into the reader for inference. Then
we evaluate the output of the reader as the perfor-
mance of the QA system using the same metrics as
baselines: P@1 (Precision at 1) and MRR.

As shown in Table 6, by replacing retrievers
with our UniHGKR models in baseline systems,
we observe significant improvements in QA per-
formance. Specifically, compared to CONVINSE,
which uses the same reader FiD as we do, using
UniHGKR-base as the retriever achieves an abso-
lute improvement of up to 8.80 points in MRR,
while UniHGKR-7B achieves an improvement of
up to 13.60 points in MRR. Compared to the cur-
rent SOTA system, EXPLAIGNN, which uses a
graph neural network (GNN) as a reader, our sys-
tem surpasses it by up to 4.30 points in MRR and
5.90 points in P@1, setting a new SOTA perfor-
mance for the ConvMix dataset. These results fur-
ther validate the effectiveness of UniHGKR and
also indicate that the retrieval component is a sig-
nificant factor limiting the performance of current
open-domain QA systems on heterogeneous data.

7 Conclusion

In this paper, we introduced UniHGKR, an
instruction-aware unified heterogeneous knowl-
edge retriever. First, we constructed CompMix-IR,
the first heterogeneous information retrieval task
dataset containing a corpus of over 10 million en-
tries across four heterogeneous data types. Then,
we defined two different heterogeneous informa-
tion retrieval scenarios to meet the diverse retrieval

needs of real-world users. We designed the Uni-
HGKR framework with three training stages. Our
experiments showed that UniHGKR achieved state-
of-the-art performance on CompMix-IR bench-
marks, both with the 110M BERT-based retriever
and the 7B LLM-based retriever. Applying our
UniHGKR retrievers can significantly enhance the
performance of heterogeneous QA systems, achiev-
ing new SOTA results on the ConvMix dataset.

8 Limitations

In our study, the CompMix-IR dataset is primar-
ily sourced from Wikidata knowledge graphs and
Wikipedia, including infoboxes, tables, and text,
but it is limited to five domains: books, movies,
music, television series, and football. This may
restrict the model’s generalization capabilities. Ad-
ditionally, while UniHGKR incorporates diverse
user instructions, it does not cover all scenarios in
heterogeneous information retrieval. For instance,
users might want to instruct the retriever to return
a combination of evidence from multiple knowl-
edge sources, such as text and tables, or a mix of
KG triples, tables, and text, as noted in (Christ-
mann et al., 2022b). Exploring these user-defined
combinations remains an area for future work. In
addition, more modalities such as image, audio and
interleaved image and text (Xu et al., 2024b) can
be considered and incorporated in the retrieving
process of UniHGKR in future. We will open-
source our instruction set, CompMix-IR corpus,
and UniHGKR model and code, encouraging the
community to contribute more retrieval tasks with
large-scale human-written instructions (Xu et al.,
2024a) to assess whether broader instruction cover-
age enhances performance.
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A CompMix-IR Example

A.1 Heterogeneous Evidence Examples

Table 7 provides linearized heterogeneous exam-
ples of evidence for the four types of knowledge.
Table 8 provides examples of evidence with full
annotation information.

Text evidences:
1. Cousteau (band), Reboot In 2016 it was announced
that Liam McKahey and Davey Ray Moor were
returning as CousteauX and were back in the
recording studio preparing new music.
2. Cousteau (band), To honour the new era the band
placed an X at the end of their name.
3. Cousteau (band), Cousteaux is another popular
French family name.

KG evidences:
1. Maverick, cast member, Robert Colbert
2. Maverick, original language of film or TV show,
English
3. Maverick, cast member, Roxane Berard, name of
the character role, ‘Comtesse de Barot’, name of the
character role, ‘Comtesse Lizette de La Fontaine’,
name of the character role, ‘Felice de Lassignac’,
name of the character role, ‘Danielle de Lisle’

Table evidences:
1. Stefanie Powers, Year is 1975, Title is Gone with
the West, Role is Little Moon, Notes is Alternate
title: Little Moon and Jud McGraw
2. Stefanie Powers, Year is 1975, Title is It Seemed
Like a Good Idea at the Time, Role is Georgia Price,
Notes is.
3. Stefanie Powers, Year is 1976, Title is Invisible
Strangler, Role is Candy Barrett, Notes is Alternate
titles: The Astral Factor , The Astral Fiend

Infobox evidences:
1. When Harry Met Sally..., When Harry Met
Sally. . . , Directed by, Rob Reiner
2. When Harry Met Sally..., When Harry Met
Sally. . . , Written by, Nora Ephron
3. When Harry Met Sally..., When Harry Met
Sally. . . , Produced by, Rob Reiner Andrew Schein-
man

Table 7: Evidence examples from the CompMix-IR
corpus.

A.2 CompMix-IR QA Examples

We present some question-answer examples from
the CompMix-IR dataset in Table 9, while Table 10
provides a QA example with full annotation in-
formation. Table 11 shows the statistics of the
CompMix-IR QA set.

Text evidence:
{ "linearized evidence text": "Museum of Modern
Art, Its first successful loan exhibition was in
November 1929, displaying paintings by Van Gogh,
Gauguin, Cézanne, and Seurat.",
"wikidata entities": [ { "id": "Q34013", "label":
"Georges Seurat" }, { "id": "Q17437796", "label":
"featured article" }, ...],
"disambiguations": [ [ "1929", "1929-01-
01T00:00:00Z" ], [ "painting", "Q11629" ], [
"Van Gogh", "Q17437796" ], . . . ],
"retrieved for entity": { "id": "Q188740", "label":
"Museum of Modern Art" },
"source": "text" }

KG evidence:
{"linearized evidence text": "Transformers, genre,
action film",
"wikidata entities": [ { "id": "Q171453", "label":
"Transformers" }, { "id": "Q188473", "label":
"action film" } ],
"disambiguations": [ [ "Transformers", "Q171453"
],. . . ],
"source": "kg"}

Table evidence:
{ "linearized evidence text": "Surrey Scorchers,
Season is 2008–09, Division is BBL, Tier is I,
Regular Season is 4th, Post-Season is 33, Trophy is
21, Cup is 12, Head Coach is 42",
"wikidata entities": [ { "id": "Q3645013", "label":
"2008–09 British Basketball League season" }, {
"id": "Q269597", "label": "Surrey Scorchers" }, {
"id": "Q23276", "label": "Surrey"}, ... ],
"disambiguations": [ [ "2008", "2008-01-
01T00:00:00Z" ], [ "2008–09", "Q3645013" ],
...],
"retrieved for entity": { "id": "Q269597" },
"source": "table"}

Infobox evidence:
{ "linearized evidence text": "Older (Royseven song),
from the album ” The Art of Insincerity, Genre,
Rock",
"wikidata entities": [ { "id": "Q7375238", "label":
"Royseven" }, { "id": "Q188451", "label": "music
genre" }, { "id": "Q7714454", "label": "The Art of
Insincerity" }, ... ],
"disambiguations": [ [ "The Art of Insincerity",
"Q7714454" ], [ "Royseven", "Q7375238" ], [
"Genre", "Q188451" ], ... ],
"retrieved for entity": { "id": "Q7085553" },
"source": "info" }

Table 8: Evidence examples with full annotation infor-
mation.

B Prompt Example

Table 12 shows a prompt example we use in con-
structing Data-text Pairs, with the help of GPT-4o-
mini.
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Question 1:
Which is the initial book of the book series Diver-
gent?

Answer 1:
Divergent (novel).

Question 2:
Who is the author of the book Divergent (novel)?

Answer 2:
Veronica Roth.

Question 3:
What is the date of birth of the Divergent’s author
Veronica Roth?

Answer 3:
19 August 1988

Table 9: QA examples from the CompMix-IR dataset.

Question:
Who was the voice actor for Meg Griffin in Family
Guy?

Answer:
Mila Kunis

Annotation information: {"question id": "5136",
"question": "Who was the voice actor for Meg Griffin
in Family Guy?",
"domain": "tvseries",
"entities": [{"id": "Q908772", "label": "Meg Grif-
fin"}, {"id": "Q5930", "label": "Family Guy"}],
"answers": [{"id": "Q37628", "label": "Mila Ku-
nis"}],
"answer text": "Mila Kunis",
"answer src": "kg"}

Table 10: A QA example with full annotation informa-
tion.

C Detailed descriptions of Metrics

In our study, we use the following metrics to mea-
sure retrieval performance:

• Hit@K, also known as Top-k Accu-
racy (Karpukhin et al., 2020), measures
the proportion of queries for which the
top-k retrieved evidence contains the correct
answers. This is a key metric for retrievers in
the RAG framework.

• Mean Reciprocal Rank (MRR) (Zhao et al.,
2024) computes the average of the reciprocal
ranks of the first relevant evidence retrieved
across a set of queries.

Dataset Question word (%)
Train set 4,966 What 39.28
Dev set 1,680 Who 29.69
Test set 2,764 Which 16.90
Total 9,410 How 5.48

Avg. length When 5.13
Question 9.19 Where 3.32
Answer 2.17 Other 0.20

Table 11: Question answering Statistics of CompMix-
IR. ‘Avg. length’ refers to the average number of words.

Prompt template:
Evidence data is a triple from the wikidata knowledge
graph, representing a factual piece of information.
The components of the triple are separated by ’, ’
and represent the head entity, the relation, and the tail
entity, respectively. I hope you understand the content
of evidence data, and then use grammatically correct
natural language sentence to describe the content
in evidence data. Here has some demonstrations:
<Demonstrations>

Table 12: The prompt example used in KG triples.

D Training setup

In this section, we detail the detailed training set-
tings for training UniHGKR-base and UniHGKR-
7B. In training phase 3, a larger number of
instruction-unfollowing negative samples could po-
tentially harm the performance of the retriever in
retrieval scenario 1. Therefore, in our training, we
set a probability of 0.005 to add one instruction-
unfollowing negative sample in the training sam-
ples of retrieval scenario 2.

D.1 UniHGKR-base Training setup

During training phase 1, we initialize model param-
eters from BERT-base (Devlin et al., 2019) weights.
The learning rate is set to 1 × 10−5. Training is
conducted for one epoch with a batch size of 32
per device. In training phase 2, the learning rate
increases to 2 × 10−5. Training also spans one
epoch, but the batch size per device increases to
96. In-batch negative samples can be used across
devices, increasing the diversity and number of
negative samples used during training. In the sub-
sequent training phase 3, the learning rate remains
2× 10−5, but the training duration is extended to 5
epochs. The batch size per device is reduced back
to 32 to accommodate a larger hard negative sam-
ple group, with a size of 15. In training phases 2
and 3, the temperature parameter is set to 0.02, and
both phases use FP16 precision mode to enhance
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computational efficiency and conserve memory.

D.2 UniHGKR-7B Training setup
In the initial training phase (stages 1 and 2), we ini-
tialize model parameters from LLARA-pretrain (Li
et al., 2023a) weights. The learning rate is set to
1× 10−5, with a batch size of 384 per device, for
one epoch. In these stages, we use the full parame-
ter training method. In the third training phase, we
increase the learning rate to 2× 10−4 and reduce
the batch size per device to 64 to accommodate
a larger negative sample group size of 7. Train-
ing is conducted for one epoch. During this phase,
we introduce parameter-efficient training method
LoRA (Hu et al., 2022) with a rank of 64 and an
alpha value of 16. The dropout rate for LoRa is set
to 0.1 to prevent overfitting. Similar to UniHGKR-
base, we enable in-batch negative sampling across
devices to increase the diversity and number of
negative samples during training.
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Figure 4: The performance of UniHGKR-base in re-
trieval Scenario 1 with longer evidences. Here, 10X
indicates that the average length of the evidence in the
corpus is 10 times the original (1X), and so on.

E Retrieving Robustness of UniHGKR

In this section, we evaluate the performance of the
UniHGKR-base model on longer evidence corpora,
as well as its zero-shot generalization capabilities.

Robustness for Evidence Length. The robustness
of retrievers to varying evidence lengths is cru-
cial, as dense retrievers encounter varying inputs
lengths in real-world applications. By increasing
the segmentation size of the evidence during the
construction of the CompMix-IR corpus, we cre-
ate several corpus variants,the average length of

whose evidence is 2 to 10 times that of the original
version. We then evaluate UniHGKR-base, which
is trained on the original CompMix-IR corpus, for
its retrieval performance on these longer corpus
variants, as shown in Figures 4 and 5. From Fig-
ure 4, we can see that our UniHGKR-base model
shows good robustness with respect to evidence
length in retrieval scenario 1. Its performance on
metrics like MRR@100 and Hit@5 shows only
a slight decline as the evidence length increases,
while the Hit@100 metric even shows improve-
ment. This may be because longer evidence can
include more information within the fixed number
(top-100) evidences, consistent with the findings
in (Jiang et al., 2024). On the other hand, Fig-
ure 5 shows the retrieval scenario 2 performance
of retrieving specified knowledge types on longer
evidence. An interesting finding is that the perfor-
mance of UniHGKR-base in retrieving longer struc-
tured data evidence does not decline. Instead, it
experiences varying degrees of improvement, most
notably on the Table-Hit, where it increases by
more than 6 points. This may be because longer
evidence can prevent long structured data, such
as tables with many rows and columns, from be-
ing fragmented into multiple parts, thus avoiding
semantic loss.
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Figure 5: The performance of UniHGKR-base in re-
trieval Scenario 2 with longer evidences.

Zero-Shot Performance on BEIR. An advan-
tage of instruction-aware universal heterogeneous
knowledge retrievers is their enhanced ability to
generalize to unseen domains with various types
of evidence candidates. To validate this, we
evaluate the zero-shot retrieval performance of
UniHGKR-base on the popular IR benchmark
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BEIR (Thakur et al., 2021). This benchmark
includes domains not encountered during Uni-
HGKR’s training, such as Bio-Medical and Fi-
nance. Following standard setting (Xiao et al.,
2022b; Liu et al., 2023), we fine-tune the pre-
trained model with MS MARCO (Nguyen et al.,
2017) and evaluate zero-shot transferability on the
other 12 datasets. Following (Thakur et al., 2021),
for BEIR, we use NDCG@10 as our primary met-
ric on BEIR. Results for baselines like BERT, Sim-
CSE (Gao et al., 2021), and DiffCS (Chuang et al.,
2022) are taken from (Xiao et al., 2022b). As
shown in Table 13, our UniHGKR model demon-
strates strong zero-shot generalization capabilities.
It outperforms baselines on the unseen domain IR
datasets, such as the Bio-Medical domain TREC-
COVID (Voorhees et al., 2021) and the Finance
domain FiQA-2018 (Maia et al., 2018), while
maintaining a clear advantage on the familiar task:
Wikipedia Entity-Retrieval dataset DBPedia (Ha-
sibi et al., 2017). Additionally, UniHGKR-base
also demonstrates clear advantages over the base-
lines on pure natural language text QA information
retrieval datasets, such as NQ (Kwiatkowski et al.,
2019) and HotpotQA (Yang et al., 2018). We be-
lieve this is because, through our training stages 1
and 2, the model has learned better capabilities to
capture the essence of semantic information, which
is beneficial for a wide range of retrieval tasks.

Datasets BERT SimCSE DiffCSE UniHGKR
TREC-COVID 0.615 0.460 0.492 0.650
NFCorpus 0.260 0.260 0.259 0.279
NQ 0.467 0.435 0.412 0.490
HotpotQA 0.488 0.502 0.499 0.525
FiQA-2018 0.252 0.250 0.229 0.261
ArguAna 0.265 0.413 0.468 0.400
Touche-2020 0.259 0.159 0.168 0.202
DBPedia 0.314 0.314 0.303 0.334
SCIDOCS 0.113 0.124 0.125 0.133
FEVER 0.682 0.623 0.641 0.670
Climate-FEVER 0.187 0.211 0.200 0.205
SciFact 0.533 0.554 0.523 0.588
AVERAGE 0.370 0.359 0.360 0.395

Table 13: Zero-shot retrieval performances on BEIR
benchmark (measured by NDCG@10).

F Additional Ablation Studies

F.1 Experiments under the Unsupervised
Setting

We conduct experiments under the unsupervised
setting (i.e., after training in Stage 1 and Stage 2)
in retrieval scenario 1, and the results are shown

in Table 14. From these results, we can clearly
observe the performance gains brought by each
stage to the model’s retrieval capabilities. Overall,
the alignment training in Stage 2 provides more
significant gains compared to the pretraining in
Stage 1. After training in Stage 2, the unsupervised
model achieves a respectable 73.52 in Hit@100.

Method Hit@5 Hit@10 Hit@100 MRR@100
Bert-base-uncased 6.55 10.93 37.19 5.04
After Stage 1 9.26 14.47 49.78 6.76
▲Abs. gain +2.71 +3.54 +12.59 +1.72
After Stage 2 16.03 25.54 73.52 12.10
▲Abs. gain +6.77 +11.07 +23.74 +5.34
After Stage 3* 32.38 45.55 85.75 22.57
▲Abs. gain +16.35 +20.01 +12.23 +10.47

Table 14: The performance on retrieval scenario 1 after
different training stages. Among them, ‘After Stage 1’
and ‘After Stage 2’ can be regarded as the performance
in the unsupervised setting. ‘After Stage 3*’ represents
our UniHGKR-base model. ‘Abs. gain’ represents the
absolute improvement in performance after each train-
ing stage.

F.2 The Impact of Instructions for Retrieving
from Specific Sources.

We added experiments on retrieving from specific
sources in the IAll setting. Based on this, we
can compare and observe the improvement in per-
formance when using the instruction Iτ , which
specifies the retrieval source, in retrieval scenario
2. In Table 15, we can clearly see that when
retrieving specific types of knowledge, our Uni-
HGKR model shows a significant improvement
when using the instruction Iτ (where τ ∈ H =
Text, Info, Table, KG) compared to using the in-
struction IAll. This is particularly the case for table
and infobox-type knowledge. This result indicates
that our proposed type-preferred loss (Lpreferred)
can help the model distinguish data types and cap-
ture their differences for flattened inputs with the
help of instructions.

F.3 Efficiency of the Proposed Models
For retrieval tasks, efficiency is as important as ac-
curacy. The time cost of retrieval tasks lies in two
parts: (1) Embedding, (2) Retrieving. The factor
affecting the first part ‘Embedding’ is the parame-
ter scale of the dense embedder. So, the parameter
scales of the baselines and UniHGKR models are
shown in Table 3 and Table 5. The efficiency of the
second part ‘Retrieving’ is affected by the dimen-
sion of the vector generated by the retriever. We
added an experiment to show the time efficiency
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Method Instructions KG-Hit Text-Hit Table-Hit Info-Hit
UniHGKR-base IAll 68.60 65.70 28.76 57.34
UniHGKR-base Iτ 75.43 70.30 41.24 66.21
Abs. gain +6.83% +4.60% +12.48% +8.87%

Table 15: Performance of retrieving specific knowledge types with different instructions in retrieval scenario 2.
‘Abs. gain’ refers to the performance improvement brought by using instruction Iτ compared to IAll.

Model Size Vector Dim. Avg. Embed Time (100 evd) Avg. Retrieve Time (100 ques)
UniHGKR-Base 109M 768 0.46 s 4.35 s
UniHGKR-7B 7B 4096 1.54 s 53.29 s

Table 16: Time efficiency comparison between UniHGKR-Base and UniHGKR-7B. The experiment was conducted
on a single V100-32G GPU on the CompMix-IR. The data are the average values of three runs of the experiment for
100 pieces of evidence or 100 questions.

difference between the UniHGKR-Base model and
the UniHGKR-7B model, as shown in Table 16.
The embedding and retrieving average time costs
for UniHGKR-7B are 3.35 and 12.25 times longer
than those for UniHGKR-Base, respectively. Note
that during retrieval, we did not use fast vector re-
trieval libraries such as Faiss (Johnson et al., 2019)
but instead performed a naive KNN (Steinbach and
Tan, 2009) computation.

G Detailed Description of UniHGKR-7B
Adaptation

In our UniHGKR-7B training, we initialize the
model weights from the LLaRA-pretrain. LLARA-
pretrain model initializes its parameters from
LLaMA-2-7B-base (Touvron et al., 2023). The
output vector of the last token of the model input
sequence S, a special token ⟨\s⟩, is used as the
embedding representation r of the input sequence:

r ← LLaMA(S)[⟨\s⟩].

They then apply their proposed Embedding Based
AutoEncoder (EBAE) and Embedding Based Au-
toRegressive (EBAR) techniques for post-training
adaptation for dense retrieval. EBAE reconstructs
the tokens of the input sentence using r, while
EBAR predicts the tokens of the next sentence
based on r.

In Stages 1 and 2 of our UniHGKR-7B training,
our input sequence S is the linearized structured
data di. We adapt EBAE to reconstruct di and
EBAR to predict the corresponding natural lan-
guage sentence ti. Here, ⟨di, ti⟩ is from the Data-
Text Pairs D. This process essentially implements
Stages 1 and 2 of our UniHGKR training frame-
work: establishing an effective representation space
for heterogeneous knowledge. For task fine-tuning

(Stage 3), we use the same training methods as the
UniHGKR-base models (BERT-based), including
the instruction set and positive/negative sampling
strategies (see Section 4.2).
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