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Abstract
Multimodal information extraction (MIE) is
crucial for scientific literature, where valuable
data is often spread across text, figures, and ta-
bles. In materials science, extracting structured
information from research articles can acceler-
ate the discovery of new materials. However,
the multimodal nature and complex intercon-
nections of scientific content present challenges
for traditional text-based methods. We intro-
duce MATVIX, a benchmark consisting of 324
full-length research articles and 1, 688 complex
structured JSON files, carefully curated by do-
main experts. These JSON files are extracted
from text, tables, and figures in full-length doc-
uments, providing a comprehensive challenge
for MIE. We introduce an evaluation method
to assess the accuracy of curve similarity and
the alignment of hierarchical structures. Addi-
tionally, we benchmark vision-language mod-
els (VLMs) in a zero-shot manner, capable of
processing long contexts and multimodal in-
puts, and show that using a specialized model
(DePlot) can improve performance in extract-
ing curves. Our results demonstrate significant
room for improvement in current models. Our
dataset and evaluation code can be found at
https://matvix-bench.github.io/

1 Introduction

Multimodal information extraction (MIE) has be-
come a key research focus, aiming to extract struc-
tured information from both text and visual con-
tent (Liu et al., 2019; Dong et al., 2020; Oka et al.,
2021; Sun et al., 2024). This is particularly impor-
tant in scientific literature, where valuable details
are often spread across text, figures, and tables.
The complex nature of scientific content, combined
with the need to combine information from mul-
tiple sources, presents substantial challenges for
traditional text-based extraction methods.

In materials science, MIE is crucial as research
articles contain valuable data that can acceler-
ate the discovery of new materials. Tools like
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Figure 1: Example of a materials research article il-
lustrating interconnected data between text and figures,
with a JSON structure capturing sample properties and
composition details. Note that the Matrix component is
extracted from the text.

GNoME (Merchant et al., 2023) show how extract-
ing structured databases from these publications
can improve discovery efficiency. However, this
process is complicated by the multimodal nature
of scientific articles and the complex connections
between data points. Figures are particularly crit-
ical, as they often contain essential information
about material properties not present in the text,
making their accurate extraction vital for compre-
hensive information retrieval (Polak and Morgan,
2024).

Recent methods like DePlot (Liu et al., 2023a)
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tackle visual plot reasoning by converting plot im-
ages into linearized tables to enable pretrained
LLMs to reason over visual data with minimal
training. This approach allows LLMs to leverage
few-shot reasoning for tasks like chart QA (Masry
et al., 2022). However, DePlot’s focus on simple
plot-to-table conversion makes it less suitable for
the complex MIE needed to handle interconnected
data spanning long contexts, including text, tables,
and multiple figures within full-length scientific
documents.

To address this gap, we introduce a novel bench-
mark, MATVIX, focused on obtaining structured
information from materials science articles within
the domains of polymer nanocomposites and poly-
mer biodegradation. Existing datasets such as
FUNSD (Jaume et al., 2019), CORD (Kim et al.,
2021), and Kleister (Stanisławek et al., 2021) have
made significant contributions to document analy-
sis and information extraction, especially in han-
dling complex layouts and long documents. How-
ever, they do not address the complexities of
N -ary relation extraction, focusing instead on
simpler tasks like named entity recognition (NER),
which typically involves identifying predefined en-
tities without capturing intricate relationships be-
tween them. Furthermore, these datasets do not
consider scientific documents, which often contain
specialized language and complex figures. Previ-
ous work (Dagdelen et al., 2024; Cheung et al.,
2024) in materials science has explored N -ary re-
lation extraction, but primarily from text-only ab-
stracts or short texts. PNCExtract (Khalighinejad
et al., 2024) represents a step forward by consider-
ing full-length articles, yet it remains limited to text-
based content. In contrast, MATVIX considers all
elements in long scientific documents, including
text, tables, and figures, providing a comprehen-
sive challenge for MIE research (see Table 1 for a
comparison).

Previous work using pretrained models like
LayoutLM (Xu et al., 2020), LayoutLMv2 (Xu
et al., 2022), and domain-specific models such as
MatSciBERT (Gupta et al., 2022a) has advanced
the extraction of structured data from visually rich
documents. However, these models are not suitable
for our task, as extracting complex N -ary relations
from long documents exceeds the token limit of
512 tokens in BERT and LayoutLM models. Addi-
tionally, our task involves generating hierarchical
JSON files, which is more complex than simple en-
tity recognition or relation extraction and requires

a sequence-to-sequence approach. Splitting the
documents to fit these models is not feasible, as it
disrupts the extraction of interconnected relations
across the entire document.

MATVIX addresses the challenge of long doc-
ument processing by utilizing VLMs in a zero-
shot manner. These models can process long input
contexts (OpenAI, 2023) without sacrificing accu-
racy and have demonstrated strong performance in
tasks requiring both textual and visual reasoning.
Given their capabilities, one might wonder if we
can simply input a scientific paper, complete with
all its images, into a VLM to obtain structured data.
In this paper, we benchmark these models and com-
pare them against simpler baselines, showing that
there is still substantial room for improvement.

Our task involves extracting complex hier-
archical structures from scientific documents,
where traditional evaluation metrics fall short. Our
method first aligns compositions, which serve as
the identity of each sample, and then evaluates
the properties represented by curves. To measure
the closeness between predicted and ground truth
curves, we use the Fréchet distance, which captures
how similar the overall trends are.

Our results show that while VLMs show poten-
tial, significant improvements are needed. We also
demonstrate that combining the best-performing
VLMs with the specialized DePlot model enhances
information extraction from figures.

2 The MATVIX Benchmark

In this section, we first describe our dataset, in-
cluding the problem definition and dataset prepa-
ration, and then explain our evaluation method
for the task. MATVIX focuses on two critical
domains: Polymer Nanocomposites (PNC) and
Polymer Biodegradation (PBD). Structured data
in these fields is crucial for accelerating research
and discovery, as it allows scientists to efficiently
analyze relationships between material composi-
tions and properties, which are often spread across
text, figures, and tables within research articles.
The emphasis on PNC and PBD reflects their sig-
nificant representation within the field of materials
science. The focus on PNC and PBD is justified by
their significant presence in the field; a Google
Scholar search yields approximately 95, 600 re-
sults for “materials science”, 32, 100 for “poly-
mer nanocomposites”, and 17, 200 for “polymer
biodegradation”.
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Dataset Complex Layout Long Doc N-ary RE Scientific Multimodal

FUNSD (Jaume et al., 2019) ✓ × × × ×
CORD (Kim et al., 2021) ✓ × × × ×
Kleister (Stanisławek et al., 2021) ✓ ✓ × × ×
PolyIE (Cheung et al., 2024) × × ✓ ✓ ×
PNCExtract (Khalighinejad et al., 2024) × × ✓ ✓ ×
Ours ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of Dataset Characteristics. Ours requires N-ary relation extraction and is the only dataset that
requires extraction from the scientific domain and reasoning over plots.

Each PNC and PBD sample in the dataset is rep-
resented as a structured JSON object that captures
both the chemical composition and associated prop-
erty data. A sample refers to a specific instance of
a material with a defined chemical composition
and measured properties. This structured format
provides detailed information about the materials’
compositions and includes the numerical property
data needed for training machine learning models.
These numerical data points are particularly im-
portant for developing models that can predict the
relationship between material composition and per-
formance. By leveraging these structured data rep-
resentations, researchers can conduct large-scale
analysis and modeling to advance material discov-
ery and optimization (Ward et al., 2016).

2.1 Problem Definition

Let D = D1, D2, . . . , DN denote our dataset,
which consists of N total articles, where N = 324.
Among these articles, 231 are from the PNC do-
main and 93 are from the PBD domain. For each
article Di ∈ D, there is an associated list of sam-
ples Si, comprising various PNC or PBD samples.
Formally, Si is defined as:

Si = si1, si2, . . . , sini , (1)

where sij represents the j-th sample (either PNC
or PBD) in the sample list of the i-th article, and
ni denotes the total number of samples in Si. Each
sample sij is a JSON object. The structure of the
JSON object of interest is provided in Appendix C.

The goal is to extract the relevant information
from each article Di to populate the correspond-
ing sample list Si. This involves identifying and
extracting the values for each of the entries in the
JSON object for every PNC or PBD sample men-
tioned in the article.

Statistic DPNC DPBD

Total Papers 231 93
Total Samples 1396 292
Avg. Samples per Paper 6 3
Avg. Tokens per Paper 8905 8456

Table 2: Data Statistics for DPNC and DPBD

2.2 Polymer Nanocomposites (PNC)

2.2.1 Overview

Our PNC dataset, derived from the Nanomine data
repository (Zhao et al., 2018), extends PNCEx-
tract (Khalighinejad et al., 2024) by including both
compositions and properties of PNC samples.

Each PNC sample sij is represented as a struc-
tured JSON object comprising two main sections:
composition and properties. The composition sec-
tion specifies the matrix and filler materials along
with their attributes, while the properties section
contains specific characteristics of the sample, in-
cluding their names, measurement conditions, and
corresponding data points (see Appendix C for the
JSON format).

We focus on six key properties frequently stud-
ied in the dataset: Thermal, Electrical, Mechanical,
Viscoelastic, Volumetric, and Rheological. These
properties are prioritized because they are not only
the most commonly reported in research papers
but also critical in determining the performance of
polymer nanocomposites. Each property includes
numerical data collected under various experimen-
tal conditions, specified in the JSON headers, with
the actual data points listed. Examples of prop-
erty representations and their associated plots are
provided in Appendix 2.

An analysis of the Nanomine data reposi-
tory reveals the distribution of these properties
across 4, 186 samples: Thermal (26.4%), Elec-
trical (29.6%), Mechanical (14.1%), Viscoelastic
(21.0%), Volumetric (3.3%), Rheological (5.4%),
and Others (0.1%). Therefore, we concentrate on
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the six key properties due to their significance in
the dataset.

2.2.2 Data Collection
Our dataset is based on data from the NanoMine
repository (Zhao et al., 2018), a comprehensive
resource for PNC data structured around an XML-
based schema for the representation and sharing of
nanocomposite materials information. The original
data in NanoMine was collected and stored using
Excel templates provided to materials researchers.
However, this structure is not consistent and in-
cludes a large template with 43 attributes in the
Materials Composition section and over 20 differ-
ent properties, all organized in formats that are
challenging to process.

To address these inconsistencies, we standard-
ized and cleaned the NanoMine repository data.
We categorized the 20 properties into six main
categories—Thermal, Electrical, Mechanical, Vis-
coelastic, Volumetric, and Rheological—ensuring
that the data points within these properties were
restructured and aligned accordingly. The process
involved organizing the data into a structured JSON
format suitable for our analysis and modeling pur-
poses.

This categorization and cleaning effort were val-
idated by the experts in the field, to ensure the
accuracy of the structured data.

2.3 Polymer Biodegradation (PBD)
2.3.1 Overview
Our PBD dataset focuses on extracting informa-
tion related to the biodegradation of polymers. The
dataset was collected by experts in biodegradable
polymers, ensuring high accuracy through meticu-
lous data collection and verification. The dataset
includes 47 research papers in the test set and 46
papers in the validation set, with a total of 159
samples for testing and 133 samples for validation.

Each PBD sample sij is captured as a struc-
tured JSON object that details both the composi-
tion and biodegradation characteristics of the poly-
mer sample. The structure captures essential in-
formation regarding the polymer’s type, character-
istics, and biodegradation data, including condi-
tions and corresponding measurements. For the
detailed structure of the JSON format, please re-
fer to Appendix C. The biodegradation results are
typically presented in figures, showing plots of con-
ditions versus biodegradation percentage (refer to
Appendix 3).

2.3.2 Data Collection
Two materials science experts curated a collection
of 93 research papers focused on biodegradable
materials, selecting high-quality articles from rep-
utable journals. They first identified key com-
positional attributes consistent across polymer
biodegradation samples. One expert extracted these
details, while the second verified their accuracy.

After validating compositions, the experts ex-
tracted properties, which were often presented in
text, tables, or figures. For plots—commonly show-
ing biodegradation rates—the PlotDigitizer1 tool
was used to trace curves and extract (x, y) data
points. This process involved calibrating axes and
converting visual information into structured JSON
files. For a detailed explanation of the data collec-
tion and digitization process, see the Appendix 4.

3 Evaluation

Each paper contains a set of samples, and each sam-
ple is characterized by its composition and prop-
erties. The composition is represented as a set of
strings, while the properties are captured as a list of
curves. To evaluate the accuracy of the predicted
samples against the ground truth, we follow a two-
step process: first, we evaluate the alignment of the
compositions within the samples, and then we as-
sess the matching of the properties for the aligned
samples. The reason for this approach is that the
composition defines what the sample is, providing
its identity, while the properties describe the char-
acteristics of that specific sample. Therefore, it is
crucial to first match the compositions correctly,
ensuring that we are comparing the same types of
samples, before evaluating the properties within
those matched samples.

The evaluation employs the F1 Score for compo-
sition alignment and two specialized metrics, the
Curve Similarity Score (CSS) and the Curve Align-
ment Score (CAS), for property evaluation.

Composition Alignment To assess the align-
ment between predicted and ground truth composi-
tions within each sample, we treat this as a maxi-
mum bipartite matching problem. Each composi-
tion consists of a set of strings, and we aim to find
the best correspondence between the predicted and
ground truth compositions. We use the Munkres
algorithm (Hungarian algorithm) (Kuhn, 1955) to
solve this bipartite matching problem, optimizing

1https://plotdigitizer.com/
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for the highest possible F1 Score. If there are more
ground truth samples for a paper than predicted
samples, the unmatched ground truth samples are
considered false negatives. Conversely, if there are
more predicted samples than ground truth samples,
the unmatched predicted samples are considered
false positives.

Curve Similarity Score (CSS) Once composi-
tions are aligned, we evaluate the properties within
these matched samples. Each property is repre-
sented by a curve, which is defined as a list of (x,
y) points, and the CSS is introduced as a quanti-
tative measure of similarity between the predicted
and ground truth properties. These properties are
typically plotted as the relationship between a vari-
able and its corresponding response, such as how
dielectric permittivity changes with frequency or
temperature, which are commonly reported in re-
search papers. The trends captured in these curves
are crucial, as they convey important information
about the material’s behavior. Therefore, accurately
extracting and evaluating these curves is essential.

To quantify the similarity, we use the Leven-
shtein distance to compare the headers (x and y-
axis labels) and the Fréchet distance to compare
the ground-truth data points of the curves. The
Fréchet distance measures the similarity between
two curves by finding the smallest of the maximum
pairwise distances. To compute this for polygo-
nal curves, the discrete Fréchet distance is used,
as shown by Wien et al. (1994), which involves
determining the shortest path through a coupling
sequence that matches points between the curves
while maintaining their order.

The CSS, given a predicted curve cp and a
ground truth curve ct, is calculated as follows:

CSS(cp, ct) = (1− nllev (dlev(hp, ht)))

(1− nlfrech (dfrech(cp, ct))) ,
(2)

where dlev(hp, ht) is the Levenshtein distance
between the headers of the predicted (hp) and
ground truth (ht) curves, and dfrech(cp, ct) is the
Fréchet distance between the predicted and ground
truth curves. The normalization functions nllev and
nlfrech are defined as follows:

nllev(dlev) = min

(
1,

dlev(hp, ht)

max(len(hp), len(ht))

)

nlfrech(dfrech) = min

(
1,

dfrech(cp, ct)

∥ct∥

)

where len(h) represents the length of the header,
and ∥ct∥ denotes the norm of the ground truth curve
data.

This approach addresses several limitations in-
herent in the metric introduced in DePlot, which
misses critical information about the alignment of
trends. By incorporating the Fréchet distance, the
CSS provides a more comprehensive evaluation,
capturing both the trend similarities.

Curve Alignment Score (CAS) The CAS met-
ric identifies the best match between predicted
and ground truth curves when multiple curves are
present within a sample. Let X ∈ RN×M be a
binary matrix where Xij indicates the assignment
of the i-th predicted curve to the j-th ground truth
curve, based on the Munkres algorithm. The CAS
is calculated as follows:

CAS =
1

max(N,M)

N∑

i=1

M∑

j=1

Xij · CSS(cpi , ctj ),

where CSS(cpi , ctj ) represents the Curve Simi-
larity Score between the i-th predicted curve (cpi)
and the j-th ground truth curve (ctj ).

3.1 Human Evaluation

We conduct a human evaluation study to assess the
effectiveness of our evaluation metric. A total of
50 plot-prediction pairs (GPT-4o predictions) are
randomly sampled from our dataset, representing a
range of different scores.

Three human annotators, each with relevant ex-
pertise in the field, evaluate these pairs. For each
sample, the annotators are presented with both the
ground-truth plot and the model’s predicted plot.
They are asked to assess the quality of the predic-
tion based on two specific questions: (1) Are the
axes labeled correctly? (2) Is the trend of the pre-
dicted curve consistent with the ground truth? (See
Appendix 9 for details.)

The human scores for the first question (regard-
ing headers) were averaged and compared to the
automated header scores after alignment, calcu-
lated as 1 − nllev (dlev(hp, ht)). Similarly, the hu-
man scores for the second question (regarding
curves) were averaged and compared to the au-
tomated curve scores after alignment, calculated as
1− nlfrech (dfrech(cp, ct)).

For comparison, we used both Pearson’s r and
Spearman’s ρ correlation coefficients. Table 3 in-
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dicates positive correlations between the human
judgments and the automated metric scores.

Coefficient p-value

Pearson r (curves) 0.887 4.17× 10−7

Spearman ρ (curves) 0.717 0.00055
Pearson r (headers) 0.930 8.54× 10−9

Spearman ρ (headers) 0.921 2.28× 10−8

Table 3: Correlation results between model scores and
human evaluations for header and curve scores, using
Pearson’s r and Spearman’s ρ. Human scores represent
the average ratings from three annotators.

4 Benchmarking VLMs

The objective is to extract structured data from ma-
terials science documents. To achieve this, we first
convert each PDF document into LaTeX format us-
ing Mathpix (https://mathpix.com/). This approach
generates a TeX file that shows the structure of the
paper, including sections, subsections, and all im-
ages. We then employ Visual Language Models
(VLMs) in a zero-shot manner to extract structured
JSON data.

During our preliminary experiments, we ob-
served that providing both the entire LaTeX file
and all associated images as input to the VLMs
leads to suboptimal results. Additionally, since we
must input images one at a time, it becomes costly
To address this, we devised a multi-step pipeline
(see Appendix 5:

• Text Information Extraction: First, we use
an LLM to extract structured information from
the text in the LaTeX document.

• Information Expansion: For each image, we
then prompt the VLM to expand the extracted
information based on the text and the images.
This expansion is handled individually for
each image.

• Information Integration: Given that mul-
tiple images are typically associated with a
document, we merge all the expanded infor-
mation from the different images to create a
comprehensive, structured dataset.

Formally, the steps can be described as follows:

Ŝtext
i = LLM(Dtext

i ) (3)

Ŝ
img,k
i = VLM(Ŝtext

i , Ik), ∀k ∈ [K] (4)

Ŝi = Merge(Ŝtext
i , {Ŝimg,k

i }Kk=1) (5)

where Dtext
i is the textual data in document i,

Ŝtext
i is the predicted sample list derived only from

the textual data of document i, and Ik is the kth
image in the document. Ŝ

img,k
i represents the ex-

panded information obtained by the VLM for the k-
th image using Ŝtext

i as context. Finally, Ŝi merges
the textual and image-based information to form a
comprehensive structured dataset for document i.

5 Experiments

In this section, we present the results of modeling
with VLMs on MATVIX.

5.1 Models and Setup

We use GPT-4-Turbo, GPT-4o, Claude-3-Haiku,
Claude-3.5-Sonnet, and Gemini-Pro-1.5 in our ex-
periments (OpenAI, 2023; Anthropic, 2024; Reid
et al., 2024), which are instruction-tuned mod-
els and are prompted in a zero-shot manner. We
also conducted preliminary experiments with the
open-sourced Vicuna-7b-v1.5-16k (Chiang et al.,
2023) model, but it failed to capture any mean-
ingful structure. Additionally, we evaluate open-
source models, including Qwen2.5-VL-7B-Instruct
and Qwen2.5-VL-72B-Instruct(Yang et al., 2024),
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) and
Mixtral-8x22B-Instruct-v0.1(Jiang et al., 2024),
and Llama-3.2-11B-Vision-Instruct-Turbo (et al.,
2024). We evaluate these models against a custom
baseline approach called Majority Vote. The base-
line method selects the most common header and
curve predictions from the validation set.

5.2 Baseline for Headers, Curves, and CAS

First, for the curves associated with each prop-
erty (note that there are six properties in the PNC
dataset), we calculate the average Fréchet Distance
among all curves in the validation set. The curve
that is the closest to all others (i.e., has the small-
est cumulative Fréchet Distance) is selected as the
baseline curve for that property. For the headers,
we examine the validation set to determine the most
common x-header and y-header for each property.
These most frequent headers serve as the baseline
headers.

Next, we consider the predictions from the LLM
(Ŝtext

i ). We then add the baseline properties to each
predicted composition. Specifically, for PNC, we
calculate the average occurrence of each of the six
properties per sample and include that many for
each property. For PBD, we expand by adding
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Model Config Polymer Nanocomp Polymer Biodegradation

P R F1 Head. Curve CAS P R F1 Head. Curves CAS

API-based VLMs

GPT-4o
Base – – – 06.17 13.96 02.42 – – – 93.39 15.66 14.57
T-Only 74.51 48.87 58.80 14.94 14.54 04.70 35.53 18.80 23.60 55.37 31.07 21.78
T+Img 70.48 46.37 55.75 11.29 12.64 03.23 35.99 18.90 23.76 43.70 28.60 15.18

GPT-4-Turbo
Base – – – 06.93 13.42 02.43 – – – 94.84 15.56 15.04
T-Only 68.95 45.10 54.28 12.83 11.68 03.21 26.58 16.37 19.37 46.49 23.78 13.43
T+Img 68.34 43.14 52.41 14.92 10.67 01.87 31.50 20.61 23.98 39.45 26.76 13.21

Claude 3.5
Base – – – 06.50 12.25 02.20 – – – 94.03 16.57 16.09
T-Only 55.55 35.95 43.33 13.74 10.99 03.45 26.12 13.46 16.70 47.82 33.11 20.07
T+Img 52.45 33.16 40.21 15.50 18.36 04.50 24.25 12.27 15.27 30.85 21.15 11.21

Claude 3
Base – – – 06.15 11.77 02.00 – – – 95.56 16.81 16.35
T-Only 51.93 3.03 40.07 11.06 04.88 01.54 41.66 20.25 26.01 24.90 20.21 06.78
T+Img 51.46 31.62 38.74 12.80 16.88 03.79 44.71 21.12 27.29 13.98 18.09 03.30

Gemini 1.5
Base – – – 06.65 13.98 02.44 – – – 93.20 17.61 16.69
T-Only 72.28 47.69 57.37 18.29 07.07 02.70 23.08 16.55 18.52 52.36 25.63 16.02
T+Img 71.17 46.76 56.32 14.96 19.08 03.98 18.98 12.70 14.43 18.29 05.65 02.97

Open-source VLMs

Qwen2.5-VL-7B-Instruct
Base – – – 06.47 12.20 02.18 – – – 91.12 13.30 14.92
T-Only 54.37 35.73 42.85 12.46 14.20 03.82 02.04 01.53 01.75 47.30 22.23 10.72
T+Img 53.83 35.46 42.53 09.99 13.23 03.71 02.04 01.53 01.75 47.30 11.78 05.86

Qwen2.5-VL-72B-Instruct
Base – – – 06.54 12.99 02.29 – – – 93.81 15.44 16.35
T-Only 69.81 46.18 55.43 14.19 12.65 04.42 38.33 33.57 35.61 40.41 44.25 14.58
T+Img 70.24 46.48 55.79 13.64 18.12 05.40 28.03 27.27 27.60 36.32 26.71 13.11

Mistral-7B-Instruct-v0.3 Base – – – 06.86 13.33 02.47 – – – 93.75 14.43 15.64
T-Only 47.74 27.07 33.88 12.04 08.10 02.96 20.26 10.29 12.70 55.20 28.65 16.22

Mixtral-8x22B-Instruct-v0.1 Base – – – 06.61 11.75 02.21 – – – 93.84 15.64 15.65
T-Only 56.25 27.22 35.67 12.05 11.08 04.39 24.06 12.08 15.30 52.31 18.93 08.73

Llama-3.2-11B-Vision-Instruct-Turbo
Base – – – 06.52 16.15 02.74 – – – 93.52 14.53 14.42
T-Only 72.51 47.86 57.52 07.23 06.07 02.05 29.58 13.75 17.98 48.69 15.30 07.26
T+Img 67.62 45.25 53.99 07.49 10.49 02.98 27.81 12.79 16.71 15.63 12.88 02.94

Table 4: Evaluation results for predicting compositions (P, R, F1) and properties (Headers, Curves, CAS) on the
Polymer Nanocomposite (PNC) and Polymer Biodegradation (PBD) datasets under different configurations.

one baseline property directly, as there is only one
property.

5.3 Results
Table 4 presents model performance in composition
extraction, curve and header extraction, and curve
alignment.

Challenges in Curve Alignment. Across both
PNC and PBD datasets, models demonstrate
stronger performance in composition extraction,
with GPT-4o achieving the highest F1-Scores on
the PNC dataset and Qwen2.5-VL leading on PBD.
Curve extraction is more challenging, particularly
in the PNC domain; the best model achieves only
5.40. This lower performance reflects the complex-
ity of curve extraction, as it requires interpreting
data from tables and figures, extracting curves ac-
curately, and then aligning them with the appropri-
ate composition. This process is inherently more
complex than composition extraction, which re-
quires fewer reasoning steps and draws from more
straightforward data sources.

Baseline Sometimes Outperforms in CAS. The
baseline configuration in some models provides bet-
ter results. However, the best-performing models

outperform the baseline on both the PNC and PBD
datasets. Interestingly, most models outperform
the baseline in curve extraction but struggle with
header extraction, revealing a gap in their ability to
fully integrate and interpret all data components.

T+Img Configuration Does Not Always Enhance
Curve Extraction. Surprisingly, incorporating
both text and images (T+Img) does not consis-
tently lead to better performance in curve extrac-
tion. While some information is only present in
the images and not in the text, current VLMs seem
more influenced by the noise from the images than
by the useful data they contain. As a result, the
T-Only configuration is often more effective, as it
relies on focused textual information without the in-
terference introduced by noisy visual inputs. Note
that, in the T-Only case, since the entire LaTeX
file is provided as input to the LLM, the tables are
included, and in many cases, the important results
from the figures are mentioned in the tables.

5.3.1 Specialized Tools for Chart-to-Text
Extraction.

While specialized tools for curve extraction exist,
they are insufficient when information is intercon-
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Table 5: Performance comparison of different configu-
rations with and without DePlot. Results are from the
PNC dataset.

Model Head. Curve CAS

GPT-4o
T-Only 14.94 14.54 04.70
T-Only (+DePlot) 15.69 19.72 06.27
T+Img 11.29 12.64 03.23

Qwen2.5-VL-72B
T-Only 14.19 12.65 04.42
T-Only (+DePlot) 12.61 16.14 05.30
T+Img 13.64 18.12 05.40

nected with text, tables, and figures. Tools like
PlotDigitizer can manually extract data points but
lack automation, requiring annotators to calibrate
axes and mark values manually. To our knowledge,
no fully automated solutions are available.

We further test whether integrating DePlot with
models can enhance results. Our approach involves
first passing all images through DePlot to obtain its
output. We then replace the figure section of the La-
TeX file with DePlot’s output, which is formatted
as a linearized table. This modified LaTeX file is
fed into an LLM for evaluation. For the T+Img con-
figuration, we provide the LLM’s prediction along
with the original images to assess the combined
performance. Table 5 shows that using DePlot can
improve the results of the best-performing configu-
rations.

6 Related Work

A plethora of prior works have devoted to uni-
modal information extraction (IE) with LLMs. See
(Tchoua et al., 2019; Oka et al., 2021; Xie et al.,
2023; Shetty et al., 2023; Dagdelen et al., 2024,
inter alia) for an overview of their applications in
scientific texts. In contrast, there lacks specialized
IE systems that jointly operate on scientific docu-
ments that contain texts, tables, and images (Dong
et al., 2020; Gupta et al., 2022b; Sun et al., 2024).

General-purpose foundation models (OpenAI,
2023; Reid et al., 2024; Anthropic, 2024) are ap-
pealing alternatives for such tasks; yet directly
applying these models often yields subpar perfor-
mance due to the complexity of document struc-
tures (Khalighinejad et al., 2024), their inability to
reason over long contexts and/or multiple images
(Reid et al., 2024), and performance differences
across modalities (Li et al., 2024; Fu et al., 2024a).

Several recent works have endeavoured to adapt
pre-trained foundation models for material science

(Gupta et al., 2022a,b; Song et al., 2023), but ex-
tending this fine-tuning approach to images has
been challenging. This is attributed to subpar per-
formance of open-weight VLMs (Yue et al., 2023) –
noted for their lack of faithfulness (Fu et al., 2024b)
and compositionality (Kong et al., 2023) compared
to API-access models – as well as a lack of high-
quality multimodal datasets in the material science
domain (Miret and Krishnan, 2024). MATVIX
aims to bridge this gap by contributing an expert-
annotated, multimodal dataset over full-length sci-
entific documents, and a workflow that achieves
nontrivial performance according to a curated eval-
uation suite across different modalities.

In this respect, MATVIX connects more broadly
to a growing body of works that evaluate LLMs as
agentic systems (Liu et al., 2023b; Mialon et al.,
2023; Koh et al., 2024; Liu et al., 2024; Xie
et al., 2024). Compared to knowledge-intensive
benchmarks, they arguably evaluate model capabil-
ities more akin to daily workflows, and are robust
against data contamination. MATVIX subsidizes
this research with a dataset driven by scientific
use cases, and offers a suite of partial evaluation
metrics that enable users to identify areas of im-
provements compared to binary success metrics.

7 Conclusion and Future Work

We introduce MATVIX, an expert-annotated, mul-
timodal information extraction benchmark devel-
oped from scholarly articles. These articles receive
a minimal amount of pre-processing; they are thus
endowed with diverse textual, tabular, and visual
structures, all of which contain information impor-
tant for scientific applications. A general workflow
is proposed, and is evaluated against a suite of auto-
matic evaluation metrics that ensure the accuracies
of extracted data across all modalities. Results val-
idate the performance of our workflow, and our
automatic metrics agree with human evaluations.

There are many avenues for future work. One
such example is exploring an agentic framework
where the model utilizes various smaller models or
tools to assist with the extraction task. For instance,
as shown in Table 5, DePlot is helpful for image-to-
table extraction. Additionally, we hypothesize that
a BERT model specifically trained for NER and RE
may achieve higher recall than generative LLMs.
Therefore, integrating these components into an
agentic framework could be a promising next step.
Another direction is to validate the usefulness of
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extracted information for domain scientists. In ma-
terials science, much of the extracted data is used
to train downstream machine learning models (Xu
et al., 2023). To assess the effectiveness of our sys-
tem, we can compare the performance of models
trained on the extracted data with those trained on
ground truth data.

8 Limitations

The MATVIX benchmark provides valuable in-
sights into multimodal information extraction in
the PNC and PBD domains. However, there are
several limitations to consider.

First, our benchmark is limited to these two spe-
cific domains within materials science. While this
focus is important for advancing research in these
fields, the findings may not generalize well to other
scientific disciplines. Future work should explore
expanding the dataset to include additional areas
of science.

Additionally, we only considered a zero-shot
approach in this paper. While this is effective for
evaluating the generalization capabilities of VLMs,
fine-tuning these models on domain-specific data
could further improve their performance, though
this was outside the scope of our current study.

Finally, our evaluation metrics, particularly for
curve extraction, do not take into account the units
of measurement, which can be critical for scientific
analysis. While the Fréchet distance helps measure
trend similarity, the absence of unit considerations
limits the metric’s ability to fully assess the ac-
curacy of the extracted data. Future work should
explore more domain-specific metrics that account
for both trends and units to provide a deeper under-
standing of model performance.
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A Terms of Use

We used OpenAI Models, Claude, Gemini, and the
NanoMine data repository in accordance with their
licenses and terms of use.

B Computational Experiments Details

Hyperparameter Settings The models used in
our experiments, OpenAI Models, Claude, and
Gemini, have been evaluated for their performance
in multimodal information extraction tasks within
the MATVIX benchmark while the temperature
parameter is set to zero to ensure consistent evalua-
tion.

C JSON Formats

Polymer Nanocomposites

{
"Matrix Component": "",
"Matrix Abbreviation": "",
"Filler Chemical Name": "",
"Filler Abbreviation": "",
"Filler PST": "",
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"Filler Mass": "",
"Filler Volume": "",
"Properties": [

{
"data": [

["", ""],
["", ""]

],
"headers": [

"x-label",
"y-label"

],
"property name": ""

},
]

}

Polymer Biodegradation
{

"Polymer Type": "",
"Substitution Type": "",
"Degree of Substitution": "",
"Comonomer Type": "",
"Degree of Hydrolysis": "",
"Molecular Weight": "",
"Molecular Weight Unit": "",
"Biodegradation Test Type": "",
"Biodegradation": {

"header": [
"x-label",
"y-label"

],
"data": [

[x1, y1],
[x2, y2],
...

]
}

}
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D Properties Examples

D.1 PNC
{ 
    "Matrix Component": "DGEBA Epoxy Resin", 
    "Matrix Abbreviation": "EPR", 
    "Filler Chemical Name": "Barium titanate", 
    "Filler Abbreviation": "BaTiO3", 
    "Filler PST": "phosphated ester", 
    "Filler Mass": 0.888779527559055, 
    "Filler Volume": 0.6, 
    "Properties": [ 
        { 
            "data": [ 
                [ 
                    "1057.89229", 
                    "27.25528" 
                ], 
                [ 
                    "1352.11121", 
                    "26.98656" 
                ], 
                [ 
                    "1762.75495", 
                    "26.8906" 
                ], 
                [ 
                    "2209.0395", 
                    "26.5643" 
                ], 
                [ 
                    "2851.93852", 
                    "26.52591" 
                ] 
             
            ], 
            "headers": [ 
                "Frequency (Hz)", 
                "Dielectric Permittivity" 
            ], 
            "property name": "Electrical" 
        }, 
        { 
            "data": [ 
                [ 
                    "1009.90286", 
                    "0.03615" 
                ], 
                [ 
                    "1304.81583", 
                    "0.03711" 
                ], 
                [ 
                    "1685.84961", 
                    "0.02768" 
                ] 
             
            ], 
            "headers": [ 
                "Frequency (Hz)", 
                "Loss Tangent" 
            ], 
            "property name": "Electrical" 
        } 
    ] 
} 

Figure 2: A figure and its corresponding sample. Note how the data points in the properties are coming from the
plot in the image. Also note that the data points in the JSON are shortened to fit on the page; the actual JSON is
much larger. Some information in the JSON, like the full name of the filler PST, is not shown in the figure but can
be found in the text. See the original article (Dang et al., 2008).
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D.2 PBD

{ 
    "Polymer Type": "carboxymethyl cellulose", 
    "Substitution Type": "carboxymethyl", 
    "Degree of Substitution": "0.7", 
    "Comonomer Type": "null", 
    "Degree of Hydrolysis": "null", 
    "Molecular Weight": "null", 
    "Molecular Weight Unit": "null", 
    "Biodegradation Test Type": "Closed bottle", 
  "Biodegradation": { 
        "header": [ 
            "Time (days)", 
            "Biodegradation (%)" 
        ], 
        "data": [ 
            [ 
                0, 
                0 
            ], 
            [ 
                5.45454162633676, 
                5.144192138244883 
            ], 
            [ 
                16.10389353031044, 
                13.873732925104242 
            ], 
            [ 
                28.311688022159935, 
                24.162120174857645 
            ], 
            [ 
                42.07792014773282, 
                37.80202672518049 
            ], 
            [ 
                56.493502938741265, 
                46.531567512039864 
            ], 
            [ 
                84.54545961220134, 
                49.72720157166718 
            ], 
            [ 
                109.48053110990973, 
                55.105221571325245 
            ] 
        ] 
    } 
} 

Figure 3: A figure and its corresponding sample. Note how the data points in the properties are derived from the plot
in the image. There are three types of data points in this plot; while these are not explicitly labeled in the image, the
figure title specifies which samples each type corresponds to. See the original article (van Ginkel and Stroo, 1992).
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E Annotation Guidelines for PBD Papers

Article Selection and Overview
• The dataset should be composed of high-quality research papers focused on polymer
biodegradation, with a preference for those published in reputable journals.

• Make sure that the selection includes studies primarily investigating biodegradable
materials. Review articles summarizing data from various studies are also acceptable.
Ensure access to all selected articles through institutional or open-access resources.

• Organize each paper as a separate folder. Name each folder using a key.

Attribute Identification

• Find attributes that are critical in defining material compositions and are consistently
reported across articles.

Annotation Process for Samples

• For papers containing multiple samples, create a separate JSON file for each sample within
the folder corresponding to the paper. Ensure that each JSON file contains only one value
per field (e.g., do not combine multiple DS values in a single file).

• Use the structure defined in the provided JSON format (see Appendix C).

Composition and Property Extraction

• Carefully read the text, tables, and figures in each paper to extract information about the
composition and properties of the samples. Ensure that common components like polymer type,
substitution type, and test conditions are consistently annotated.

• For properties appearing as figures (e.g., biodegradation plots), use the PlotDigitizer
tool:

– Upload the plot image from the article into PlotDigitizer.

– Calibrate the axes by marking reference points (e.g., labeled ticks or values).

– Trace the curve to extract numerical data points as (x, y) pairs.

– Convert these extracted values into the structured JSON format specified.

Validation and Quality Control

• The first annotator should extract the data, while a second annotator reviews the annotations
for accuracy.

• If discrepancies arise, the team should discuss and resolve them.

Notes on Special Cases

• If images are too complex or data is not clearly labeled, extract a few representative data
points to provide a manageable subset for analysis.

Final Checks and Updates

• Review annotations periodically to confirm that all attributes align with the defined
guidelines.

• If new important attributes or inconsistencies are identified, update the guidelines
accordingly

Figure 4: Annotation guidelines for identifying PBD sample compositions and properties.
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F Prompts

F.1 Text-only Input

PROMPT

You extract structured data from scientific articles.

Please read the following paragraphs, find all the nano-composite samples, and fill out the given
JSON template for each one of those nanocomposite samples. Do not merge samples of different
compositions. If an attribute is not mentioned, fill that section with "null". Mass and Volume
Composition should be followed by a %.

JSON Template:

{ 
    "Matrix Chemical Name": "matrix_chemical_name", 
    "Matrix Chemical Abbreviation": "matrix_abbreviation", 
    "Filler Chemical Name": "filler_chemical_name", 
    "Filler Chemical Abbreviation": "filler_abbreviation", 
    "Filler Composition Mass": "filler_mass_value", 
    "Filler Composition Volume": "filler_volume_value", 
    "Filler Particle Surface Treatment Chemical Name": "surface_treatment_chemical_name", 
    "Properties": [ 
        { 
            "property name": "property_name",  
            "headers": ["header1", "header2"], 
            "data": [] 
        } 
    ] 
}

Properties is a list of dictionaries where each dictionary represents a property of the
nanocomposite. The property name should be filled out with the name of the property where
the choicese are: electrical, mechanical, viscoealstic, thermal, volumetric, rheological. The
headers should be filled out with the x and y labels which are the names of the conditions or
the labels of the data (e.g. time, temperature, frequency, strain, conductivity, dielectric
strength, etc.). The data should be a list of (x, y) tuples. For example, if the property is 24
MPa at temperature 25°C and 30 MPa at temperature 50°C, the data should be [(25, 24), (50, 30)].
If no data is mentioned, please fill it with null.

Article:

\documentclass[10pt]{article} 
\graphicspath{ {./images/} } 

\title{Study on microstructure and dielectric property of the $\mathrm{BaTiO}_{3} /$ epoxy resin 
composites } 

\author{Zhi-Min Dang ${ }^{\text {a,* }}$, Yan-Fei $\mathrm{Yu}^{\text {a }}$, Hai-Ping Xu ${ }
^{\text {a }}$, Jinbo Bai ${ }^{b}$\\ 
${ }^{a}$ Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials 
and Key Laboratory of the Ministry of\\ 
Education on Nanomaterials, Beijing University of Chemical Technology, Beijing 100029, PR China\\ 
${ }^{\mathrm{b}}$ Lab. MSS-MAT, CNRS UMR 8579, Ecole Centrale de Paris, Grande Voie des Vignes, 
Châtenay Malabry Cedex 92295, France} 
\date{} 

\begin{document} 
\maketitle 
Received 26 December 2006; received in revised form 23 April 2007; accepted 8 May 2007 

Available online 18 May 2007 

\begin{abstract} 
High dielectric permittivity barium titanate/epoxy resin $\left(\mathrm{BaTiO}_{3} / \mathrm{EPR}
\right)$ composites with different size $\mathrm{BaTiO}_{3}$ particles were prepared and their 
dielectric properties were studied via a wide range of temperature and frequency. The results show 
that an appropriate silane coupling agent can be used in order to improve the interaction between $
\mathrm{BaTiO}_{3}$ and $\mathrm{EPR}$, and subsequently induces a high dielectric permittivity and 
a low loss tangent… 
\end{abstract}

Figure 5: Sample prompt to GPT-4o for extracting nanocomposite samples. The provided article has been truncated
due to space constraints. The input is given without including the figures parsed by DePlot and without providing
any images—only textual input was given to the model.
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F.2 LLM Output

GPT-4o RESPONSE

Based on the document, one nanocomposite sample was identified:

{ 
    "Matrix Chemical Name": "Epoxy Resin", 
    "Matrix Chemical Abbreviation": "EPR", 
    "Filler Chemical Name": "Barium Titanate", 
    "Filler Chemical Abbreviation": "BaTiO3", 
    "Filler Composition Mass": "null", 
    "Filler Composition Volume": "null", 
    "Filler Particle Surface Treatment Chemical Name": "Silane Coupling Agent KH550", 
    "Properties": [ 
        { 
            "property name": "thermal", 
            "headers": [ 
                "Temperature [\u00b0C]", 
                "Dielectric Permittivity" 
            ], 
            "data": null 
        }, 
        { 
            "property name": "volumetric", 
            "headers": [ 
                "Volume Fraction [%]", 
                "Dielectric Permittivity" 
            ], 
            "data": null 
        }, 
        { 
            "property name": "mechanical", 
            "headers": [ 
                "Temperature [\u00b0C]", 
                "Glass Transition Temperature [Tg]" 
            ], 
            "data": [[0, 69.4], [30, 53], [40, 65.4], [60, 57.4], [70, 35.3]] 
        } 
    ] 
}

Note: The document provides detailed thermal and mechanical properties, but specific mass and
volume compositions are not mentioned, hence "null" in the corresponding fields.

Figure 6: GPT-4o response to the nanocomposite data extraction task described in Figure 5.
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F.3 Text+Image Input

PROMPT

Given the image and the following polymer nanocomposite sample compositions, first identify which
sample composition is present in the image, then extract its properties.

Sample Compositions:

{ 
    "Matrix Chemical Name": "Epoxy Resin", 
    "Matrix Chemical Abbreviation": "EPR", 
    "Filler Chemical Name": "Barium Titanate", 
    "Filler Chemical Abbreviation": "BaTiO3", 
    "Filler Composition Mass": "null", 
    "Filler Composition Volume": "null", 
    "Filler Particle Surface Treatment Chemical Name": "Silane Coupling Agent KH550", 
    "Properties": [ 
        { 
            "property name": "thermal", 
            "headers": [ 
                "Temperature [\u00b0C]", 
                "Dielectric Permittivity" 
            ], 
            "data": null 
        }, 
        { 
            "property name": "volumetric", 
            "headers": [ 
                "Volume Fraction [%]", 
                "Dielectric Permittivity" 
            ], 
            "data": null 
        }, 
        { 
            "property name": "mechanical", 
            "headers": [ 
                "Temperature [\u00b0C]", 
                "Glass Transition Temperature [Tg]" 
            ], 
            "data": [[0, 69.4], [30, 53], [40, 65.4], [60, 57.4], [70, 35.3]] 
        } 
    ] 
}

For those sample compositions that are present in the image, extract the information about the
property.
Properties is a list of dictionaries where each dictionary represents a property of the
nanocomposite. The property name should be filled out with the name of the property where
the choicese are: electrical, mechanical, viscoealstic, thermal, volumetric, rheological. The
headers should be filled out with the x and y labels which are the names of the conditions or
the labels of the data (e.g. time, temperature, frequency, strain, conductivity, dielectric
strength, etc.). The data should be a list of (x, y) tuples. For example, if the property is 24
MPa at temperature 25°C and 30 MPa at temperature 50°C, the data should be [(25, 24), (50, 30)].
If no data is mentioned, please fill it with null.
Expand the sample composition JSONs to include the property information and return all the
expanded JSONs.

Figure 7: Sample prompt to GPT-4o for identifying polymer nanocomposite sample compositions from an image
and extracting their properties.
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F.4 VLM Output

GPT-4o RESPONSE

The image shows dielectric permittivity and loss tangent as a function of temperature for two
different loadings of BaTiO3 in an epoxy resin matrix. However, the sample composition provided
does not specify the particle size or volume fraction, so we cannot directly match it to the
image.
Given the sample composition provided, we can expand the JSON to include the property information
as follows:

[ 
    { 
        "Matrix Chemical Name": "Epoxy Resin", 
        "Matrix Chemical Abbreviation": "EPR", 
        "Filler Chemical Name": "Barium Titanate", 
        "Filler Chemical Abbreviation": "BaTiO3", 
        "Filler Composition Mass": "null", 
        "Filler Composition Volume": "null", 
        "Filler Particle Surface Treatment Chemical Name": "Silane Coupling Agent KH550", 
        "Properties": [ 
            { 
                "property name": "thermal", 
                "headers": ["Temperature [°C]", "Dielectric Permittivity"], 
                "data": null 
            }, 
            { 
                "property name": "volumetric", 
                "headers": ["Volume Fraction [%]", "Dielectric Permittivity"], 
                "data": null 
            }, 
            { 
                "property name": "mechanical", 
                "headers": ["Temperature [°C]", "Glass Transition Temperature [Tg]"], 
                "data": [ 
                    [0, 69.4], 
                    [30, 53], 
                    [40, 65.4], 
                    [60, 57.4], 
                    [70, 35.3] 
                ] 
            } 
        ] 
    } 
] 

Figure 8: GPT-4o response to the nanocomposite data extraction task described in Figure 7, given one of the images
from the paper. Note that if there are n images in the document, there will be n separate responses for each image,
which will later be merged together.
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G Human Evaluation Guideline

Instructions
For each plot pair, please provide a score from 1 (poor) to 5 (excellent) for the following two
aspects:

• Axis Label Accuracy:

– Check if the labels on the x-axis and y-axis of the predicted plot match those of the
ground-truth plot.

– 1: Labels are entirely incorrect or missing.

– 2: Labels are mostly incorrect, with one or two minor matches.

– 3: Labels are partially correct (e.g., one axis matches, the other is incorrect).

– 4: Labels are mostly correct, with only minor errors (e.g., small formatting
differences).

– 5: Labels are completely correct and match perfectly with the ground-truth plot.

• Curve Trend Consistency:

– 1: The trend is completely different from the ground truth.

– 2: The trend shows some alignment but is mostly inconsistent.

– 3: The trend matches in some sections.

– 4: The trend is mostly consistent, with only minor deviations.

– 5: The trend is fully consistent and matches the ground truth perfectly.

Figure 9: Scoring guidelines for human evaluation.
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