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Abstract

Alignment of large language models (LLMs)
with human values and preferences, often
achieved through fine-tuning based on human
feedback, is essential for ensuring safe and re-
sponsible AI behaviors. However, the process
typically requires substantial data and com-
putation resources. Recent studies have re-
vealed that alignment might be attainable at
lower costs through simpler methods, such as
in-context learning. This leads to the question:
Is alignment predominantly superficial? In this
paper, we delve into this question and provide
a quantitative analysis. We formalize the con-
cept of superficial knowledge, defining it as
knowledge that can be acquired through easily
token restyling, without affecting the model’s
ability to capture underlying causal relation-
ships between tokens. We propose a method to
extract and isolate superficial knowledge from
aligned models, focusing on the shallow mod-
ifications to the final token selection process.
By comparing models augmented only with su-
perficial knowledge to fully aligned models,
we quantify the superficial portion of align-
ment. Our findings reveal that while superficial
knowledge constitutes a significant portion of
alignment, particularly in safety and detoxifi-
cation tasks, it is not the whole story. Tasks
requiring reasoning and contextual understand-
ing still rely on deeper knowledge. Addition-
ally, we demonstrate two practical advantages
of isolated superficial knowledge: (1) it can
be transferred between models, enabling effi-
cient offsite alignment of larger models using
extracted superficial knowledge from smaller
models, and (2) it is recoverable, allowing for
the restoration of alignment in compromised
models without sacrificing performance. Our
code is available at https://github.com/
VITA-Group/Superficial_Alignment

1 Introduction

Recent years have witnessed significant advance-
ments of large language models (LLMs) in various

tasks (Hendrycks et al., 2021; Cobbe et al., 2021a;
Chen et al., 2021; Welbl et al., 2017). Although
LLMs acquire extensive world knowledge, they
meanwhile cast serious risks to the society. For
example, LLMs are easily prompted to generate
toxic, misleading, or harmful content (Wei et al.,
2024; Zou et al., 2023; Qi et al., 2023a). To ensure
that the behaviors of LLMs adhere to human values
and preferences, aligning LLMs to follow instruc-
tions based on human feedback (Azar et al., 2024;
Chen et al., 2024; Ouyang et al., 2022; Rafailov
et al., 2024; Wu et al., 2024) is essential. To ob-
tain satisfactory alignment, the tuning of an LLM
usually demands a non-trivial amount of data and
computation resources.

Despite the considerable efforts invested in tun-
ing LLMs (Touvron et al., 2023; Almazrouei et al.,
2023), it has been surprisingly discovered that
alignment might be attainable at lower costs or
through simpler methods (Zhou et al., 2024; Chen
et al., 2023; Lee et al., 2023; Lin et al., 2023). For
example, using only a few selected training exam-
ples can significantly improve alignment perfor-
mance, approaching levels achieved through exten-
sive tuning. Furthermore, Urial (Lin et al., 2023)
found that alignment often results in "stylistic to-
ken shifts," and by employing in-context learning
(ICL) (Brown et al., 2020; Wei et al., 2022) with a
few restyling examples, alignment can be improved
without any further tuning. These findings give
rise to the Superficial Alignment Hypothesis(Zhou
et al., 2024), which suggests that a model may ac-
quire most of its knowledge and abilities during
pre-training, while alignment primarily involves
superficial adjustments.

However, current methods support this hypoth-
esis primarily through informal observations and
indirect implications (i.e., because alignment can
be achieved through superficial methods, it is hy-
pothesized to be superficial). There remains a lack
of rigorous, deep analysis regarding the extent to
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which alignment relies on superficial knowledge
and whether alignment is purely superficial.

To fill this gap, we first formalize the previously
vague concept of superficial knowledge. We define
superficial knowledge as the type of knowledge
that can be easily acquired through simple token
restyling, without requiring modifications to the
model’s understanding of the underlying causal
relationships between tokens and the process of
knowledge extraction and compression. In contrast,
deep knowledge pertains to the model’s ability to
capture token relationships and extract meaningful
insights from the data.

We propose a method to extract and isolate su-
perficial knowledge from the alignment process.
To ensure the extracted knowledge remains superfi-
cial, we restrict our modifications to shallow, sim-
ple structures - specifically, the linear projection
head of the LLM. This affects only the final token
selection process, without altering the intermediate
token merging or self-attention mechanisms. By
doing so, we avoid disrupting the deep knowledge
associated with internal token interactions. Further-
more, to ensure that no new knowledge is intro-
duced into the model and to focus exclusively on
analyzing the knowledge derived from alignment,
we employ distillation to finalize the extraction pro-
cess.

With the extracted and separated superficial
knowledge, we can quantify the superficial por-
tion of alignment by comparing the aligned model
with a base model augmented only with superfi-
cial knowledge across benchmarks in math, safety,
toxicity, and truthfulness. Our key findings are
twofold:

(1) Superficial knowledge constitutes a signifi-
cant portion of the alignment, especially in safety
and detoxification tasks. This knowledge primarily
consists of stylistic patterns that help the model
structure its responses. By leveraging superficial
knowledge alone, we can completely eliminate
safety and toxicity risks while achieving average
performance improvements of 58% in math and
78% in truthfulness tasks. The gains from superfi-
cial knowledge surpass those from simpler methods
like LIMA (Zhou et al., 2024) and ICL (Lin et al.,
2023), as our approach more comprehensively cov-
ers the breadth of superficial knowledge.

(2) However, alignment is not entirely super-
ficial. A clear gap remains between superficial
knowledge and fully aligned knowledge, particu-
larly in knowledge-intensive tasks such as math and

truthfulQA. As we demonstrate in section 2.3, this
gap likely relates to the model’s capacity for rea-
soning and contextual understanding, which goes
beyond superficial patterns.

In addition, since our extracted superficial knowl-
edge is stored in a simple and modular structure,
we have also discovered several useful properties
of superficial knowledge. We further demonstrate
the Superficial Advantage (SA)—the benefits of
isolating superficial knowledge alone.

SA1: Weak-to-Strong Superficial Alignment.
Our experiments reveal that the extracted superfi-
cial knowledge is transferable across models. This
transferability can be leveraged for offsite align-
ment of larger models—superficial knowledge ex-
tracted from a smaller, weaker model can be ap-
plied to a larger, stronger model. This allows for
plug-and-play alignment of the larger model with-
out requiring extensive tuning.

SA2: Recoverable Superficial Safety. Previous
work (Qi et al., 2023b; Wei et al., 2024) has shown
that safety mechanisms can be easily compromised,
such as through slight fine-tuning on as few as 10
samples. However, with our extracted superficial
knowledge, we can re-attach the lightweight struc-
ture encapsulating this knowledge to a de-aligned
LLM and successfully recover 88% of the align-
ment effects without compromising MMLU accu-
racy.

2 Understanding the Superficial
Knowledge in Alignment

2.1 Notation

In this paper, we denote the backbone (transformer
layers) of the aligned model as fa(·) and its final
linear projection matrix as Wa. Conversely, fb(·)
and Wb represent the backbone and final linear
layer of the unaligned base model. Throughout the
paper, we consistently use the subscript a to refer
to the aligned model and b for the base model.

Alignment token distribution shifts: Given the
same input, the top next token predicted by the base
model is referred to as the source token, while the
token predicted by the aligned model is termed
the target token. A token at any position where
the base model and aligned model make different
predictions is called a shift token.

2.2 Extracting Superficial Knowledge

To better understand the knowledge introduced
through alignment, we aim to extract and iso-
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Figure 1: We extract superficial knowledge from an aligned model into a shallow linear projection head. The upper
left shows the potential advantages brought by the extracted superficial knowledge, and the upper right shows the
WordCloud of source shift tokens and target shift tokens, which primarily involves stylistic words.

late what we term superficial knowledge. This
refers to knowledge that contributes to simple to-
ken restyling without influencing the intermediate
transformer layers’ understanding of token relation-
ships.

We represent the input at time step t as xt, which
includes both the instruction and the output from
previous steps. The LLM encodes these into a
vector ht = f(xt), produced by the final trans-
former layer. These hidden states, ht, encapsulate
complex interactions across tokens, representing
the model’s understanding and reasoning over the
entire context. The model then predicts the next
token probability using a linear projection head W ,
as shown:

lt = Wht = Wf(xt) (1)

Our approach adjusts the base model’s final lin-
ear layer Wb by adding a learnable residual ad-
justment, ∆Wb, that approximate and mimics the
aligned model’s token shift and restyling process.
By keeping the LLM’s transformer layer fb(·) fixed,
this method preserves the deeper knowledge un-
changed within the model. Since we aim to extract
knowledge from the aligned model without intro-
ducing new information, we avoid standard fine-
tuning techniques for learning ∆Wb. Fine-tuning
on external data could introduce new knowledge
not originally present in the aligned model. Instead,
we apply distillation to fine-tune the linear projec-
tion heads, using the aligned model’s output as a
supervisory signal. Specifically, we provide the

same input, xt, to both the base model with a learn-
able residual ∆Wb and the aligned model, obtain-
ing their respective logits l̂tb = (Wb +∆Wb)fb(xt)
and lta = Wafa(xt). We then minimize the diver-
gence between the two logits:

Lt = KL(P a
t ||P b

t ) = P a
t log

P a
t

P b
t

(2)

where P a
t = SoftMax(lta) and P b

t = SoftMax(l̂tb).
The optimization objective is to minimize the sum
of these losses across all tokens, yielding the opti-
mal ∆̂Wb:

∆̂Wb = argmin
∆Wb

∑

t

Lt (3)

The resulting ∆̂Wb serves as an approximation
of the superficial knowledge in the alignment pro-
cess. By applying the optimized ∆̂Wb to the base
model, we effectively integrate only the superficial
knowledge. This modified version is referred to as
the "base model with superficial knowledge."

2.3 Is Alignment Primarily Superficial?
We then try to address the question posed ear-
lier: What proportion of alignment does superficial
knowledge constitute, and is alignment entirely su-
perficial?

To address this, we evaluate the base model,
aligned model, and base model with only super-
ficial knowledge on various downstream tasks to
gauge the importance of superficial knowledge. We
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Figure 2: KL divergence between the base model and
the aligned model, and between the base model with
superficial knowledge and the aligned model

use four datasets, each curated to evaluate different
aspects of alignment: 1. The GSM dataset (Cobbe
et al., 2021b), comprising mathematical tasks, is
utilized to analyze reasoning ability. 2. The Tox-
igen dataset (Hartvigsen et al., 2022), which in-
cludes both neutral and toxic questions, focuses
on evaluating the model’s ability to avoid generat-
ing toxic content. 3. The Advbench dataset (Chen
et al., 2022), featuring harmful questions, is used to
assess safety. 4. The TruthfulQA dataset (Lin et al.,
2021a) assesses the model’s capability in providing
factual responses. In our experiments, we use both
LLaMA2 as the base models, with LLaMA2-chat
serving as the aligned models, the results are pre-
sented in Table 1. Additional results for Mistral
and Qwen are included in Appendix C. For more
details about the training process and experiment
setup, please refer to Appendix B.

2.3.1 Superficial knowledge indeed takes a
large proportion of the alignment,
particularly in the front part of the
response.

The results in Table1 show that simply adding su-
perficial knowledge to the model enables achieving
most performance gains achieved through align-
ment. This includes eliminating the risk of gener-
ating unsafe or toxic responses, and reclaiming an
average of 58% and 78% of the performance im-
provements in GSM and TruthfulQA. These gains
surpass those achieved by other simple methods,
such as LIMA (Zhou et al., 2024) and Urial (Lin
et al., 2023), as our approach more thoroughly cap-
tures the scope of superficial knowledge. Addi-

tionally, we visualized the relationship between
position and KL divergence of next token proba-
bilities of the base model vs. aligned model and
base model + superficial knowledge vs. aligned
model across 100 test samples, shown in Figure 2.
The figure reveals that superficial knowledge could
considerably reduces the KL divergence between
the base and aligned models, highlighting its crit-
ical role in alignment. Moreover, we found the
initial positions (e.g., the first 10 tokens) in each re-
sponse may contain the most alignment knowledge,
as indicated by significantly different distributions
between the base and aligned models at these posi-
tions. However, this knowledge is predominantly
superficial, as evidenced by the shallow linear pro-
jection head can readily assimilate, driving the KL
divergence near zero at these positions. In contrast,
the knowledge in later positions is more complex
and less readily captured by the linear projection
head, indicating a deeper level of knowledge.

2.3.2 Alignment is not merely superficial
knowledge

. Although superficial knowledge contributes sig-
nificantly to model alignment, our results suggest
that alignment is not solely comprised of superfi-
cial elements. This is evident from the persistent
performance gap between the base model equipped
with superficial knowledge and the fully aligned
model, particularly in knowledge-intensive tasks
such as GSM and TruthfulQA. Additionally, the
KL divergence between the base model with super-
ficial knowledge and the aligned model cannot be
minimized to zero, further indicating that deeper,
more complex knowledge also play a critical role
in complete model alignment.

To better illustrate the distinction between super-
ficial and deeper knowledge, we analyze response
examples to observe the changes that occur during
inference when only superficial knowledge is ap-
plied, and what cannot be captured by superficial
knowledge alone. We input the same questions
into the base model, the aligned model, and the
base model augmented with superficial knowledge.
One example from the GSM test set is presented
in Table 2. In the responses shown, tokens high-
lighted in red indicate token shifts, where the top
token generated by the current model differs from
that of the base model when given the same input
at the current step. Additionally, we display the
corresponding source shift tokens for each shift
token.
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Model
GSM(↑) Toxigen(↓) Advbench(↓) TruthfulQA(↑)

(reasoning) (toxicity) (safety) (factuality)
ACC ToxiScore HarmRate HarmScore % Info+True

7B 0.037 0.77 0.66 3.84 0.34
7B-Chat(Aligned) 0.230(+0.193) 0.00(-0.77) 0.00(-0.66) 1.00(-2.84) 0.68(+0.34)

7B+Urial 0.049(+0.012) 0.00(-0.77) 0.07(-0.59) 1.29(-2.55) 0.41(+0.07)
7B+LIMA 0.058(+0.021) 0.86(+0.11) 0.84(+0.18) 4.63(+0.79) 0.42(+0.08)

7B+Superficial 0.140(+0.103) 0.00(-0.77) 0.00(-0.66) 1.00(-2.84) 0.66(+0.32)

13B 0.066 0.85 0.80 4.34 0.23
13B-Chat(Aligned) 0.324+(0.258) 0.00(-0.85) 0.00(-0.80) 1.00(-3.34) 0.71(+0.48)

13B+Urial 0.177(+0.111) 0.00(-0.85) 0.05(-0.75) 1.23(-3.11) 0.50(+0.27)
13B+LIMA 0.114(+0.048) 0.91(+0.06) 0.82(+0.02) 4.61(+0.27) 0.51(+0.28)

13B+Superficial 0.226(+0.160) 0.00(-0.85) 0.00(-0.80) 1.00(-3.34) 0.55(+0.32)

Table 1: Superficial knowledge is sufficient for safety and detoxifying but remains a gap for more knowledge-
intensive tasks. Evaluation is based on LLaMA2. ↑ means the metric is higher the better, and ↓ means the metric is
lower the better.

2.3.3 Restyle Patterns in Extracted Superficial
Knowledge.

As demonstrated in Table 2, incorporating super-
ficial knowledge noticeably changes the model’s
response style. The base model often provides di-
rect but sometimes inaccurate answers, while the
aligned model adopts a more structured, step-by-
step approach, typically organizing points sequen-
tially (e.g., 1, 2, 3, 4). This structured restyling is
what we define as superficial knowledge. In the
given example, the base model augmented with
superficial knowledge follows a more logical, step-
wise structure, resulting in more reasonable and co-
herent answers. This structured response pattern en-
ables the aligned model to provide correct answers
more consistently. Moreover, when examining to-
ken shifts between the base model and the base
model equipped with superficial knowledge, we ob-
served that both source and target shift tokens pre-
dominantly focus on stylistic elements used for or-
ganizing responses. For example, ’## → To’ leads
model to recall the target of the question. ’The
→ There(fore)’ push model to summarize the find-
ings. These shifts greatly help model to organize
the response. Additionally, as previously noted, ini-
tial positions hold the most alignment knowledge,
which is largely superficial. This is clearly demon-
strated in the example where the phrase ’To find’
significantly alters the answer style, marking a cru-
cial contribution from alignment. More examples
will be provided in Appendix F.

2.3.4 What is essential for alignment other
than superficial knowledge? The ability
to reason and integrate context may
count.

As demonstrated earlier, superficial knowledge
alone cannot cover all aligned knowledge, and
there remains a performance gap between a base
model equipped with superficial knowledge and an
aligned model. This gap exists because the aligned
model is superior in its ability to reason and in-
tegrate context compared to the base model, as
shown in Table 2. The base model with superficial
knowledge ultimately provides the incorrect answer
due to a calculation error: it miscalculates ’$204
+ $160 + $330 = $894’. In contrast, the aligned
model does not exhibit this error, as demonstrated
by the token shift pair (8 → 6). The mathemati-
cal calculations require a high level of integration
and understanding of token relationships, which
cannot be achieved through a simple shallow linear
projection head (superficial knowledge). This also
underscores that alignment is more than merely
superficial knowledge.

3 Using Superficial Knowledge for A
Good Purpose

After gaining a basic understanding of superficial
knowledge in alignment, we will highlight several
benefits of extracting and isolating this knowledge.
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Question: Toula went to the bakery and bought various types of pastries. She bought 3 dozen donuts which
cost $68 per dozen, 2 dozen mini cupcakes which cost $80 per dozen, and 6 dozen mini cheesecakes for $55
per dozen. How much was the total cost?
Correct Answer: $694

Base Model:
### Solution
$68 + 80 + 55 = 203$
### Explanation
The total cost is $203.
### Hints
- The total cost is the sum of the cost of each item...

Aligned Model:
To find the total cost of the pastries, we need to calculate the cost of each type of pastry and then add them
up.
1. Donuts: 3 dozen donuts x $68 per dozen = $204
2. Mini cupcakes: 2 dozen mini cupcakes x $80 per dozen = $160
3. Mini cheesecakes: 6 dozen mini cheesecakes x $55 per dozen = $330
Total cost = $204 + $160 + $330 = $694
Therefore, the total cost of the pastries that Toula bought at the bakery is $694.

Alignment Token Shift (Base→Aligned): (## → To) ( solve → find ) (,→ of) (find→ calculate) (total→
cost ) (The→1 ) (The→ Don ) (cost→ x ) ( ’ ’ → 2 ) (6 → 2 ) (8 → 6 ) ( ## → There ) ( is → that ) ( was →
at ) ( was → is )

Base Model + Superficial Knowledge:
To find the total cost of the items Toula bought at the bakery, we need to add the cost of each item she bought.
The cost of 3 dozen donuts = 3 x $68 = $204
The cost of 2 dozen mini cupcakes = 2 x $80 = $160
The cost of 6 dozen mini cheesecakes = 6 x $55 = $330
Therefore, the total cost of the items Toula bought at the bakery is: $204 + $160 + $330 = $894
So, the total cost of the items Toula bought at the bakery is $894.

Alignment Token Shift (Base→Base+Superficial Knowledge): (## → To) (solve → find ) (,→ of) ( past
→ items ) (,→ T) (,→ at) (find→ add ) (.→she ) (is→ = ) ( * → x ) (’ ’ → The ) (The → There ) ($ → : ) (’
’ → $ ) (## → So )

Table 2: Examples of responses from the base model, aligned model, and base model with superficial knowledge.
Tokens highlighted in red indicate token shifts, where the top token generated by the model differs from that of the
base model when given the same input at the current step.

3.1 Weak-to-Strong Superficial Alignment

Initially, since the essence of superficial knowledge
lies in restyling, and this restyling pattern may be
universal across models, we explore the possibil-
ity of transferring superficial knowledge between
models. A major challenge in achieving effective
transferability is identifying a generalizable input
space for superficial knowledge modeling.

As described in Section2.2, we store the superfi-
cial knowledge of alignment within a linear weight,
∆̂Wb. However, this weight cannot be directly ap-
plied to other models, as it is intrinsically tied to the
last hidden state space, which is not generalizable
across models. To overcome this limitation and
enable effective knowledge transfer, we identify a
more universally applicable yet equally informative
input space for extracting superficial knowledge:
the logits space. Since models from the same fam-
ily typically share the same vocabulary, regardless
of model size, the logits space offers a consistent

input structure. Moreover, it can effectively cap-
ture the contextual knowledge stored in the hidden
states.

However, in our experiments, we found that us-
ing the full output logits is not an optimal choice.
Employing only the top-k logits as input (i.e., set-
ting all logits ranked beyond k to 0) yields better
transferring results. This can be attributed to two
main reasons. First, the most critical information
tends to be concentrated in the top-k logits, as sig-
nificant target-shift tokens are often found among
the top-ranked tokens of the base model. Second,
tail tokens typically contain more random infor-
mation, and while they might capture additional
details, such patterns are not consistent across mod-
els and do not transfer effectively.

To substantiate these points, we computed two
metrics within the top-k logits space and the full
logits space. The first metric, shift token cover rate,
measures the proportion of top-k tokens predicted

3270



Figure 3: Trade-off between informativeness(Shift to-
ken cover rate) and transferability(Transfer space simi-
larity) with diffrent k

by the base logits that encompass the target shift to-
kens (i.e., the top-1 token predicted by the aligned
model). As k increases, the shift token cover rate
correspondingly rises. The second metric, the
transfer space similarity, evaluates the similarity
of the top-k token logit spaces across models with
different size. We collected 1,000 logit samples
from both LLaMA2-7b and LLaMA2-13b using
identical inputs, denoted as L7b and L13b, respec-
tively. We performed Singular Value Decomposi-
tion (SVD) on these samples: L7b = U7bS7bV

T
7b

and L13b = U13bS13bV
T
13b, where V∗ ∈ R|V|×1000

represents the base vectors for the logits space, and
|V| is the vocabulary size. The similarity between
V7b and V13b was calculated using the formula:

Similarity =
∥V T

13bV7b∥F√
∥V13b∥F ∥V7b∥F

(4)

This similarity assesses the subspace similarity be-
tween the top-k token logit spaces of LLaMA2-7b
and LLaMA2-13b.

In Figure 3, we plot the relationship between
shift token cover rate and transfer space similarity.
As the value of k increases, we observe a decrease
in transfer space similarity and a corresponding
increase in shift token cover rate, indicating a po-
tential trade-off between informativeness and trans-
ferability. An appropriate value for k may be se-
lected based on this trade-off. Further details will
be discussed in Appendix D.

To enhance transferability, we extract superficial
knowledge from model alignment using a linear

model, with the top-k logits as input. We approxi-
mate and model the token distribution shift using a
linear transformation,Wtrans, as follows:

lta − ltb = Wtrans · topk(ltb) (5)

Here, lta and ltb represent the logits output of the
aligned model and the base model at step t. The
function topk(·) sets all logits ranked beyond the k-
th position to zero. We optimize the linear weight
Wtrans using distillation techniques outlined in
Section 2.2. The superficial knowledge extracted
through this process is referred to as Black-box Su-
perficial Knowledge (denoted as Superficial-BB).

In our experiments, we extracted Black-Box Su-
perficial knowledge from LLaMA2-7b-Chat, and
then applied it to both LLaMA2-7b and LLaMA2-
13b. The evaluation results on downstream tasks
are listed in Table 3.

Experiment Results. We found that although
there may be some loss of knowledge modeling
due to the information gap between top-k logit
space and hidden states space, the black-box linear
model still retains much of the superficial knowl-
edge. By attaching the knowledge, we can largely
recover the alignment performance, such as elim-
inating risks of generating harmful responses and
improving accuracy in math and factual answering
tasks. Moreover, the black-box superficial knowl-
edge is transferable. When applying the superfi-
cial knowledge extracted from LLaMA2-7b-chat
to LLaMA2-13b, it still demonstrates strong per-
formance, reducing the risk of generating harmful
responses and increasing accuracy in math tasks
from 0.066 to 0.168, and in factual questions from
0.23 to 0.55. The performance gains brought by the
extracted superficial knowledge to LLaMA2-13B
even surpass that to LLaMA2-7B, this may due to
the larger model’s superior capability to utilize the
superficial knowledge.

The transferability of superficial knowledge can
be utilized in offsite alignment settings, where there
may not be sufficient resources to align the full
larger model directly. By aligning a smaller model
and transferring the extracted superficial knowl-
edge to a larger model, we can achieve superficial
alignment, and the performance could surpass that
of other simple alignment methods such as Urial
and LIMA.

3.2 Recoverable Superficial Safety
As noted by (Qi et al., 2023b), safety in alignment
is easily disrupted through additional fine-tuning,

3271



Model
GSM(↑) Toxigen(↓) Advbench(↓) TruthfulQA(↑)

(reasoning) (toxicity) (safety) (factuality)
ACC ToxiScore HarmRate HarmScore % Info+True

7B 0.037 0.77 0.66 3.84 0.34
7B+Superficial 0.140(+0.103) 0.00(-0.77) 0.00(-0.66) 1.00(-2.84) 0.66(+0.32)

7B+Superficial-BB-7B 0.111(+0.074) 0.00(-0.77) 0.00(-0.66) 1.00(-2.84) 0.46(+0.12)

13B 0.066 0.85 0.80 4.34 0.23
13B+Urial 0.177(+0.111) 0.00(-0.85) 0.05(-0.75) 1.23(-3.11) 0.50(+0.27)
13B+LIMA 0.114(+0.048) 0.91(+0.06) 0.82(+0.02) 4.61(+0.27) 0.51(+0.28)

13B+Superficial 0.226(+0.160) 0.00(-0.85) 0.00(-0.80) 1.00(-3.34) 0.55(+0.32)
13B+Superficial-BB-7B 0.168(+0.102) 0.00(-0.85) 0.00(-0.80) 1.03(-3.31) 0.55(+0.32)

Table 3: Superficial knowledge can be transferred across models. Evaluation is based on LLaMA2. ↑ means the
metric is higher the better, and ↓ means the metric is lower the better.

Model
Advbench(↓) MMLU(↑)

HarmRate HarmScore ACC

LLaMA2-7b-Chat 0.00 1.00 0.465
LLaMA2-7b-Chat-Finetuned 0.96 4.91 0.466

LLaMA2-7b-Chat-Finetuned (+Urial) 0.93 4.85 0.459
LLaMA2-7b-Chat-Finetuned (+Superficial-BB) 0.08 1.38 0.456

Table 4: Restoring safety using extracted superficial knowledge after fine-tuning disruptions. ↑ means the metric is
higher the better, and ↓ means the metric is lower the better.

which can result in the generation of harmful or
toxic responses. This raises the question of whether
there is also a simple method to restore alignment.
Superficial knowledge emerges as a promising can-
didate due to its simplicity. To explore this, we
initially extracted superficial knowledge from the
aligned model. The superficial knowledge was
still extracted in a black-box manner, considering
that the hidden state spaces of the base model and
the fine-tuned aligned model are likely to differ.
Subsequently, when the safety of the model was
compromised by fine-tuning, we attempted to rein-
tegrate the extracted superficial knowledge into the
fine-tuned model.

In our experiments, we use LLaMA2-7b as the
base model and LLaMA2-7b-chat as the aligned
model to extract superficial knowledge. Follow-
ing the setup from (Qi et al., 2023b), we utilize
their selected identity shift dataset to fine-tune
the LLaMA2-7b-chat model, which represents the
most effective benign fine-tuning attack described
in their paper. This fine-tuning process induces the
model to generate harmful responses. We evaluate
the fine-tuned model using the advbench dataset.

Additionally, in Appendix E, we also explore less
aggressive fine-tuning tasks to provide a more com-
prehensive analysis.

Experiment Results. The results are shown in
Table 4. We found that after fine-tuning, the harm-
ful response rate of the model increased dramati-
cally from 0% to 96%. However, after restoring
the superficial knowledge, most of the performance
was regained, and the harmful rate dropped to 8%.
This also indicates that the fine-tuning process may
potentially damage the superficial knowledge in
alignment. Yet, our extraction method allows for
the preservation of this knowledge within a linear
model, enabling easy restoration without compro-
mising the model’s original utility, as demonstrated
by evaluation performance on MMLU. Whenever
the model is disrupted by fine-tuning, the extracted
knowledge can be reapplied without additional
training. In contrast, other superficial methods
such as Urial fail to restore the fine-tuned model
effectively, as the finetuned model with Urial still
produces many harmful responses.

3272



4 Conclusion

In this paper, we propose a method to separate su-
perficial knowledge from deep knowledge within
alignment, enabling us to quantify the the superfi-
cial portion of alignment. Our analysis finds that su-
perficial knowledge indeed constitutes a large pro-
portion of alignment, though not entirely. Knowl-
edge beyond the superficial, related to reasoning
abilities and contextual integration, is also crucial
to alignment. Additionally, our extracted super-
ficial knowledge extends beyond mere analytical
use, offering practical applications such as weak-to-
strong superficial alignment and recovering com-
promised safety.

5 Social Impact and Limitation

Potential Social Impact. Our work offers critical
insights into the superficial aspects of alignment,
potentially guiding future methodologies for robust
and secure alignment. The implications regarding
the transferability and restorability of superficial
knowledge present mitigation for potential risks
associated with alignment. Consequently, we en-
vision that improved alignment, rooted in our find-
ings, could yield significant positive social impacts
for the proper use of AI. However, we also acknowl-
edge that the misuse of superficial knowledge could
pose risks to alignment in the short term. Specif-
ically, an overreliance on superficial knowledge
may obscure or ignore deeper, underlying knowl-
edge essential to true alignment. This can lead to
AI systems that seem aligned on the surface but fail
to account for complex or nuanced factors. Thus,
we call for more efforts to be devoted to enhancing
the alignment with non-superficial knowledge.

Limitation. In this paper, we measure the por-
tion of such knowledge in existing aligned LLMs
and use examples to demonstrate what is superficial
knowledge and what is beyond superficial.While
the non-superficial part in alignment is not fully
understood. The problem remains challenging as
the rest of knowledge could be multi-faceted, and
could be complicated with diverse sequential de-
pendencies.
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A Related Work

Aligning LLMs with human preference. Large Language Models (LLMs) have demonstrated superior
capabilities across various NLP tasks, yet they pose several challenges. These include the potential
to disseminate misleading information, pursue unsuitable objectives, and generate content that may be
perceived as harmful or biased(Mozes et al., 2023; Chang et al., 2024). To address these issues, alignment
was proposed to regulate LLMs with human preferences and values (Ouyang et al., 2022; Rafailov et al.,
2024; Chen et al., 2024). A prevalent method of alignment is Reinforcement Learning from Human
Feedback (RLHF). This approach uses reward models, which serve as proxies for human judgments,
to supervise an LLM (MacGlashan et al., 2017; Xue et al., 2023; Yuan et al., 2023; Zhu et al., 2023).
However, RLHF is generally more complex than supervised learning, exhibiting optimization instability
and sensitivity to hyperparameters. In recent developments, there has been a significant shift towards
employing closed-form losses that directly utilize offline human preferences (Song et al., 2024; Ethayarajh
et al., 2024), such as Direct Preference Optimization (DPO) (Rafailov et al., 2024) that simplifies the
optimization objectives. Though extensive resources are devoted, the alignment is not very robust and
can be easily removed by jailbreaking prompts. Such limitation motivates us to understand the alignment
toward improving it.

Superficial alignment. Recent studies have shown that only a few samples are sufficient to align a large
language model (LLM) (Zhou et al., 2024; Chen et al., 2023; Lee et al., 2023), leading to the Superficial
Alignment Hypothesis. This hypothesis suggests that an aligned LLM’s knowledge is largely derived
from pre-training, with alignment mainly imparting superficial adjustments. Additionally, Urial(Lin et al.,
2023) demonstrated that alignment can be achieved through in-context learning. However, these studies
only show that alignment can be accomplished using superficial methods to a certain degree, without
fully validating the hypothesis or assessing the extent to which alignment is superficial. In this paper,
we explore the superficiality of knowledge introduced during alignment, investigate the proportion of
superficial knowledge involved, and analyze what is truly learned throughout the alignment process,
offering our insights on the Superficial Alignment Hypothesis.

B Experiment Setup

We assess our model using four datasets, each curated to evaluate different aspects of alignment knowledge.
The GSM dataset (Cobbe et al., 2021b), comprising mathematical tasks, is utilized to analyze reasoning
ability. Meanwhile, the Toxigen dataset (Hartvigsen et al., 2022), which includes both neutral and toxic
questions, focuses on evaluating model’s ability to avoid generating toxic content. The Advbench dataset
(Chen et al., 2022), featuring harmful questions, is used to evaluate safety. Additionally, the TruthfulQA
dataset (Lin et al., 2021a) assesses the model’s capability in providing factual responses. For training,
we collected 1000, 1000, 421, and 717 questions from GSM, Toxigen, Advbench, and TruthfulQA
respectively, setting aside 5% of these samples for validation. The lr is set to 0.0001. For evaluation, we
test our model on separate samples of 1319, 2800, 100, and 100 from these datasets.

Evaluation metrics. Following the approaches described in (Wang et al., 2024; Liu et al., 2024), we
extract the last number in the model’s response to serve as the final answer and calculate accuracy (ACC)
to evaluate GSM performance. We employ the toxicity classifier based on roberta-large from (Hartvigsen
et al., 2022) to assess the toxicity of generated responses. Additionally, we use two open-source fine-
tuned LLaMA12 to evaluate the truthfulness and informativeness of the model responses, reporting the
percentage of responses that are both truthful and informative (% Info + True) on Truthfulqa(Lin et al.,
2021b). For the advbench dataset, following (Qi et al., 2023b), we employ GPT to assess the harmfulness
of model responses on a scale of 1-5 (where a higher score indicates greater harmfulness), with the
harmRate indicating the fraction of test cases that receive the maximum harmfulness score of 5.

Implementation. We implemented our method with PyTorch. The experiments were conducted on a
server equipped with AMD EPYC 7702 64-Core Processor, 512GB Memory, and NVIDIA RTX A6000

1https://huggingface.co/allenai/truthfulqa-truth-judge-llama2-7B
2https://huggingface.co/allenai/truthfulqa-info-judge-llama2-7B
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GPU (48GB Memory). The evaluation and training time for each experiment is not more than 5 hours,
respectively. During inference, we set ‘do_sample‘ to False, and evaluate in a single run.

C Superficial Knowledge in Mistral and Qwen

Model
GSM(↑) Toxigen(↓) Advbench(↓) TruthfulQA(↑)

(reasoning) (toxicity) (safety) (factuality)
ACC ToxiScore HarmRate HarmScore % Info+True

Mistral 0.224 0.86 0.92 4.76 0.33
Mistral-Instruct(Aligned) 0.440(+0.216) 0.00(-0.86) 0.06(-0.86) 1.51(-3.25) 0.75(+0.42)

Mistral+Urial 0.235(+0.011) 0.00(-0.86) 0.10(-0.82) 1.43(-3.33) 0.45(+0.12)
Mistral+LIMA 0.014(-0.210) 0.70(-0.16) 0.68(-0.24) 3.90(-0.86) 0.28(-0.05)

Mistral+Superficial 0.277(+0.053) 0.00(-0.86) 0.12(-0.80) 1.62(-3.14) 0.64(+0.31)

Table 5: Evaluation based on Mistral-7B-v0.3. ↑ means the metric is higher the better, and ↓ means the metric is
lower the better.

Model
GSM(↑) Toxigen(↓) Advbench(↓) TruthfulQA(↑)

(reasoning) (toxicity) (safety) (factuality)
ACC ToxiScore HarmRate HarmScore % Info+True

Qwen 0.638 0.81 0.29 2.20 0.40
Qwen-Instruct(Aligned) 0.723(+0.085) 0.00(-0.81) 0.00(-0.29) 1.00(-1.10) 0.74(+0.34)

Qwen+LIMA 0.491(-0.147) 0.94(+0.13) 0.17(-0.12) 1.75(-0.45) 0.44(+0.04)
Qwen+Superficial 0.670(+0.032) 0.00(-0.81) 0.00(-0.29) 1.00(-1.10) 0.65(+0.25)

Table 6: Evaluation based on Qwen-3b. ↑ means the metric is higher the better, and ↓ means the metric is lower the
better.

We also analyze the presence of superficial knowledge in Qwen and Mistral, with results consistent with
observations on LLaMA. We observe that superficial knowledge constitutes a large proportion of safety-
related tasks. However, alignment is not entirely superficial, especially for knowledge-intensive tasks
such as TruthfulQA. Importantly, our proposed method demonstrates superior alignment effectiveness
compared to previous baselines in these contexts. It is worth noting that we do not report Urial results
on Qwen, as we observed that Urial consistently fails to function effectively on Qwen, with the model
frequently defaulting to producing the EOS token.

D Strategies for Selecting Transferable Input Spaces

In Section 3.1, we discuss the potential trade-off between informativeness and transferability in the
context of input spaces. An optimal value for k may be selected based on this trade-off. Increasing k to
include more information from logits can also introduce additional noise, which might reduce the model’s
transferability. Next, we present our strategies for selecting appropriate k values.

We trained linear heads on LLaMA-7b to extract superficial knowledge with various values of k.
Training utilized logits collected from the Toxigen datasets, with logits specifically from LLaMA-7b. The
token prediction accuracy was then evaluated on validation samples using logits from both LLaMA-7b
and LLaMA-13b. We refer to the token accuracy measured on LLaMA-7b as validation accuracy, and
the accuracy on LLaMA-13b as validation transfer accuracy. This approach helps quantify the trade-offs
between richer logit information and potential transfering noise impacts as k increases. The relationship
between k and accuracies is illustrated in Figure 4. Our findings indicate that below a certain threshold
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Figure 4: K vs Token Accuracy

(e.g., 500, as shown in the figure), increasing k enriches the information base, thereby enhancing both
validation accuracy and validation transfer accuracy. However, surpassing this threshold, the test accuracy
plateaus and the transfer accuracy declines, as the most significant information resides in the top logits,
while the tail logits, being closer to random noise, may introduce elements that are not generalizable
across different models. To identify an optimal k that is broadly effective across models, we might select
k based on validation transfer accuracy.

E Recoverability of alignment under other fine-tuning scenarios

Model
Advbench(↓)

HarmRate HarmScore

LLaMA2-7b-Chat 0.00 1.00
LLaMA2-7b-Chat-Finetuned (Alpaca) 0.20 1.81

LLaMA2-7b-Chat-Finetuned (Alpaca)+Superficial 0.05 1.30

Table 7: Restoring safety using extracted superficial knowledge after fine-tuning disruptions on Alpaca datasets.

We additionally experimented with less aggressive fine-tuning tasks in (Qi et al., 2023b), i.e. finetuning
on Alpaca. While the attack’s impact was weaker in this case, our method still effectively realigned the
model’s safety capabilities.

F Extra Examples for Understanding Knowledge in Alignment

Analysis for Table 8: The superficial knowledge primarily alters the response style, guiding the model to
deconstruct the question. This stylistic ultimately leads to the correct answers.
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Question: Greg has an alarm set to ring three times a day as a reminder. When the alarm
goes off, it continues to ring until Greg turns it off. The first time it went off today, it rang
four times. The second time it went off, it rang for three times as long as the first time. The
third time, it rang for half as long as the second time. How many times did the alarm ring in
all?
Correct Answer: 12

Base Model:
### Explanation### Solution
The alarm rings for $4$ times the first time, $3$ times the second time, and $2$ times the
third time. The total number of times the alarm rings is:
4 + 3 + 2 &= 9
9 + 2 &= 11
. . .
87 + 2 &= 89

Aligned Model:
Let’s break down the information given in the problem:
1. The alarm rings three times a day.
2. The first time it went off today, it rang four times.
3. The second time it went off, it rang for three times as long as the first time, which means
it rang for 4 x 3 = 12 times.
4. The third time it went off, it rang for half as long as the second time, which means it rang
for 12 / 2 = 6 times.
So, the alarm rang a total of 4 + 12 + 6 = 22 times today.

Alignment Token Shift Examples: (## → Let) ( $ → ’ ) (say→ break) (problem→
information) (question→ problem ) (.→: ) (The→ 1 ) (When→ The ) (alarm→ first ) (.→ , )
(so→ which ) (is→ means ) (1→ 4 ) (times→ x ) (,→ it ) (x→ / ) (Now→ So ) (’ ’→ a ) (.→
today )

Base Model + Shallow Align:
Let’s break this down step by step:
1. The first time the Alarm went off, it rang for 4 times.
2. The second time the Alarm went off, it rang for 3 times as long as the first time, which is
3 x 4 = 12 seconds.
3. The third time the Alarm went off, it rang for half as long as the second time, which is 12
/ 2 = 6 seconds.
So, in total, the Alarm rang for 4 + 12 + 6 = 22 seconds. </s>

Shallow Align Token Shift Examples: (## → Let) ( $ → ’ ) (say→ break), (down→ this)
(into→ step ), (.→: ) (The→ 1 ) (it→ the ),(alarm→ Al ) (.→, ) (so→ which) (times→ x )
(the→in )

Table 8: Examples of responses from the Base Model, Aligned Model, and Base Model with Superficial Knowledge
(Red color shows the shift position).
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Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint.
How many total meters does he run a week?
Correct Answer: 540

Base Model:
180 meters
### Solution
The total distance run is:
$\dfrac 3 \times 3 \times 60 1000 = 180$
### Explanation
The total distance run is:
$\dfrac 3 \times 3 \times 60 1000 = 180$
### Hints
- 1000 is the number of meters in a kilometer.
- 60 is the number of meters in a sprint.
- 3 is the number of sprints per week.

Aligned Model:
To find out how many meters James runs in a week, we need to multiply the number of
sprints he runs each week by the distance of each sprint.
James runs 3 sprints 3 times a week, so he runs a total of 3 x 3 = 9 sprints per week.
Each sprint is 60 meters long, so James runs a total of 9 x 60 = 540 meters per week.

Alignment Token Shift Examples: (## → To) ( solve → find ) (the→ out) (he→ James)
(a→ in ) (find→multiply ) (by→ each ) (number→ distance ) (he→ of ) ($$→ James ) (.→ ,
) (’ ’→ a ) (9→ 3 ) (s→ x ) (each→ per ) (he→ James )

Base Model + Shallow Align:
To determine the total distance of running for James in a week, we need to multiply the
number of sprints he runs per week by the distance he runs in each sprint.
James runs 3 sprints per week, and each sprint is 60 meters long, so the total distance he runs
in a week is:
3 x 60 = 180 meters
So, James runs a total of 180 meters per week.

Shallow Align Token Shift Examples: (## → To) ( solve → determine ) (number→ distance
) (run→ of ) (the→ running ) (,→ for ) (the→ James ) (,→ in ) (find→ multiply ) (distance→
number ) (by→ per ) ($$→ James ) (’ ’→ per )(.→ , ) (’ ’→ : ) (*→ x )(There→ So )(the→
James )(’ ’→ a )

Table 9: Examples of responses from the Base Model, Aligned Model, and Base Model with Superficial Knowledge
(Red color shows the shift position).

Analysis for Table 9: Superficial knowledge alters the response style, but fails to produce correct
answers due to the lack of integration of ’3 times’ in the question.

3280


