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Abstract

Traditional retrieval-augmented generation
(RAG) benchmarks evaluate systems using
heuristic-based metrics, but these require hu-
man preferences as the ground truth for ref-
erence. In contrast, arena-based benchmarks,
where systems compete against each other,
require an expensive large language model
(LLM) as a judge for a reliable evaluation. We
present a simple efficient technique to com-
bine the best of both worlds. The idea is to
train a surrogate judge using heuristic metrics
as input, to output the LLM as a judge pre-
diction. In our work, we develop MIRAGE-
BENCH,1 a synthetic arena-based RAG bench-
mark for 18 diverse languages on Wikipedia fo-
cused on multilingual answer generation eval-
uation. It extensively couples both heuristic
features and LLM as a judge for evaluation.
We benchmark 19 multilingual LLMs, and ob-
serve a high correlation (Kendall Tau (ω ) =
0.909) using our surrogate judge and between
GPT-4o as a teacher using the Bradley-Terry
framework. Our results show proprietary and
large open-source LLMs currently dominate
on MIRAGE-BENCH. Our code and datasets
are made publicly available here: https://
github.com/vectara/mirage-bench.

1 Introduction

Large language models (LLMs) have recently
gained popularity for information-seeking queries
leading to the widespread adoption of retrieval-
augmented generation (RAG) (Guu et al., 2020;
Lewis et al., 2020; Izacard and Grave, 2021;
Borgeaud et al., 2022). The naive RAG setup
traditionally includes a retrieval and a generation
stage, conducted sequentially. RAG systems such
as Bing Search (Microsoft, 2023) provide grounded
responses, i.e., statements that include citations
to one or more retrieved passages. The citations
1MIRAGE-BENCH has been coined as (MIRACL + RAG
+ EVALUATION + BENCHMARK).

 बाइनरी भाषा म� िकतने अ�र होते ह�?

Retrieval

[1] �याधारी कूट: �याधारी कूट या
बाइनरी कोड (binary code) वह कूट
है िजसम� दो सं�तीक (�ाय: ० तथा १)
वाले वण� का उपयोग िकया जाता है। ...

Generation

बाइनरी भाषा का उ�ेख [1] म� िकया गया है, जहाँ बताया
गया है िक कं�ूटर केवल बाइनरी संकेतो,ं अथा�त् 0 और 1 को
ही समझता है। इस जानकारी के आधार पर, हम बाइनरी भाषा
म� अ�रो ंकी सं�ा का िनधा�रण कर सकते ह�। 

बाइनरी भाषा म� 2 अ�र होते ह�।

Reason
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Multilingual

MIRAGE-

Multilingual

(Zhang et al.,
2023)

BENCH

Figure 1: Multilingual naive RAG pipeline in Hindi
(hn). In MIRAGE-BENCH, we reuse the oracle re-
trieval set (query and oracle judged passages) from MIR-
ACL (Zhang et al., 2023) and focus on evaluating the
answer generation stage with multilingual LLMs.

reduce factual hallucinations with easy verifiabil-
ity and improve faithfulness to passages provided
within context (Khandelwal et al., 2020; Lewis
et al., 2020; Gao et al., 2023a,b; Liu et al., 2024).
However, existing RAG benchmarks are English-
centric, due to uneven and scarce data available
across multiple languages (Thakur et al., 2024c).
So far, it is unclear how existing LLMs perform in
multilingual RAG, i.e., where queries and passages
are non-English and the LLM generates the answer
in the same language. An example of a naive RAG
pipeline in Hindi (hn) is shown in Figure 1.

RAG benchmarks can be broadly classified as
either (i) heuristic-based, where benchmarks hand-
craft evaluation metrics (e.g., faithfulness or flu-
ency) to evaluate systems on multiple dimensions
(Gao et al., 2023a; Chen et al., 2024c; Yang et al.,
2024b) or (ii) arena-based: where systems com-
pete each other in a tournament and an LLM-
based teacher is used as the judge for evaluation
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 बाइनरी भाषा म� िकतने अ�र होते ह�?

[1] �याधारी कूट: �याधारी कूट या
बाइनरी कोड (binary code) वह कूट
है िजसम� दो सं�तीक (�ाय: ० तथा १)
वाले वण� का उपयोग िकया जाता है। ...

##Reason: बाइनरी भाषा का उ�ेख [1]
म� िकया गया है, जहाँ बताया गया है िक कं�ूटर
केवल बाइनरी संकेतो,ं ... ही समझता है।
##Answer: बाइनरी भाषा म� 2 अ�र होते ह�।

Baseline Model e.g., Model A/B/C ...

{ Model A:  1.0, Model B: .... }
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Fluency LLM-as-a-Judge

{ Model A:  0.3 , Model B: .... }
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Learning to
Rank Model
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Rank

1 Model B
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Arena-based Evaluation

vs

 Bootstrapping +
Training
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Figure 2: The MIRAGE-BENCH evaluation flowchart consists of three steps: (i) heuristic-based features evaluating
the baseline model response across several dimensions; (ii) exhaustive pairwise comparisons with GPT-4o as a
judge on a small subset of queries to train our surrogate judge. (iii) After training, we utilize our surrogate judge to
output the model ranking on the whole subset of queries, to construct the synthetic RAG arena-based leaderboard.

(Rackauckas et al., 2024; Pradeep et al., 2024a).
Heuristic-based benchmarks are computationally
cheaper to evaluate but require human preferences
as gold truth for reference. They also face chal-
lenges in aggregating different features into a rank-
ing order for models. On the other hand, arena-
based benchmarks require a high-performance or
reasoning-intensive LLM as a teacher for accuracy
(Zheng et al., 2023), which makes exhaustive pair-
wise comparisons expensive for a large set of mod-
els. For instance, evaluating a single query on 19
models involves

(
19
2

)
= 171 comparisons and costs

between $5–10 USD with GPT-4o (OpenAI, 2023).

In our work, we get the best of both worlds with a
surrogate judge, a learning to rank model, e.g. ran-
dom forest (Ho, 1995), using heuristic features to
estimate an arena-based leaderboard obtained with
a Bradley-Terry model (Hunter, 2004) from pair-
wise evaluations using an LLM as a judge (Zheng
et al., 2023). We use bootstrapping to obtain confi-
dence bounds for better statistical estimates. After
training, the learning to rank model can be used to
estimate the performance of newer released models
reliably in the future without the expensive LLM
as a judge. It also provides better interpretability
and is easily retrainable with a different or newer
set of heuristic features.

We develop MIRAGE-BENCH, a RAG bench-
mark across 18 languages for multilingual gener-
ation evaluation on Wikipedia. MIRAGE-BENCH

data is sourced from MIRACL (Zhang et al., 2023),
a multilingual retrieval dataset containing human-
generated queries and human-labeled relevance
judgments for Wikipedia passages. We bench-
mark 19 frontier multilingual LLMs in our ex-
periments. Our evaluation flowchart adopted in

MIRAGE-BENCH is shown in Figure 2. We eval-
uate seven heuristic features: (i) language detec-
tion, (ii) citation quality, (iii) support, (iv) reranker
score, (v) answer overlap (traditional), (vi) answer
overlap (LLM-measured), and (vii) fluency (LLM-
measured). We use GPT-4o as the judge to evaluate
our pairwise RAG comparisons on a smaller sub-
set consisting of 100 queries. Next, we train a
random forest model as a surrogate judge, using
the heuristic features as input, and learn to output
the Bradley-Terry model logits as output. Finally,
during inference, we use our surrogate judge to
produce a “synthetic” ranking leaderboard for all
baselines across every language.

More specifically, we ask the following research
questions in our work:

• Can we avoid the LLM as a judge cost and
combine heuristic-based evaluation?

• How do frontier multilingual-focused LLMs
perform in multilingual answer generation?

• Does fine-tuning on MIRAGE-BENCH training
dataset improve LLM performance?

Our experimental results show that: (i) random
forest model (surrogate judge) learned rankings
highly correlates with GPT-4o as a judge, achiev-
ing an average Kendall-Tau (ω ) score of 0.909. (ii)
proprietary and large open-source LLMs (→70B
parameters) achieve the topmost ranks in the MI-
RAGE-BENCH leaderboard. (iii) MIRAGE-BENCH

training data, synthetically constructed using GPT-
4o, is beneficial to improve smaller open-source
LLMs (7–8B parameters). The main contribution
of work is building MIRAGE-BENCH and bench-
mark 19 frontier multilingual LLMs to accelerate
development in the area of multilingual RAG.
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ar bn de en es fa fi fr hi id ja ko ru sw te th yo zh

MIRAGE-BENCH Evaluation Dataset

# Queries 1501 411 304 787 617 632 1183 343 350 939 797 213 1247 481 150 730 119 391
# Avg. Query Tokens 10.2 17.6 10.4 9.1 11.4 14.1 12.2 10.4 17.3 10.1 14.6 14.2 14.3 12.0 16.1 19.6 13.0 8.0

Avg. Rel. Passages / Q 2.0 2.1 2.6 2.8 4.3 2.1 2.0 2.1 2.1 3.1 2.2 2.6 2.8 1.9 1.2 1.8 1.2 2.5
Avg. Non Rel. Passages / Q 8.1 8.0 7.7 7.7 5.6 8.3 8.1 7.9 7.8 7.0 8.2 11.8 7.6 8.7 4.9 8.5 8.8 7.5

MIRAGE-BENCH Training Dataset

# Queries 3468 1624 — 2857 2159 2104 2878 1137 1165 4054 3466 859 4567 1866 3283 2965 — 1311
# Avg. Query Tokens 10.2 17.4 — 8.7 11.2 14.2 11.8 10.4 17.1 9.9 14.5 14.9 14.3 12.0 16.1 19.3 — 7.9

Avg. Rel. Passages / Q 1.8 2.3 — 2.5 3.6 2.0 1.7 2.0 2.0 2.9 1.9 2.1 2.0 1.4 1.2 1.6 — 2.3
Avg. Non Rel. Passages / Q 5.5 7.9 — 7.5 5.3 8.3 5.3 8.0 7.9 7.1 7.9 12.4 5.2 3.5 4.3 5.6 — 7.6

# Avg. GPT-4o Context Tokens 105.5 144.5 — 137.9 203.4 133.8 129.4 180.1 149.4 100.8 140.2 136.4 90.0 106.4 54.6 86.0 — 137.9
# Avg. GPT-4o Answer Tokens 35.7 22.9 — 20.6 55.3 51.6 30.3 56.0 26.6 22.6 24.1 23.9 16.1 18.4 11.4 20.4 — 40.6

Table 1: Dataset statistics for 18 languages in MIRAGE-BENCH; All tokens are calculated using the GPT-4o
tokenizer (OpenAI, 2023); (Rel.) denotes relevancy; (# Avg GPT-4o) counts the tokens in the GPT-4o generated
context and answer; Training data is not available for two languages (denoted by —): German (de) and Yoruba (yo).

2 Related Work

Prior work on RAG evaluation has been conducted
exclusively in English. For example, benchmarks
such as ALCE (Gao et al., 2023a), FreshLLM (Vu
et al., 2024), ClapNQ (Rosenthal et al., 2025),
HAGRID (Kamalloo et al., 2023) and CRAG
(Yang et al., 2024b), all include long-form answers
for English-only queries and are based on collec-
tions containing documents from either the English
Wikipedia, MS MARCO (Bajaj et al., 2016) or NQ
(Kwiatkowski et al., 2019). Similarly, TREC 2024
RAG, a TREC competition for RAG evaluation is
focused on evaluating queries in English.2

Multilingual RAG. On the multilingual side, RAG
has not been well studied in prior literature. The
RGB benchmark (Chen et al., 2024c) is limited in
language scope covering only one additional lan-
guage: Chinese (zh). NeuCLIR 2024 track (May-
field et al., 2024) evaluates long-form report gener-
ation from participants, but is limited to three lan-
guages. A concurrent work is BERGEN (Chirkova
et al., 2024), which evaluates the multilingual open-
domain QA setting on 13 languages. In contrast,
in MIRAGE-BENCH, we (i) evaluate the generation
task in the multilingual RAG pipeline on 18 lan-
guages, (ii) provide multilingual instruction-tuned
data for RAG fine-tuning, and (iii) utilize high-
quality native-speaker multilingual queries gener-
ated in MIRACL (Zhang et al., 2023).

Learning to rank. A supervised learning tech-
nique, where models are trained to rank items
within a list similar to training data (Liu, 2010;
Turnbull, 2017). Models are trained in either a
pointwise, pairwise, or listwise objective (Cao
et al., 2007). In our work, we experiment with
simple models such as random forest to train to

2TREC 2024 RAG: https://trec-rag.github.io/

rank the Bradley-Terry model coefficient produced
by LLM as a judge. We keep complex models such
as LambdaMART (Burges, 2010) for future work.

3 An Overview of MIRAGE-BENCH

We select 18 languages in MIRAGE-BENCH as the
starting point, representing an appropriate cross-
section of the diversity of the languages spoken
worldwide at this point. MIRAGE-BENCH is a com-
prehensive multilingual RAG benchmark focusing
on the generation task evaluation. As shown in
Table 1, the benchmark includes 11,195 evaluation
pairs and 39,763 training pairs across 18 languages.

3.1 Distinction and Extension from MIRACL

MIRACL introduced in Zhang et al. (2023) is a
monolingual retrieval dataset, which evaluates the
retrieval task, i.e., given a user query and a pas-
sage corpus, retrieve the ranked list of passages as
output. MIRACL contains human-annotated rele-
vance judgments to evaluate retrieval and re-ranker
models, e.g., lexical models like BM25 (Robertson
and Zaragoza, 2009) or bi-encoders like mDPR
(Karpukhin et al., 2020), or late-interaction models
like ColBERT (Khattab and Zaharia, 2020).

In contrast, MIRAGE-BENCH evaluates the gen-
eration task in RAG, requiring LLMs to generate
a summarized answer given the query and context
available from oracle-judged passages. In our work,
we reuse the queries and relevance-judgments from
MIRACL, but solely evaluate the multilingual gen-
eration task in RAG measuring answers using both
heuristics and LLM as a judge. Since MIRAGE-
BENCH evaluates the generation task containing
the oracle context, independent of the retrieval task,
the chances of contamination in MIRAGE-BENCH

evaluation from fine-tuning MIRACL is less overall.
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3.2 MIRAGE-BENCH Evaluation Dataset

MIRACL queries are high-quality and generated by
native speakers (Zhang et al., 2023). The annota-
tion procedure in MIRACL is identical to TyDI-QA
(Clark et al., 2020). The passage collection is con-
structed from language-specific Wikipedia corpora
and parsed using WikiExtractor. The MIRAGE-
BENCH evaluation dataset is constructed re-using
the queries and oracle-judged passages available in
the MIRACL development split.3

We incorporate two changes: (i) In Arabic (ar),
we randomly sample a smaller subset of 1,501 out
of 2,896 queries for uniformity in the number of
queries available across other languages. (ii) We
filter out a small subset of queries with zero non-
relevant passages, i.e., we always include queries
with hard passages from MIRACL to make the MI-
RAGE-BENCH evaluation challenging.4

3.3 MIRAGE-BENCH Training Dataset

The MIRAGE-BENCH training dataset is developed
from the MIRACL training dataset (Zhang et al.,
2023). In MIRAGE-BENCH, we reuse all the MIR-
ACL training pairs available in 16 languages (except
German (de) and Yoruba (yo)) and convert it us-
ing a simple recipe into a multilingual instruction-
tuned RAG dataset (Zhang et al., 2024; Niu et al.,
2024). In our recipe, we first keep only the rele-
vant passages as context along with the input query
to generate a zero-shot RAG output by prompting
strong teachers such as GPT-4o (OpenAI, 2023),
Llama 3 (70B) (Dubey et al., 2024) and Mixtral
(8↑22B) (Jiang et al., 2024). After generation, we
include non-relevant passages within our prompt as
“distracting and noisy context”, to help improve the
quality of the training dataset. Since we convert a
retrieval dataset, we do not have human-annotated
answers for questions in MIRAGE-BENCH.

4 Multilingual RAG Evaluation

4.1 Heuristic-based Evaluation

Answer generation in RAG requires evaluation on
various dimensions. For example, whether a sys-
tem’s response provides the correct final answer or
cites the relevant documents, a single metric alone
is not sufficient to capture the comprehensive evalu-

3We did not utilize the test split in MIRACL as the relevance
judgments are not publicly available.

4An exception is Telugu (te), where 78 queries have at least
one non-relevant passage. Therefore, we randomly sample
72 additional queries with only relevant judged passages.

ation required for RAG systems. Inspired by other
recent works (Kiela et al., 2021; Santhanam et al.,
2023; Gao et al., 2023a), we introduce five deter-
ministic features and two LLM-measured features
for evaluation in our work. We rely on features that
are explainable, cheap, and fast to compute. We
explain each heuristic feature in Appendix A.

Language detection. We compute the probability
of a system’s response in the required target lan-
guage with langid (Lui and Baldwin, 2012). We
compute two metrics: language detection (target
language) and English detection.

Citation quality. Using passage-level relevance
judgments for all queries (or qrels) information
available in MIRACL, we evaluate whether the sys-
tem’s response cites the relevant passages, crucial
for measuring faithfulness. We compute and evalu-
ate: Recall@k and MAP@k, where k = 10, as we
have a maximum of 10 passages per query.

Support. Grounding is necessary to avoid halluci-
nations in the system’s response. Support evalua-
tion (Gao et al., 2023a) checks whether each sen-
tence is supported by cited passages using a multi-
lingual NLI model (He et al., 2023).5 We compute
the probability of the entailment and neutral score,
macro-averaged across the sentence-citation pairs.

Reranker score. The reranker score measures the
average similarity (can be greater than 1.0) between
the query and the passages cited within the system’s
response. We compute the reranker score using
a multilingual reranker model,6 macro-averaged
across the query-passage pairs.

Answer overlap. Having the correct answer is cru-
cial in the RAG system’s response. Since MIRAGE-
BENCH does not include a human-labeled answer,
we use the generated answer from GPT-4 (OpenAI,
2023) as the gold truth. We compute two traditional
metrics: SacreBLEU (Papineni et al., 2002) and
ROUGE-L (Lin, 2004) measuring the lexical word
overlap between the gold answer (GPT-4’s answer
is used for reference) and the system’s response.

Answer overlap (LLM-measured). In addition,
we evaluate using Llama-3 (8B) (Dubey et al.,
2024), an open-source LLM as a judge evaluator in
a pointwise setup, providing a semantic word over-
lap integer score in the range [1, 5]. The answer
overlap prompt description is listed in Figure 11.

5MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-
2mil7

6Reranker (Chen et al., 2024b): BAAI/bge-reranker-v2-m3
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Figure 3: Lollipop plots denoting the average heuristic-based feature scores achieved by LLM baselines for each
language in MIRAGE-BENCH. x-axis denotes the 18 languages; whereas y-axis plots every heuristic feature score.
Models in the same LLM family are represented in the same color in a lollipop (as multiple circles). Figure 9 in the
Appendix provides lollipop plots for all eleven heuristic-based features used in our work.

Fluency (LLM-measured). It measures for gram-
matical correctness and idiomatic word choices in
the system’s response. As previously mentioned,
we use Llama-3 (8B) (Dubey et al., 2024) in a point-
wise setup, proving an integer score in [1, 5]. The
fluency prompt description is listed in Figure 12.

4.2 Arena-based Evaluation

Heuristic-based evaluation metrics often rely on a
gold standard for evaluation. Tasks such as text
retrieval (Bajaj et al., 2016; Thakur et al., 2021)
require human-labeled relevance judgments, and
similarly, NLP tasks such as machine translation
(Stahlberg, 2020), require human-annotated trans-
lations. As human preferences are seldom available
in numerous applications, using LLM as a judge
(Zheng et al., 2023; Chen et al., 2024a; Chiang
et al., 2024) is becoming a de facto approach for
arena-based evaluation of LLMs.

We evaluate pointwise, listwise, and pairwise

LLM as judge evaluations. We anecdotally observe
the pointwise judge, which is efficient O(n), but
is not good for ranking LLMs as it provides sim-
ilar scores for a wide range of models (e.g., 4/5
score for 16 out of 18 LLMs evaluated). Similarly,
the listwise judge finds it difficult to rank all 19
models in the correct order. Therefore, although
suboptimal in complexity, O(n2), where n is the
number of models evaluated, we choose a pairwise
evaluation in our work.

Pairwise LLM as a judge. Following prior works
on arena-based evaluation in RAG (Rackauckas
et al., 2024; Pradeep et al., 2024a), we evaluate
two system’s responses in a head-on comparison
by computing pairwise judgments with LLM as
a judge. We reuse the RAGElo prompt template
(Rackauckas et al., 2024) with minor additions.
The prompt template is listed in Figure 13. LLM
as a judge evaluator includes three types of biases
(Zheng et al., 2023): (i) verbosity bias (Wu and
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Aji, 2025) (ii) self-enhancement bias (Xu et al.,
2024; Panickssery et al., 2024) and (iii) position
bias (Wang et al., 2024). We avoid the verbosity
bias, as RAG evaluation has fixed evaluation crite-
ria requiring sentence-level citations and answers
(Pradeep et al., 2024a) and the position bias by
randomly swapping the position of two models.

4.3 Learning to Approximate Rankings

There is no predefined way to aggregate the heuris-
tic features to provide an overall leaderboard rank-
ing in MIRAGE-BENCH. Averaging the scores is
too simplistic as features measure different aspects
of RAG evaluation. On the other hand, arena-
based evaluations provide ranked leaderboards but
are computationally expensive to compute with
a strong teacher model. To avoid computational
costs, smaller models as teachers have been pro-
posed (Thakur et al., 2024a; Ni et al., 2024).

Motivated by similar observations, we train a sur-
rogate judge to effectively emulate an arena-based
leaderboard without incurring the expensive LLM
as a judge pairwise cost. We find the random for-
est model to serve as a scalable and cost-effective
judge that can be trained within minutes on small
training datasets without expensive computation.
Therefore, we train a random forest (learning to
rank model) as a surrogate judge to approximate the
Bradley-Terry model coefficients (Hunter, 2004)
learned from an arena-based evaluation that uses
GPT-4o as a judge for pairwise judgments.

Learning to rank model. While the heuristic fea-
tures introduced in Section 4.1 can be computed
efficiently and without the reliance on proprietary
LLMs, inducing a ranking from pairwise com-
parisons via a Bradley-Terry model is computa-
tionally expensive and requires access to a high-
performance LLM. Furthermore, as we demon-
strate in Section 6.3, the ranking accuracy, mea-
sured by the Kendall-Tau (ω ) coefficient, degrades
rapidly when subsampling tournament matches.

The procedure, detailed in Algorithm 1, sim-
ulates Nt tournaments, each involving a total of
Nl models and Nq queries. For each query, judg-
ments are obtained for all

(
Nl
2

)
pairings of models.

We employ bootstrapping on the query selection
process to estimate the variance in the R2 metric
in the learning to rank models’ approximations
of the Bradley-Terry coefficients over a randomly-
sampled holdout set, LLMpredict.

We randomly select two models, Gemma 1.1

(2B) and Llama-3 (70B) as holdout models, i.e., we
do not train on the features for holdout models. For
English, we observe an average R̄2 = 0.971 with a
95% confidence interval of [0.905, 0.999]. On the
other hand, for Bengali, we observe R̄2 = 0.937
with a 95% confidence interval of [0.766, 0.998].
R̄2 scores for all 18 languages with 95% confidence
intervals are listed in Table 5. Taken together, these
results indicate that the training procedure is fairly
robust with Nq = 100.

Algorithm 1 Simulate Tournaments and Fit Models

1: for i ↓ [Nt] do
2: M i

BT ↔ TOURNAMENT(Nq)
3: Xt, Yt ↔ DATASET(LLMtrain, M i

BT )
4: Xp, Yp ↔ DATASET(LLMpredict, M

i
BT )

5: M i
reg ↔ FIT(Xt, Yt)

6: Ri
2 ↔ M i

reg(Xp, Yp)
7: end for
8: MBT ↔ [M1

BT ; M2
BT ; ...; MNt

BT ]
9: Mreg ↔ [M1

reg; M
2
reg; ...; M

Nt
reg]

10: R2 ↔ [R1
2; R

2
2; ...; R

Nt
2 ]

Note: Refer to Section 4.3 for a definition of each of the
variables. The TOURNAMENT function runs a battle arena,
sampling q queries, and returning the learned Bradley-Terry
model. The DATASET function accepts a set of LLMs and a
learned Bradley-Terry model. It returns X , the heuristic RAG
feature values, and Y , the Bradley-Terry coefficients for each
LLM model. After simulating Nt tournaments, the array R2

contains the R2 errors for each of the Nt models.

5 Experimental Settings

5.1 Multilingual Baselines
Existing frontier LLMs are either English-only or
support a limited set of languages, predominantly
due to the curse of multilinguality for large models
(Conneau et al., 2020). It is unclear how well ex-
isting LLMs perform on RAG on a wide variety of
languages, due to the scarce availability of multi-
lingual instruction tuning datasets. We experiment
with LLMs from seven different families, contain-
ing proprietary and open-source LLMs. Wherever
possible, we evaluate the instruction-tuned version
if available. Refer to Appendix B for more details.
• OpenAI: GPT-3.5-turbo, GPT-4, and GPT-4o

(OpenAI, 2023) using the Azure OpenAI service.
• Mistral: Mistral-Instruct-v0.2 and v0.3

(7B) (Jiang et al., 2023) and Mixtral-Instruct-
v0.1 (8↑7B) and (8↑22B) versions (Jiang et al.,
2024).

• Cohere: Command-R (35B), Command-R+
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Figure 4: MIRAGE-BENCH arena-based leaderboards: (left heatmap) Bradley-Terry model coefficients with GPT-4o
as a pairwise judge for a subset of 100 sampled queries; (right heatmap) Synthetic rankings using heuristic-based
features and a random forest model as a surrogate judge on all queries. Each highlighted cell denotes the rank of the
LLM (lower the better). LLMs are sorted by lowest to highest average rank across all 18 languages.

(104B) and Aya-23 (35B) (Aryabumi et al.,
2024).

• Gemma: Gemma 1.1 instruct (2B) and (7B)
models (Mesnard et al., 2024).

• Llama-3: Llama-3 instruct (8B) and (70B) mod-
els (Dubey et al., 2024).

• Phi-3: Phi 3 instruct series: Medium (14B),
Small (7B), and Mini (3.8B) (Abdin et al., 2024).

• Qwen-2: Qwen-2-instruct series: 1.5B and 7B
(Yang et al., 2024a).

Prompt template. We internally optimized7 the
ChatQA prompt template (Liu et al., 2024), to in-
clude in-text citations of the context passages fol-
lowing the IEEE format (Kamalloo et al., 2023). In
MIRAGE-BENCH, we have about 10 passages anno-
tated in the oracle setting. Therefore, we trim each
passage available and take the first 800 tokens to fit
all passages within a fixed context length of 8192
tokens. following prior work in Shi et al. (2023),
the prompt requires the LLM to explain the mul-
tilingual generation task starting with “##Reason”
and the answer itself starting with “##Answer”. Uti-
lizing this output format has its advantages in eas-
ily parsing the generated answer and the rationale
behind the answer. The prompt template for multi-
lingual generation is shown in Figure 10.

6 Experimental Results

6.1 Heuristic-based Results
Figure 3 shows lollipop plots indicating the average
heuristic-feature value (y-axis) distribution for each
7A majority of the prompt optimization was internal and based
on eye-balling RAG responses across LLMs.

Lang. ω Lang. ω Lang. ω Lang. ω

ar 0.951 bn 0.874 de 0.825 en 0.835
es 0.876 fa 0.924 fi 0.949 fr 0.914
hi 0.946 id 0.896 ja 0.892 ko 0.950
ru 0.849 sw 0.958 te 0.938 th 0.946

yo 0.906 zh 0.941

Avg. Kendall Tau (ω ) on 18 languages = 0.909

Table 2: Kendall ω rank correlation between pairwise
GPT-4o as a judge Bradley-Terry model and the syn-
thetic arena-based ranking leaderboard generated using
our surrogate judge in MIRAGE-BENCH.

language (x-axis). In English detection (higher the
worse), smaller LLMs such as Gemma-1.1 (2B) do
not generate output in the required target language
but rather generate reasoning and answers in En-
glish. For citation quality, support, and reranker
score features, LLMs from OpenAI and Llama-
3 family achieve high Recall@10 and entailment
scores (except Llama-3 (70B) for a few languages),
indicating generated answers include grounded ci-
tations from relevant passages. In contrast, LLMs
from the Qwen-2 or Gemma-1.1 family, tend to
under-cite passages in their answers.

Furthermore, we observe LLMs from the Ope-
nAI family achieve the highest word overlap in
the ROUGE-L metric (GPT-4 used as ground truth,
which could be a potential bias) and Llama-3 (8B)
as a judge, while we observe less variance across
other LLMs. In Fluency, we observe a majority of
the LLMs are rather fluent in generation, except
Bengali (bn), Telugu (te), and Yoruba (yo).
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Figure 5: Boxplot with the feature importance value
(averaged across 18 languages in MIRAGE-BENCH) ob-
served by the learning to rank (random forest) model.

6.2 Arena-based Results

Figure 4 (left heatmap) is the arena-based leader-
board with the Bradley Terry model conducting 200
tournaments and bootstrapping 100 matches per
tournament on a subset of 100 queries using GPT-
4o as a pairwise judge. We observe that proprietary
LLMs such as GPT-4o and GPT-4, and larger open-
source LLMs such as Llama-3 (70B) and Mixtral
(8↑22B) perform better than other LLMs. LLM
rankings across languages are usually stable; with
a few notable exceptions such as Gemma-1.1 (7B)
which achieves a rank of 4 in Telugu. Command R
(35B) performs poorly in low-resource languages
such as Bengali (rank 13) or Swahili (rank 14). The
complete scores including model coefficient log-
its and 95% confidence intervals (error bars) are
provided in Table 7 and Table 8 in the Appendix.

Synthetic rankings using random forest. Fig-
ure 4 (right heatmap) is the learned synthetic leader-
board rankings on all queries using heuristic-based
features trained with a random forest model. The
synthetic leaderboard generated using a surrogate
judge, highly correlates to the GPT-4o as a pair-
wise judge, achieving an average Kendall-Tau (ω )
rank correlation = 0.909, by training on 17 LLMs
during training and keeping 2 LLMs as a holdout
for every language. Individual language-specific
Kendall-Tau rank correlation scores are listed in
Table 2. This provides evidence of the efficacy
of training a random forest model as a surrogate
judge. In Appendix D, we extend the evaluation
for Llama-3.1 and Gemma-2 series of LLMs.

Heuristic feature importance. In Figure 5, we
plot the average feature importance achieved by our
random forest model as a surrogate judge. Using
Llama-3 (8B) as a judge, for fluency and answer
overlap are the important heuristic features. Simi-
larly, deterministic answer overlap and reranking-

Model / Language ar bn fi ja ko ru te

Train R2 on randomly selected fifteen models

Random Forest 0.97 0.96 0.97 0.96 0.97 0.95 0.97
Linear Regression 0.98 0.98 0.98 1.00 0.97 0.99 1.00
MLP Regressor 0.97 0.98 0.97 0.96 0.96 0.98 0.99
XGB Regressor 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SVR 0.75 0.77 0.81 0.59 0.67 0.73 0.39

Holdout R2 on four randomly selected held out models

Random Forest 0.50 0.41 0.49 -0.03 0.45 0.07 0.83
Linear Regression -1.92 -5.45 -19.38 -0.06 -26.53 -2.13 0.31
MLP Regressor 0.33 0.37 0.45 -0.76 -0.04 -0.48 0.78
XGB Regressor -0.02 0.44 0.22 -1.33 -0.09 -0.80 0.59
SVR -0.03 0.48 0.64 -0.53 -0.09 0.15 -0.10

Table 3: Train and Holdout R2 scores using different
learning to rank model choices. Each experiment has
been repeated 50 times with four held-out models.

based metrics are equally important. Some heuris-
tic features such as language detection, and neutral
score in support evaluation obtain the least impor-
tance. We observe all answer-related heuristic fea-
tures achieve a high importance indicating that the
generated “answer” portion in an LLM’s response
is crucial and required to learn rankings from GPT-
4o as a pairwise judge.

6.3 Ablations & Discussion

To better understand the gaps observed during train-
ing of the random forest model as a surrogate
judge, we conduct further ablations on a subset
of seven languages including Arabic (ar), Bengali
(bn), Finnish (fi), Japanese (ja), Korean (ko), Rus-
sian (ru) and Telugu (te):

Learning to rank model choice. We compare
different learning to rank models as choices for
learning the Bradley-Terry model coefficients. We
conduct our experiments on the train set, where
models contain pairwise judgments, and on a ran-
domly sampled holdout set, a realistic scenario,
with no available training data. We evaluate the
following choices: Random Forest, Linear Regres-
sion, MLP Regressor, XGB Regressor, and SVR.
All models are implemented via scikit-learn.8

The results are shown in Table 3. Random forest
achieves the best R2 metric on the holdout sub-
set for 4 out of 7 languages. SVR also achieves a
similar R2 metric on the holdout subset, however,
underperforms random forest on the training subset.
Other baselines, such as XGB Regressor and MLP
Regressor show signs of significant overfitting on
the training subset, thereby underperforming ran-
dom forest on the holdout subset.

8https://scikit-learn.org/stable/supervised_learning.html
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Figure 6: Sampling experiments to reduce computation
cost. (left) reduces the number of queries whereas (right)
reduces the pairwise judgments.

Features / Language #F ar bn fi ja ko ru te

(All) Features 11 0.938 0.867 0.921 0.881 0.921 0.826 0.918
(W/o) LLM as a Judge 9 0.912 0.866 0.898 0.853 0.891 0.811 0.904
(W/o) Low. Correlation 7 0.951 0.867 0.923 0.885 0.929 0.829 0.940
(Only) LLM as a Judge 2 0.948 0.728 0.907 0.884 0.916 0.851 0.872

Table 4: Kendall Tau (ω ) scores using different features
for training the random forest regression model.

Non-exhaustive pairwise comparisons lead to
performance degradation. Exhaustive pairwise
comparisons across a subset of 19 models in MI-
RAGE-BENCH using GPT-4o for all queries are
quite expensive. To avoid this, we investigate
whether all pairwise exhaustive comparisons are
necessary during training. We utilize two sampling
techniques: (i) full pairwise judgments on a sub-
sample of 100 queries, e.g., 20 or 50 queries; (ii)
partially judge a non-exhaustive random sample
of the pairwise judgments across 100 queries, e.g.,
only 50% of all the exhaustive pairwise combi-
nations. Both results are shown in Figure 6. we
observe that Kendall-Tau (ω ) correlations increase
linearly with queries and pairwise judgments. In
summary, an exhaustive pairwise comparison and a
sufficient number of queries, such as 100, are nec-
essary without impacting the leaderboard rankings.

All heuristic features are not necessary. We
experiment with features used for random forest
model training as a surrogate judge. We evalu-
ate four training configurations: (i) all features
(ii) without LLM-measured features (iii) with-
out language detection and support, i.e., the low-
correlation features observed in Figure 5, and (iv)
including only LLM-measured features. From Ta-
ble 4, we observe that removing low-correlated
heuristic RAG features helps train the random for-
est model better leading to a conclusion that not
necessarily all heuristic features are important. Re-
moving the LLM-measured features completely or
only using them for training the model decreases
the Kendall-Tau (ω ) correlation score.

Figure 7: Approximate rankings using heuristic features
after fine-tuning Llama-3 (8B) and Mistral-v0.2 (7B) on
MIRAGE-BENCH dataset across four configurations.

Fine-tuning on MIRAGE-BENCH training data.
We evaluate three variants of the MIRAGE-BENCH

training dataset using two smaller open-source
LLMs: Mistral-v0.2 (7B) and Llama-3 (8B). We
fine-tune the MIRAGE-BENCH training datasets
using (i) both on GPT-4o, (ii) Llama-3 (8B) on
Llama-3 (70B), and (iii) Mistral-v0.2 (7B) on Mix-
tral (8↑22B). From Figure 7, we observe that GPT-
4o is a strong teacher, Mistral-v0.2 (7B) fine-tuned
on GPT-4o distilled training data achieves rank 2
outperforming Llama-3 (70B). This shows that MI-
RAGE-BENCH training data is useful for improving
the RAG answer generation task quality.

7 Conclusion

We present MIRAGE-BENCH, a multilingual RAG
benchmark for 18 languages aimed at evaluating
the multilingual generation part within RAG and
aggregate traditional heuristic-based features to
train a lightweight learning to rank model as a sur-
rogate judge to learn a Bradley Terry model with
GPT-4o pairwise judgments. Our results indicate a
strong correlation between our surrogate judge and
GPT-4o as a pairwise judge. This demonstrated the
effectiveness of our efficient, cheap, and easy-to-
retrain random forest model as a surrogate judge
trained using only computationally cheap heuris-
tic features for arena-based leaderboard ranking
by achieving a 0.909 Kendall ω . On MIRAGE-
BENCH, we observe that most proprietary and open-
source larger LLMs currently dominate, whereas
smaller open-source LLMs continue to struggle.
Instruction tuning on MIRAGE-BENCH training
data helps improve smaller open-source LLMs, e.g.
instruction-tuned Mistral-v0.2 (7B) on GPT-4o dis-
tilled training data can outperform Llama 3 (70B)
on MIRAGE-BENCH.
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8 Limitations

MIRAGE-BENCH is one of the first large-scale mul-
tilingual RAG benchmarks. Although not perfect,
we below discuss a set of limitations in our work:
• In MIRAGE-BENCH, we focused on benchmark-

ing the generation task in RAG with oracle pas-
sages, we did not consider the retrieval task and
its error propagating on the generation task.

• Due to budget constraints, we were unable
to evaluate diverse LLMs as teachers such as
Claude-3.5 (sonnet) (Anthropic, 2024) or Gem-
ini Pro (Anil et al., 2023). We evaluated using
GPT-4o which can cause self-enhancement bias
towards LLMs in the OpenAI family.

• In our heuristic evaluation, we only considered
a smaller subset of features. We did not explore
more recent hand-crafted features such as nugget-
based recall and precision (Pradeep et al., 2024b;
Farzi and Dietz, 2024; Arabzadeh and Clarke,
2024; Lin and Demner-Fushman, 2005).

• Lastly, MIRAGE-BENCH does not provide
human-labeled answers for queries across all lan-
guages and is limited to Wikipedia as the source.
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A Heuristic-based Evaluation: Features
& Additional Details

1. Language Identification: In a multilingual
RAG system, the output response should ideally be
in the same language in which the user asked their
query. To capture this feature, we attempt to iden-
tify which natural language the output response is
in. We use langid (Lui and Baldwin, 2012), an
off-the-shelf language detecting Python library for
detecting the language of the long-form RAG an-
swer. We use the probability of the target language
detected as the score for language identification,
i.e., p̂ = langid(a, t), where t denotes the target
language and a denotes the long-form answer.

2. Citation Quality: A multilingual RAG sys-
tem must cite information from the relevant pas-
sages within their answers, to improve faithfulness
and reduce hallucinations. We capture whether the
passages (using relevance judgments provided in
MIRACL (Zhang et al., 2023)) are cited in the mul-
tilingual generation task. For scoring, we compute
the Recall@k and MAP@k score, where Recall@k
is 1.0 for a generated answer a, if and only if a
cites all available relevant passages, Similarly, the
MAP@10 score measures the percentage of rele-
vant passages within the top-k cited passages.

3. Support: RAG systems have been shown to
hallucinate across retrieval-augmented generation
tasks, especially when provided with non-relevant
contexts (Thakur et al., 2024b). Grounding is nec-
essary to avoid hallucinations. We compute the
grounding score of every sentence sj in generated
answer A along with the cited context cj using the
multilingual NLI model, which computes the sim-
ilarity score as a probability of either entailment,
neutral or contradiction. The entailment denotes
the generated sentence in the long-form answer,
which entails the cited passage within its response.

4. Reranker Score: The reranker score measures
the semantic similarity between the user query and
the cited passages in the system’s response. If the
cited passages are relevant in answering the query,
the reranker model would output a higher similar-
ity score. We utilize a multilingual open-source
reranker, namely BGE-M3 for our evaluation. We
compute the reranker score across each cited pas-
sage pj

i included in the long-form answer along
with the user query qi.

5. Answer Overlap: Existing open-domain ques-
tion answering datasets such as Natural Questions

(Kwiatkowski et al., 2019), HotpotQA (Yang et al.,
2018) or ELI5 (Fan et al., 2019) all include a
human-labeled answer, assisting in evaluation us-
ing text overlap metrics such as Exact Match (EM)
or F1. However, user queries in RAG systems
potentially generate long-form answers, requiring
metrics such as SacreBLEU or ROUGE-L to eval-
uate text-generation tasks. Automatic metrics are
fairly quick and cheap to compute. For this reason,
we include two metrics, SacreBLEU and ROUGE-
L, for evaluating the RAG-generated answer. As
we do not have human-labeled answers in MIRAGE-
BENCH, we consider the GPT-4 generated answer
as the gold truth for evaluation.

6. Answer overlap (LLM-measured): To cap-
ture semantic overlap between answers, we use the
Llama-3 (8B) model as the judge for evaluation
in a pointwise setup, where the LLM as a judge
outputs a score between 1 to 5.
7. Fluency (LLM-measured): Fluency measures
for grammatical correctness and idiomatic word
choices in long-form answer generation. Evaluat-
ing fluency in multilingual long-form generation
answers is not straightforward. While existing tech-
niques are available for English such as MAUVE
(Pillutla et al., 2021), only a few models evaluate
multilingual summarization (Clark et al., 2023).
Inspired by recent works in G-EVAL (Liu et al.,
2023), we evaluate fluency using open-source LLM
such as Llama-3 (8B) as the judge. Our reason for
choosing open-source models lies in reducing the
expense, of running an expensive proprietary LLM
such as GPT-4. Our LLM as a judge setup outputs
a score between 1 to 5.

B Baselines: Additional Details

In this section, we briefly describe each of the 19
multilingual-focused models utilized in our MI-
RAGE-BENCH evaluation experiments:

1. GPT-3.5-turbo: (OpenAI, 2023) is evaluated
using the Azure OpenAI service.9 We set the
temperature parameter to 0.1 for a deterministic
output. It utilizes the cl100k_base BPE-based
tokenizer in the tiktoken10 repository.

2. GPT-4: (OpenAI, 2023) is also evaluated using
the Azure OpenAI service. We use a tempera-
ture setting of 0.1 for a deterministic output and
the cl100k_base BPE-based tokenizer.

9https://learn.microsoft.com/en-us/azure/ai-services/openai/
10https://github.com/openai/tiktoken
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3. GPT-4o: (OpenAI, 2023) is also evaluated us-
ing the Azure OpenAI service. We use a tem-
perature setting of 0.1 for a deterministic output
and the o200k_base BPE-based tokenizer.

4. Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)
is the v0.2 of the instruct-version model con-
taining 7B parameters.11 It is an English-centric
model, i.e., not instruction fine-tuned with any
multilingual data. We used the multiple GPU in-
ference using the vllm repository (Kwon et al.,
2023). We set the temperature parameter to 0.1.

5. Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) is
an extension of the instruct-version 0.2 model
containing 7B parameters.12 We set inference
parameters similar to the previous model.

6. Mixtral-8↑7B-Instruct-v0.1 (Jiang et al.,
2024) is a pretrained generative sparse Mixture
of Experts (MoE), containing 8↑7B parame-
ters. It has been pretrained in 5 languages in-
cluding English, French, Italian, German, and
Spanish.13 As the model is computationally not
feasible to evaluate due to resource constraints,
We use the model API endpoint available in the
Anyscale platform (https://www.anyscale.com/),
with a temperature setting of 0.1.

7. Mixtral-8↑22B-Instruct-v0.1 (Jiang et al.,
2024) is a pretrained generative sparse Mixture
of Experts (MoE), containing 8↑22B param-
eters. Similar to before, it has pretrained on
5 languages including English, French, Italian,
German, and Spanish.14 We utilize the model
API endpoint available in the Anyscale platform
(https://www.anyscale.com/), with a tempera-
ture setting of 0.1.

8. Command R is developed keeping RAG in
mind and officially supports 11 languages: Ara-
bic, Brazilian, Portuguese, English, French, Ger-
man, Italian, Japanese, Korean, Chinese, and
Spanish. The model contains 35 billion param-
eters.15 We utilize the model API available in
the Cohere platform (https://cohere.com/), with
a temperature setting of 0.1, and using the chat
template format.

9. Command R+ is also developed keeping RAG
in mind and officially supports 10 languages:
English, French, Spanish, Italian, German,
Brazilian Portuguese, Japanese, Korean, Arabic,

11mistralai/Mistral-7B-Instruct-v0.2
12mistralai/Mistral-7B-Instruct-v0.3
13mistralai/Mixtral-8x7B-Instruct-v0.1
14mistralai/Mixtral-8x22B-Instruct-v0.1
15CohereForAI/c4ai-command-r-v01

and Chinese. The model contains 105 billion pa-
rameters.16 We utilize the model API available
in the Cohere platform (https://cohere.com/),
with a temperature setting of 0.1, and using the
chat template format.

10. Aya-23-35B (Aryabumi et al., 2024) is an in-
struction fine-tuned model with highly advanced
multilingual capabilities. The model officially
supports 23 languages: Arabic, Chinese (sim-
plified & traditional), Czech, Dutch, English,
French, German, Greek, Hebrew, Hindi, Indone-
sian, Italian, Japanese, Korean, Persian, Polish,
Portuguese, Romanian, Russian, Spanish, Turk-
ish, Ukrainian, and Vietnamese. The model
contains 35 billion parameters.17 We utilize
the model API available in the Cohere platform
(https://cohere.com/), with a temperature setting
of 0.1, and using the chat template format.

11. Gemma 1.1 (2B) it (Mesnard et al., 2024) is
an instruction fine-tuned model trained using
the RLHF method containing 2 billion param-
eters.18 We used the multiple GPU inference
using the vllm repository (Kwon et al., 2023).
We set the temperature parameter to 0.1.

12. Gemma 1.1 (7B) it (Mesnard et al., 2024) is
an instruction fine-tuned model trained using
the RLHF method containing 7 billion param-
eters.19 We used the multiple GPU inference
using the vllm repository (Kwon et al., 2023).
We set the temperature parameter to 0.1.

13. Meta-Llama-3-8B-Instruct (Dubey et al.,
2024) is an English-only instruction fine-tuned
model containing 8 billion parameters.20 We
used the multiple GPU inference using the vllm
repository (Kwon et al., 2023). We set the tem-
perature parameter to 0.1.

14. Meta-Llama-3-70B-Instruct (Dubey et al.,
2024) is an instruction fine-tuned model con-
taining 70B parameters.21 As the model is com-
putationally not feasible to evaluate due to
resource constraints, We use the model API
endpoint available in the Anyscale platform
(https://www.anyscale.com/), with a tempera-
ture setting of 0.1.

15. Phi-3 (mini) (Abdin et al., 2024) is an English-
focused instruction fine-tuned model trained

16CohereForAI/c4ai-command-r-plus
17CohereForAI/aya-23-35B
18google/gemma-1.1-2b-it
19google/gemma-1.1-7b-it
20meta-llama/Meta-Llama-3-8B-Instruct
21meta-llama/Meta-Llama-3-70B-Instruct
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model containing 3.8 billion parameters.22 We
used the multiple GPU inference using the vllm
repository (Kwon et al., 2023). We set the tem-
perature parameter to 0.1.

16. Phi-3 (small) (Abdin et al., 2024) is a mul-
tilingual instruction fine-tuned model trained
model containing 8 billion parameters.23 There
is no available information on the number of
languages covered by the model. We used the
multiple GPU inference using the vllm reposi-
tory (Kwon et al., 2023). We set the temperature
parameter to 0.1.

17. Phi-3 (medium) (Abdin et al., 2024) is a mul-
tilingual instruction fine-tuned model trained
model containing 14 billion parameters.24 There
is no available information on the number of
languages covered by the model. We used the
multiple GPU inference using the vllm reposi-
tory (Kwon et al., 2023). We set the temperature
parameter to 0.1.

18. Qwen2-1.5B-Instruct (Yang et al., 2024a) is
an English-focused instruction fine-tuned model
trained model containing 1.5 billion parame-
ters.25 We used the multiple GPU inference us-
ing the vllm repository (Kwon et al., 2023). We
set the temperature parameter to 0.1.

19. Qwen2-7B-Instruct (Yang et al., 2024a) is an
English-focused instruction fine-tuned model
trained model containing 7 billion parame-
ters.26 We used the multiple GPU inference us-
ing the vllm repository (Kwon et al., 2023). We
set the temperature parameter to 0.1.

C MIRAGE Fine-tuning Details

For multilingual RAG fine-tuning, we use teacher
models to distill synthetic knowledge directly
within smaller open-source models. We first gener-
ate RAG outputs on the MIRAGE-BENCH training
dataset using three high-performing teacher mod-
els: (i) GPT-4o, (ii) Llama-3 (70B), and (iii) Mix-
tral (8↑22B), and generate RAG output for queries
in MIRAGE-BENCH training dataset using only rel-
evant passages, i.e., without distracting the model
with information from non-relevant passages. We
filter out the teacher model responses and curate
them to create the training dataset.

Next, using supervised fine-tuning (SFT) with
22microsoft/Phi-3-mini-128k-instruct
23microsoft/Phi-3-small-8k-instruct
24microsoft/Phi-3-medium-128k-instruct
25Qwen/Qwen2-1.5B-Instruct
26Qwen/Qwen2-7B-Instruct

LoRA (Hu et al., 2022), we fine-tune two open-
source models: (i) Llama-3 (8B) and (ii) Mistral-
v0.2 (7B). Our hyperparameter choices are listed
in Table 6. We use PEFT (Mangrulkar et al., 2022)
and the alignment-handbook27 (Tunstall et al.,
2023) for supervised LoRA fine-tuning. We fine-
tune four variants of models: (i) Mistral-v0.2 (7B)
distilled using GPT-4o as a teacher, (ii) Mistral-
v0.2 (7B) distilled using Mixtral (8↑22B) and it-
self as a teacher, (iii) Llama-3 (8B) distilled using
GPT-4o as a teacher, and (iv) Llama-3 (8B) distilled
using Llama-3 (70B) and itself as a teacher. After
fine-tuning, first all heuristic features are computed,
using the already trained learning to rank model
(using the baselines) is used to compute inference
for the fine-tuned models and compared against
upper-bound baselines, GPT-4o, Llama-3 (70B),
and Mixtral (8↑22B) and lower-bound baselines,
Mistral-v0.2 (7B) and Llama-3 (8B).

D Extending MIRAGE Evaluation

As a holdout experiment, we evaluate newer ver-
sions of models, (i) Llama-3.1 series (Dubey et al.,
2024): Llama-3.1 (8B)28 and Llama-3.1 (70B)29

instruct versions, and (ii) Gemma-2 series (Team
et al., 2024): Gemma-2 (9B)30 and Gemma-2
(27B)31 instruct versions. For both models, we
used the API versions of the model provided by
NVIDIA (https://build.nvidia.com/) by setting the
temperature parameter to 0.1. The maximum se-
quence length of Gemma-2 models is 4096 tokens.

Experimental results. From Figure 8, we observe
that the Gemma-2 (27B) and Llama-3.1 (70B) are
strong baselines, by achieving an overall rank of
4 and 5 in the MIRAGE-BENCH dataset. Gemma-
2 (27B) improves the previously best Gemma-1.1
(7B) by 13 ranks, whereas Llama-3.1 (70B) con-
tinues to underperform the best Llama-3 (70B) by
2 ranks. These results indicate newer models are
improving, as reported using the surrogate judge
on the synthetic MIRAGE-BENCH leaderboard.

27https://github.com/huggingface/alignment-handbook
28meta-llama/Meta-Llama-3.1-8B-Instruct
29meta-llama/Meta-Llama-3.1-70B-Instruct
30google/gemma-2-9b-it
31google/gemma-2-27b-it
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Lang. Mean 95% CI Lang. Mean 95% CI Lang. Mean 95% CI

ar 0.916 -0.15 / +0.07 bn 0.937 -0.17 / +0.06 de 0.939 -0.14 / +0.05
en 0.971 -0.07 / +0.03 es 0.844 -0.12 / +0.09 fa 0.944 -0.22 / +0.05
fi 0.957 -0.07 / +0.04 fr 0.861 -0.15 / +0.09 hi 0.858 -0.26 / +0.13
id 0.793 -0.17 / +0.12 ja 0.892 -0.13 / +0.08 ko 0.941 -0.13 / +0.06
ru 0.968 -0.11 / +0.03 sw 0.973 -0.06 / +0.03 te 0.929 -0.16 / +0.07
th 0.902 -0.12 / +0.09 yo 0.709 -0.22 / +0.16 zh 0.954 -0.09 / +0.05

Table 5: R̄2 mean scores with 95% confidence interval with bootstrapping across all languages in MIRAGE-BENCH.
We randomly kept two models as holdout in our work: Gemma 1.1 (2B) and Llama-3 (70B).

Hyper-parameter Choice

Attention FlashAttention-2 (Dao, 2024)
Batch Size 32

Epochs 1
Learning Rate 2e-4

Max Sequence Length 6144
Lora rank (r) 16

Lora alpha (ε) 16
Lora dropout 0.05
Lora Modules [q_proj, k_proj, v_proj,

o_proj, gate_proj, up_proj,
down_proj]

Table 6: Hyperparameter settings set during supervised fine-tuning of Mistral-v0.2 (7B) and Llama-3 (8B) on the
MIRAGE-BENCH training dataset.

Figure 8: Approximate rankings using heuristic features including the newer models, Llama-3.1 (Dubey et al.,
2024) and Gemma-2 (Team et al., 2024) on MIRAGE-BENCH dataset across all 18 languages. Gemma-2 (27B) and
Llama-3.1 (70B) achieve a strong rank of 4 and 5 respectively in the MIRAGE-BENCH evaluation dataset.
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Figure 9: Lollipop plots denoting the average heuristic-based feature scores achieved by baselines in MIRAGE-
BENCH for all eleven heurisitc-based features. x-axis denotes the languages in MIRAGE-BENCH; whereas y-axis
plots every heuristic feature value. Multiple LLMs in the same family are represented as a single color lollipop
(multiple circles).
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Question:
What was the first newspaper ever printed in the U.K.?

Contexts:
"[36897421#2]" Lögberg-Heimskringla - The very first newspaper to be published in North America
by the Icelandic immigrant population was handwritten by Jon Gudmundsson in 1876 ...
"[1965416#2]" The New York Times Magazine - Its first issue was published on September 6, 1896,
and contained the first photographs ever printed in the newspaper...
"[662134#6]" Letterpress printing - Letterpress printing was introduced in Canada in 1752 in
Halifax, Nova Scotia by John Bushell in the newspaper format. This paper was named the Halifax
Gazette and became Canada’s first newspaper ...

...

...

"[22112840#15]" Newspaper - The emergence of the new media in the 17th century has to be
seen in close connection with the spread of the printing press from which the publishing press
derives its name....

Instruction:
Provide an answer to the question using the information provided in contexts written in
{{language}}. Additionally, provide a step-by-step explanation of your reasoning, demonstrating
how you arrived at your answer in {{language}}. Cite parts of your reasoning within brackets []
using the IEEE format based on the provided contexts.
Please respond in {{language}} using the format: ##Reason: {reason} ##Answer: {answer}.

Figure 10: Prompt template for all baseline models for multilingual RAG generation for queries across all languages
in MIRAGE-BENCH. We include the language-specific query in MIRAGE-BENCH under “Question:”. Next, we
concatenate both relevant and non-relevant passages (randomly shuffled and truncated at maximum length) and
place them under “Contexts:”. Lastly, we provide our instruction in English asking the model to generate a response
in the required language under the placeholder “{{language}}”. The example above is shown for a query in English
(en) from MIRAGE-BENCH, where contexts are truncated ( ... ) for demonstration purposes.

You are an AI assistant. In the following task, you are given a Question, a RAG application’s
response, and a Ground-truth Answer referred to as ’Label’ in {{language}}. Assess how well the
RAG application’s response aligns with the Label, using the grading rubric below:

1: The response is not aligned with the Label or is off-topic; it includes hallucination.
2: The response admits it cannot provide an answer or lacks context; it is honest.
3: The response is relevant but contains notable discrepancies or inaccuracies.
4: The response is acceptable and sufficient but not exhaustive.
5: The response is fully accurate and comprehensive, based on the Label.

Treat the Label as the definitive answer. Present your final score in the format: "[[score]]",
followed by your justification in English. Example:
Score: [[3]] Justification: The response partially aligns with the Label but with some
discrepancies.

Question in {{language}}:
{{Question}}

Label in {{language}}:
{{Label}}

RAG Application Response in {{language}}:
{{Response}}

Treat the Label as the definitive answer. Present your final score in the format: "[[score]]",
followed by your justification in English.

Figure 11: Prompt template used by Llama-3 (8B) model as a judge to evaluate the answer overlap heuristic
feature. We include a grading rubric within the prompt template.{{Label}} is a placeholder for the gold truth answer
provided using the GPT-4; {{language}} is a placeholder for the target language; {{Question}} is a placeholder for
the MIRAGE-BENCH query; {{Documents}} is a placeholder for both MIRAGE-BENCH relevant and non-relevant
passages concatenated together; {{Response}} is a placeholder for RAG model output.
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You will be given one summary written for a question and documents from Wikipedia in {{language}}.
Your task is to rate the summary on one metric. Please make sure you read and understand these
instructions carefully. Please keep this document open while reviewing, and refer to it as needed.

Evaluation Criteria:
Fluency (1-5) - the collective quality of all sentences. We align this dimension with the DUC
quality question of structure and fluency whereby “the summary should be well-structured and
well-organized. The summary should not just be a heap of related information, but should build
from sentence to sentence to a coherent body of information about a topic.”

Evaluation Steps:
1. Read the question and Wikipedia documents in {{language}} carefully and identify the main topic
and key points.
2. Read the summary and check whether it answers the question. Check if the summary covers the
main topic and key points required to answer the question, and if it presents them in a clear and
logical order.
3. Assign a rating for fluency on a scale of 1 to 5 and provide an explanation, where 1 is the
lowest and 5 is the highest based on the Evaluation Criteria.

Example:
Question in {{language}}:
{{Question}}

Documents in {{language}}:
{{Documents}}

Summary:
{{Summary}}

Rate the fluency of the summary on a scale of 1 to 5 and explain your rating. Please
use the format of: ##Rating: {rating} ##Explanation: {explanation}.

Figure 12: Prompt template used by Llama-3 (8B) model as a judge to evaluate the fluency of a RAG response. We
first explain the criteria for evaluation and the model outputs an explanation and score between [1,5] indicating
the fluency of the output. {{language}} is a placeholder for the target language; {{Question}} is a placeholder for
the MIRAGE-BENCH query; {{Documents}} is a placeholder for both MIRAGE-BENCH relevant and non-relevant
passages concatenated together; {{Summary}} is a placeholder for RAG model output.
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Please act as an impartial judge and evaluate the quality of the responses provided by two AI
assistants tasked to answer the question displayed below, based on a set of documents retrieved
by a search engine.
You should choose the assistant that best answers the user question based on a set of reference
documents that may or not be relevant referenced in the IEEE format.

Your evaluation should consider factors such as the correctness, helpfulness, completeness,
accuracy, depth, and level of detail of their responses.

Details are only useful if they answer the user’s question. If an answer contains non-relevant
details, it should not be preferred over one that only uses relevant information.

Begin your evaluation by explaining why each answer correctly answers the user question.
Then, you should compare the two responses and provide a short explanation on their differences.
Avoid any position biases and ensure that the order in which the responses were presented does not
influence your decision. Do not allow the length of the responses to influence your evaluation.
Be as objective as possible.

After providing your explanation, output your final verdict by strictly following this
format: "[[A]]" if assistant A is better, "[[B]]" if assistant B is better, and "[[C]]" for a tie.

"[User Question]"
{{query}}

"[Reference Documents]"
{{documents}}

"[The Start of Assistant A’s Answer]"
{{answer_a}}
"[The End of Assistant A’s Answer]"

"[The Start of Assistant B’s Answer]"
{{answer_b}}
"[The End of Assistant B’s Answer]"

Figure 13: Prompt template used by LLM as a judge to evaluate the RAG response in a pairwise evaluation involving
a head-to-head battle. The template is taken and modified from RAGEval (Rackauckas et al., 2024). We explain the
evaluation criteria and ask the judge to evaluate two RAG responses based on multiple factors, including correctness,
helpfulness, completeness, accuracy, depth, and level of detail. The Judge provides a justification for their model
choice and at the end of the response indicates as either “[[A]]”, “[[B]]”, or “[[C]]” denoting a tie. {{query}} is
a placeholder for the input MIRAGE-BENCH query; {{documents}} is a placeholder for both MIRAGE-BENCH
relevant and non-relevant passages concatenated together; {{answer_a}} is a placeholder for the output response of
model A; {{answer_b}} is a placeholder for the output response of model B.
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