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Abstract

Embedding models play a crucial role in Nat-
ural Language Processing (NLP) by creating
text embeddings used in various tasks such as
information retrieval and assessing semantic
text similarity. This paper focuses on research
related to embedding models in the Russian
language. It introduces a new Russian-focused
embedding model called ru-en-RoSBERTa and
the ruMTEB benchmark, the Russian version
extending the Massive Text Embedding Bench-
mark (MTEB). Our benchmark includes seven
categories of tasks, such as semantic textual
similarity, text classification, reranking, and re-
trieval. The research also assesses a representa-
tive set of Russian and multilingual models on
the proposed benchmark. The findings indicate
that the new model achieves results that are on
par with state-of-the-art models in Russian. We
release the model ru-en-RoSBERTa, and the
ruMTEB framework comes with open-source
code, integration into the original framework
and a public leaderboard.

1 Introduction

Text embeddings play an important role in many
Natural Language Processing (NLP) tasks, from
clustering to semantic textual similarity (STS) and
information retrieval (IR). The community has ad-
dressed this demand by releasing several powerful
text embedding models (or embedders) (Wang
et al., 2024, 2023a; Chen et al., 2024). However,
there is still a lack of such embedders developed
specifically for the Russian language. The most
popular Russian-oriented models, such as rubert-
tiny2 1, SBERTlarge-nlu-ru

2, and SBERTlarge-mt-nlu-ru
3,

have been released several years ago and thus do

1https://huggingface.co/cointegrated/
rubert-tiny2

2https://huggingface.co/ai-forever/sbert_
large_nlu_ru

3https://huggingface.co/ai-forever/sbert_
large_mt_nlu_ru

Figure 1: The scheme of the ruMTEB benchmark pre-
senting all benchmark tasks divided into 7 task cate-
gories.

not include modern data in their training corpora.
The latest models are based on an outdated version
of the ruBERT (Zmitrovich et al., 2023) 4 model
as a backbone. Moreover, being monolingual, they
can not profit from knowledge transfer between
languages.

Given the usability of such text embeddings,
evaluating their quality and the corresponding em-
bedders is also important. One general approach is
to evaluate text embeddings on a set of standard text
embedding tasks (classification, clustering, etc.)
For English, Massive Text Embedding Benchmark,
or MTEB (Muennighoff et al., 2023), is considered
to be a standard for such an evaluation. For Russian,
however, there are significantly fewer evaluation
resources. Only few tasks from MTEB contain
Russian subsets, while until recently, the only em-
bedding benchmark for Russian was enkodechka 5,
which appeared several years ago and is still ac-
tively used. However, it has significantly fewer
tasks than MTEB and has no tasks to evaluate the
retrieval abilities of the model.

This paper addresses both problems by present-
ing a novel Russian-focused embedding model,
also adapted for the English language, allowing
knowledge transfer from this high resource lan-

4https://huggingface.co/ai-forever/
ruBert-large

5https://github.com/avidale/encodechka
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guage, and a new benchmark for text embedding
evaluation in Russian called ruMTEB (see Figure 1
for its general structure), which contains 23 text
embedding tasks in MTEB format. Among them,
17 tasks are new, and the other 6 are formed on the
multilingual MTEB datasets. Thus, the contribu-
tions of our work are the following:

• we publicly release a Russian-focused text
embedding model 6 adapted for the English
language;

• we present the Russian version of MTEB and
release 17 new Russian datasets for text em-
bedding evaluation 7, which form the bench-
mark backbone, and a public leaderboard 8;

• we explore model cross-lingual transfer
knowledge abilities and various model train-
ing hypotheses, which define our final training
pipeline;

• we evaluate the presented model on ruMTEB
and compare its performance with a set of
open-source baseline solutions.

2 Related Work

2.1 Text Embedding Models
General text embedding models are widely used in
various applications such as retrieval-augmented
generation (RAG) (Lewis et al., 2020), STS, as
well as multimodal scenarios (Radford et al., 2021).
One of the first approaches for training such mod-
els was to fine-tune a pre-trained language model
on the collection of labeled text pairs, such as
SNLI (Bowman et al., 2015). Natural Language
Inference (NLI) has been shown (Reimers and
Gurevych, 2019) to help such models learn useful
representations of texts for STS and other down-
stream applications. Recent approaches for model
training utilize labeled datasets, which can be di-
vided into symmetric (NLI, STS) and asymmet-
ric (Retrieval) tasks. Hence, the training objective
takes the form of multitask learning over one or
multiple objectives, and the specialized instructions
are applied for each task (Su et al., 2022).

Instead of training on limited labeled datasets,
in (Wang et al., 2022a), it has been proposed to split

6https://huggingface.co/ai-forever/
ru-en-RoSBERTa

7https://huggingface.co/collections/
ai-forever/ru-mteb-6650a6a6708dc5107a9e0ba3

8https://huggingface.co/spaces/mteb/
leaderboard

fine-tuning into two stages: contrastive pre-training
uses a large-scale pair dataset of noisy (or weakly-
supervised) text examples, and contrastive fine-
tuning utilize a smaller number of high-quality ex-
amples. The authors of the E5mistral-7b-instruct (Wang
et al., 2023a) utilize an approach for model train-
ing which does not include expensive contrastive
pre-training that has been shown to be useful for
smaller encoder-only model XLM-R (Conneau
et al., 2019). While their quality remains compara-
ble, encoder-only models are more cost-effective
during inference.

Examples of modern English-focused models
include E5 (Wang et al., 2022a), BGE (Xiao et al.,
2023a), GTE (Li et al., 2023), Nomic (Nussbaum
et al., 2024) and Arctic Embed (Merrick et al.,
2024). Scaling the number of languages sup-
ported (including Russian) has been demonstrated
in mE5 (Wang et al., 2024) models and BGE-
M3 (Chen et al., 2024), thereby extending their
applicability in multilingual contexts. The Russian-
oriented models are mainly represented by SBERT
models and rubert-tiny2 and their modifications.

Models mentioned above are often used for ad-
ditional fine-tuning on a specific task. To preserve
the general ability of the embedding model, it has
been proposed (Xiao et al., 2023b) to merge the
fine-tuned model with its base model.

To address this lack of contemporary Russian-
focused embedding models performing on par with
their multilingual counterparts, we present ru-en-
RoSBERTa.

2.2 Text Embedding Benchmarks

Model evaluation has always played an inevitable
role in NLP progress. Starting from GLUE (Wang
et al., 2018) and SuperGLUE (Wang et al., 2019)
benchmarks have been a standard model evaluation
method. As for text embedding representation eval-
uation, it has been in focus for many years and was
commonly evaluated on a STS, for which yearly
released SemEval (Agirre et al., 2016; Cer et al.,
2017; Chen et al., 2022)9 datasets were commonly
used. Being a single dataset inevitably limits the Se-
mEval expressivity. Following the same approach,
SentEval (Conneau and Kiela, 2018), which fo-
cuses on classifier models on top of embedding,
overcomes this limitation by aggregating multiple
STS datasets. Still, it lacks the evaluation instru-
ments for the suitability of embedding for retrieval

9https://semeval.github.io/
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or clustering tasks. Due to the inefficiency of a
single STS evaluation, USEB (Wang et al., 2021),
focusing on reranking tasks, and BEIR (Thakur
et al., 2021), aimed at zero-shot information re-
trieval evaluation, were created. SciRepEval (Singh
et al., 2023), a multi-format benchmark for scien-
tific document representations, includes 24 real-
istic tasks across four formats: classification, re-
gression, ranking, and search. Finally, uniting and
unifying all main classes of the embedding tasks
MTEB (Muennighoff et al., 2023) has been pro-
posed and is now considered a multilingual text
embedding evaluation standard. Moreover, its ap-
proach was also adopted and recreated for the Scan-
dinavian languages in the SEB (Enevoldsen et al.,
2024) and Chinese in the C-MTEB (Xiao et al.,
2023a)10 benchmarks.

Most of the benchmarks mentioned above are
English-focused. Even MTEB, despite being multi-
lingual, lacks Russian-language tasks. Only few of
the datasets contain Russian subsets, which is not
enough for a proper embedding evaluation in this
language. Apart from these few MTEB subsets,
the only Russian embedding benchmark remains
enkodechka, which has significantly fewer tasks
than MTEB and no tasks to evaluate the model’s
retrieval abilities.

Still, there is a need to evaluate text embedding
in Russian. To address this demand, we propose
ruMTEB comprising a set of text embedding tasks
in MTEB format.

3 ruMTEB Embedding Benchmark

3.1 Benchmark Structure and Evaluation
Methodology

The ruMTEB benchmark unites 23 datasets, which
can be divided into 7 task categories similar to
the corresponding categories in the original MTEB
benchmark: Classification (9 datasets), Clustering
(3 datasets), MultiLabel Classification (2 tasks),
Pair Classification (1 task), Reranking (2 tasks),
Retrieval (3 tasks), and STS (3 tasks). Below each
task category, the evaluation process is briefly de-
scribed, and the dataset information can be found
in Subsection 3.2.

Classification. The evaluation is performed in
10 consecutive experiments (bootstrap evaluation).
For run, a bootstrap subset of n (by default, n =
8) training samples is sampled, and this down-

10https://huggingface.co/C-MTEB

sampled train and test parts are embedded using
the embedding model. The training subset is used
to train the logistic regression classifier (with 100
interactions maximum). Then, test predictions are
scored using the standard Accuracy score.

Pair Classification. This group includes datasets
where, given a pair of text labels, one has to predict
a binary label. For evaluation, the two texts in each
pair are embedded via the embedding model, and
the cosine similarity between their embeddings is
computed. Then, using the best binary threshold,
average precision is computed.

Multi-label Classification. For evaluation, train
and test sets are embedded. Then bootstrap eval-
uation with 10 runs is performed. In each run the
training sets are down-sampled to 8 instances of
each unique label. The train embeddings are used
to train the kNN classifier (n_neighbours = 5). The
result is evaluated on the test part using the standard
Accuracy score.

Clustering. This task type includes datasets where,
given a set of text fragments, one has to group them
into meaningful clusters. For evaluation, text frag-
ments are embedded. Then bootstrap evaluation
with 10 runs is performed. For each run, a subset of
embedding are samples, which are then clustered
using K-means clustering. The result is evaluated
via v-measure (Rosenberg and Hirschberg, 2007)
and averaged over all experiments.

Semantic Textual Similarity (STS). Given a pair
of sentences, the goal is to determine their textual
similarity. Labels are continuous scores ranging
from 0 to 1 (the closer to 1, the more similar). For
evaluation, cosine similarity over the embedded
sentences for each pair is computed. The result
is evaluated with Spearman correlation (Reimers
et al., 2016).

Reranking. Inputs are a query and a list of ref-
erence texts (relevant and irrelevant). The goal is
to correctly rank these texts according to their rel-
evance to the query. For evaluation, the texts for
each query are ranked by the cosine similarity be-
tween the query embedding and the embedding of
the given texts. The obtained ranking is scored with
MAP@k (k = 10)11 for each query and averaged
over all queries.

Retrieval. For this task type, each dataset includes

11The exception is MIRACLReranking which is evaluated
using nDCG@10 following the original MTEB methodology.
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a set of documents and queries and a mapping for
each query to relevant documents. The task aims
to find relevant documents for each task. For evalu-
ation, each query document is ranked by the cosine
similarity computed between the document em-
bedding and the query embedding. The result is
evaluated using nDCG@10.

3.2 Benchmark Tasks

ruMTEB comprises 23 datasets divided into 7
task types mentioned above: six datasets based
on the Russian subsets from the original multilin-
gual MTEB set (MassiveIntendClassification, Mas-
siveScenarioClassification, MIRACLReranking,
MIRACLRetrieval, RuParaphraserSTS, STS22)
and 17 new datasets we release within the research.
The latter are based on popular Russian time-tested
and community-tested datasets.

We took the datasets based on the original
MTEB without any changes. For the Russian com-
munity datasets, we selected only the tests with
high-quality labeling, relying on the original publi-
cations. We performed data cleaning and automatic
filtering where necessary, removed duplicates, man-
ually verified small subsets of examples, and for-
matted them in the MTEB format. The main dataset
information and their statics are given in Table 1,
and the detailed task descriptions and preprocess-
ing for the new sets are in Appendix A.3.

4 Text Embedding Model for Russian

This section is devoted to the text embedding model
ru-en-RoSBERTa released within the research.
We describe the training data, the base model, and
the final training pipeline, motivated by the experi-
ments described in Section 5.

4.1 Training Data

Following previous work (Wang et al., 2022a;
Li et al., 2023; Nussbaum et al., 2024), we
use publicly available data, high-quality and syn-
thetic datasets to create training pairs (see Ap-
pendix A.1.1 for the full training list) 12, which,
for experiment purpose (see Section 5), we divide
into four groups described below.

Basic Russian Datasets. This group consists of 17
tasks. It includes pairs from SberQuAD (Efimov
et al., 2020), XNLI (Conneau et al., 2018), par-
allel translations (Bañón et al., 2020; Tiedemann,

12To avoid potential data leakage we use only the training
parts of all the sets.

2012; Zhang et al., 2020), and publicly available
data from various domains, such as news, blogs,
QA platforms, and other Internet resources. We
filter this data mostly with manual rules (see Ap-
pendix A.1.2 for the details).

Basic English Datasets. The group is formed from
MEDI (Su et al., 2022) corpus without provided
instructions. We also exclude instructional datasets
from Super-NI (Wang et al., 2022b) and thus re-
tain 30 datasets representing different domains and
tasks. We do not apply any additional preprocess-
ing steps.

Additional Synthetic Datasets. The group
includes Query2doc MS-MARCO (Wang
et al., 2023b), DINO-STS-x1x2 (Schick and
Schütze, 2021), RuHNP (Malashenko et al.,
2024a), entailment and contradiction pairs from
RuWANLI (Malashenko et al., 2024b), and a
sample of generated pairs by ruT5-base13 model
from WikiOmnia (Pisarevskaya and Shavrina,
2022). We do not change the data content and use
the datasets as is.

Additional Retrieval Datasets. We use Russian
and English parts of Mr. Tydi (Zhang et al., 2021)
and MIRACL (Zhang et al., 2022) from BGE-
M3 fine-tuning data. These datasets provide high-
quality examples and are designed for the same
retrieval tasks included in our benchmark.

We mine negatives similar to (Xiao et al., 2023a)
using the mE5small (Wang et al., 2024) and sample
documents by rank in the range of 20-100. For all
datasets, the provided hard negatives are also used.
For additional synthetic and retrieval datasets, the
provided negatives are used (if available), and the
rest are randomly sampled from the same dataset.

4.2 Base Model and English Language
Adaptation

Since we focus on the Russian language, we use
ruRoBERTa 14 (Zmitrovich et al., 2023), which has
the highest scores on the classic Russian Super-
GLUE (Shavrina et al., 2020) benchmark among
the models of its size. In addition, we adapt it to
the English language, allowing knowledge transfer
from this high-resource language (see Section 5 for
the corresponding experiments).

We extend the original ruRoBERTa tokenizer

13https://huggingface.co/ai-forever/ruT5-base
14https://huggingface.co/ai-forever/

ruRoberta-large
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Task Category Task name Data origin Train Val Test

Classification

GeoReviewClassification Geo Reviews 50000 5000 5000
HeadlineClassification ParaPhraserPlus 36000 12000 12000
InappropriatnessClassification Inappropriate Sensitive Topics 4000 4000 10000
KinopoiskSentimentClassification Kinopoisk Movie Reviews 10500 1500 1500
MassiveIntentClassification MTEB 11514 2033 2974
MassiveScenarioClassification MTEB 11514 2033 2974
RuReviewsClassification RuReviews 45000 15000 15000
RuSciBenchGRTNIClassification RuSciBench 28476 – 2773
RuSciBenchOECDClassification RuSciBench 27783 – 3220

PairClassification TERRa TERRa 2616 307 –

MultiLabelClassification CEDRClassification CEDR 7529 – 1882
SensitiveTopicsClassification Inappropriate Sensitive topics 29178 – 2048

STS
RuSTSBenchmarkSTS STS Benchmark 5224 1336 1264
STS22 MTEB – – 265
RuParaphraserSTS MTEB 7227 – 1924

Clustering GeoReviewClustering Geo Reviews – – 2000
RuSciBenchGRTNIClustering RuSciBench – – 31080
RuSciBenchOECDClustering RuSciBench – – 30740

Reranking MIRACLReranking MTEB – 44608 –
RuBQReranking RuBQ 2.0 – – 1551

Retrieval
MIRACLRetrieval MTEB – 13100 –
RiaNewsRetrieval Ria News – – 10000
RuBQRetrieval RuBQ 2.0 – – 2845

Table 1: The ruMTEB task outline. The Train, Val, and Test columns show the sizes of the dataset splits (“–”
means the absence of the split). Datasets from the original MTEB benchmark are in Italic; for them, the sizes of the
Russian subsets are reported.

Data Source Cls. Clust. MultiLabelCls. PairCls. Rerank. Retr. STS Avg.

Basic English Datasets 61.7 56.6 36.8 54.7 57.5 57.6 69.9 56.4
Basic Russian Datasets 60.0 54.2 38.0 56.3 60.8 61.7 72.3 57.6
Mixture 61.4 54.3 37.8 56.5 61.4 63.8 72.9 58.3

+ synthetic 62.3 54.6 39.0 59.7 62.1 64.1 73.6 59.3
+ synthetic & retrieval 62.1 53.9 39.0 60.0 63.1 65.1 73.7 59.6

Table 2: Different data sources impact. Model performance is measured on ruMTEB. Avg. stands for the average
score and is computed as the mean of the category scores. The best score is put in bold, the second best is underlined.

with tokens from RoBERTa 15 (Liu et al., 2019).
To learn new token embeddings, we train the model
using Masked Language Modeling (MLM) objec-
tive (Devlin et al., 2018). We use the same hyperpa-
rameters as in the ruRoBERTa and the batch size of
1024. We use unique training texts from Section 4.1
and train for one epoch (~11k steps).

The whole process takes one day on two A100
80GB cards. To reduce the effect of catastrophic
forgetting (Kirkpatrick et al., 2017), we merge en-
coder layers using spherical linear interpolation
(SLERP) algorithm16 with the factor of 0.25 to the
original model. In our work, we refer to the ob-
tained model version with the extended vocabulary

15https://huggingface.co/FacebookAI/
roberta-large

16https://gist.github.com/dvschultz/
3af50c40df002da3b751efab1daddf2c

as ru-en-RoBERTa.

4.3 Contrastive Fine-tuning

Following (Su et al., 2022), we perform contrastive
fine-tuning for ru-en-RoBERTa on a mix of super-
vised and unsupervised data (from the Section 4.1).
We use prefix strategy from (Reimers et al., 2023)
applying prefixes for each pair to avoid a conflict-
ing reward signal (see Appendix A.1.1 for the pre-
fix rules and the full prefix list).

We employ the standard InfoNCE contrastive
loss (Oord et al., 2018), keep a fixed temperature
value of 0.02, and obtain normalized text embed-
ding using CLS pooling. The batch is filled with
pairs of the same dataset (stratified sampling), and
proportional batch sampling is applied. Negative
examples are formed from 7 hard negatives per
query, and the remaining negatives are taken from
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a batch of the same device (in-batch negatives). Af-
ter fine-tuning, the SLERP merging is applied to
the base model with a factor of 0.1. See A.2 for
the training details. We report the computational,
energy, and carbon costs in Section 10.

5 Training Procedure Analysis

This section describes experiments we conducted to
determine the final training pipeline. We used basic
Russian, English, and additional synthetic datasets,
the training approach described in Section 4 unless
otherwise specified, and the full ruMTEB version
for evaluation. Details on the model configurations
in these experiments are given in A.2.2 and further
findings are in Appendix A.6.

5.1 Cross-lingual Knowledge Transfer and
Data Sources

We explored five training data configurations to
study whether the model can profit from knowl-
edge transfer between languages and various data
sources. For this, we trained embedding mod-
els based on ru-en-RoBERTa: on basic English
datasets only, basic Russian datasets only, and their
mixture, simple or augmented with additional syn-
thetic/synthetic+retrieval datasets. Each model is
trained for 1500 steps.

Results presented in Table 2 indicate that the em-
bedding model gets better results when trained on
data in Russian and English simultaneously. Addi-
tional synthetic datasets and high-quality retrieval
datasets further improve the embedding model qual-
ity despite the tasks these datasets solve already
being well represented in the basic datasets. Given
that in all scenarios, the number of steps is fixed,
the change in the results could not account for
longer training.

The model especially benefits from synthetic
datasets on STS-related tasks, while quality degra-
dation in clustering tasks remains unclear. Note
that the model trained on almost all data (except
the additional retrieval dataset is better by only 0.6
points. The results obtained on data in English may
be due to the better quality of the tasks presented
in MEDI.

5.2 English Language Adaptation

Having shown that the model can profit from cross-
lingual knowledge transfer, we turned to selecting
the optimal language adaptation strategy. Namely,
we compared:

• ruRoBERTa and XLM-R used as baselines;

• ru-en-RoBERTa from subsection Section 4.2;

• ru-en-RoBERTa w/ RetroMAE same approach
as previous where we substituted MLM with
RetroMAE (Shitao et al., 2022), which proved
beneficial for BGE-M3 in (Chen et al., 2024).
For this configuration, set the masking ratio
of decoder input tokens to 30%;

• ru-en-RoBERTa w/o SLERP same as ru-en-
RoBERTa without SLERP after English lan-
guage adaptation.

We perform contrastive fine-tuning for each model
and then evaluate them on ruMTEB. Results (see
Table 3) show that ru-en-RoBERTa outperforms
both baselines by a significant margin. Addition-
ally, the fact that XLM-R slightly outperforms
ruRoBERTa may indicate that XLM-R copes bet-
ter with knowledge transfer from basic English
datasets, which provide diverse examples of high
quality. Merging the encoder layers after language
adaptation with the original model improves the
model quality while using RetroMAE leads to de-
creased results.

5.3 Training Examples
In this series of experiments (see Table 3), we show
the effects of prefixes, stratified sampling, and the
number of hard negatives.

Remove prefixes. Fine-tuning the model on sym-
metric and asymmetric tasks simultaneously can
hurt performance without instructions but improve
it when instructions are used (Su et al., 2022). We
found that removing prefixes consistently worsens
the results, but STS-related tasks were not as af-
fected.

Disable stratified sampling. To explore whether
stratified sampling is beneficial (Merrick et al.,
2024) in our case, we disabled it, used prefixes
only for queries, and negatives were exchanged
across devices. The latter increases the number
of negatives per query to 8k. We found that the
stratified version works better.

Hard negatives. To study whether adding more
hard negatives (Ren et al., 2021) is beneficial, we
increased their number to 15 and reduced per de-
vice batch size to 64, maintaining the total number
of negative examples. To keep the same number of
steps, we apply gradient accumulation. Similarly
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Cls. Clust. MultiLabelCls. PairCls. Rerank. Retr. STS Avg.

English Language Adaptation

XLM-R 63.0 56.6 38.7 59.6 60.7 62.6 73.9 59.3
ruRoBERTa 61.4 55.8 38.5 59.1 61.1 63.1 73.6 58.9
ru-en-RoBERTa† 62.5 55.8 39.1 60.0 62.8 65.3 73.6 59.9

w/ RetroMAE 62.2 55.7 37.9 59.1 60.1 61.9 72.7 58.5
w/o SLERP 62.2 55.3 38.8 59.9 62.9 64.9 73.3 59.6

Training Objective

Additive margin 62.4 55.3 38.9 60.9 62.7 65.2 73.7 59.9
Document penalty 62.5 55.9 40.0 60.9 61.2 62.4 74.1 59.6
AnglE similarity 62.3 55.9 39.1 59.9 61.8 63.7 72.7 59.3
Mean pooling 62.6 55.5 38.4 59.2 61.1 63.1 72.5 58.9

Training Examples

Increase hard negatives group 62.7 55.6 38.4 60.6 63.1 65.7 73.5 59.9
Disable stratified sampling 62.8 55.7 38.4 60.3 61.2 63.0 72.6 59.2
Remove prefixes 61.5 54.4 38.1 60.9 61.4 64.1 73.4 59.1

Table 3: Results of the model, method, and data variation. Avg. is the average of the category results.†The reference
results for the training objective and training examples sections is model based on ru-en-RoBERTa. Each experiment
changes a single component (e.g., use AnglE similarity instead of cosine). Model performance is evaluated on
ruMTEB. The best score across all experiments is bold, the second best is underlined.

to (Nussbaum et al., 2024), we found that despite
processing almost twice as many texts, the results
did not improve.

5.4 Training Objective

In this experiment (see Table 3), we examine four
modifications of the training objective described in
Section 4.3.

Additive margin. Following (Yang et al., 2019),
we applied an additive margin with the value of
0.01, and larger values caused convergence prob-
lems. We do not use additive margin in our final
model and found that datasets are sensitive to mar-
gin values.

Document penalty. The authors of GTE (Li et al.,
2023) add a penalty for query-query, document-
document, and document-query matching in the
denominator of InfoNCE loss that improves model
performance on MTEB. We applied a similar ap-
proach to (Yang et al., 2019; Su et al., 2022), adding
a penalty for document-query matching as an ad-
ditional loss. The penalty significantly improved
model performance on STS and worsened on Re-
trieval.

AnglE similarity. Normalized dot-product is usu-
ally used to score a pair of texts. AnglE similarity
was proposed in (Li and Li, 2023) to optimize the
angle difference of pairs in complex space. We
replaced cosine similarity with AnglE. It is worth
noting that in the original work AnglE was used

in slightly different scenario, therefore, not finding
any improvement, we left this for future work.

Mean pooling. Without an experiment, the choice
of pooling strategy remains unclear. Mean pool-
ing is used in E5, GTE and Nomic (Li et al.,
2023; Nussbaum et al., 2024), BGE and Arctic
Embed (Xiao et al., 2023a; Merrick et al., 2024)
are apply CLS pooling. We observed consistent im-
provement of the latter, compared to mean pooling.

6 Evaluation

We evaluate ru-en-RoSBERTa and 9 publicly avail-
able embedding models for Russian, including the
multilingual ones and the two instruct models, on
the ruMTEB benchmark. See Table 4 for the base-
line information and Appendix A.4 for other de-
tails.

We evaluate all models in the same environ-
ments and scenarios by the procedure described
in 3.1. We use MTEB framework17 for evalua-
tion where we integrated evaluation on the new
ruMTEB tasks 1819.

17https://github.com/embeddings-benchmark/mteb/
tree/1.14.12

18https://github.com/embeddings-benchmark/mteb/
pull/815

19https://github.com/embeddings-benchmark/mteb/
pull/881
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Model Name Parameters HuggingFace Hub Link Citation
rubert-tiny2 29.4M cointegrated/rubert-tiny2 -
SBERTlarge-nlu-ru 427M ai-forever/sbert_large_nlu_ru -
SBERTlarge-mt-nlu-ru 427M ai-forever/sbert_large_mt_nlu_ru -
ru-en-RoSBERTa 404M ai-forever/ru-en-RoSBERTa -
mE5small 118M intfloat/multilingual-e5-small Wang et al. (2024)
mE5base 278M intfloat/multilingual-e5-base Wang et al. (2024)
mE5large 560M intfloat/multilingual-e5-large Wang et al. (2024)
BGE-M3 567M BAAI/bge-m3 Multi-Granularity
mE5large-instruct 560M intfloat/multilingual-e5-large-instruct Wang et al. (2024)
E5mistral-7b-instruct 7.11B intfloat/e5-mistral-7b-instruct Wang et al. (2023a)

Table 4: The evaluated mode description. Instruct models are marked with the corresponding suffix.

Model name Cls. Clust. MultiLabelCls. PairCls. Rerank. Retr. STS Avg.

rubert-tiny2 52.17 39.12 29.45 51.87 30.95 8.89 61.60 42.22
SBERTlarge-nlu-ru 57.24 50.44 31.87 50.17 32.81 8.51 57.21 45.35
SBERTlarge-mt-nlu-ru 57.52 51.29 32.67 51.97 40.56 19.13 64.40 48.72
mE5small 56.44 51.35 31.99 55.14 65.28 65.85 69.48 57.29
mE5base 58.26 50.27 33.65 54.98 66.24 67.14 70.16 58.34
mE5large 61.01 52.23 36.00 58.42 69.65 74.04 71.62 61.41
BGE-M3 60.46 52.38 34.86 60.60 69.71 74.79 73.68 61.58
ru-en-RoSBERTa 62.74 56.06 38.88 60.79 63.89 66.52 73.97 61.77

mE5large-instruct 66.31 63.21 41.15 63.89 69.17 74.41 74.85 66.03
E5mistral-7b-instruct 69.11 64.24 42.93 60.81 69.96 74.19 73.71 67.18

Table 5: Average model results on ruMTEB task categories. The result for each category represents the mean model
score on the tasks from the corresponding task types. Avg. stands for the average score and is computed as the mean
of the task scores. The best score is put in bold, the second best is underlined.

7 Results

Table 5 shows model scores averaged within the
task category, and detailed results of the task-wise
model evaluation are in Appendix A.520.

Results analysis reveals that there is a
gap between instruct and non-instruct models,
mE5large-instruct and E5mistral-7b-instruct are better than
their non-instruct competitors in all task categories
except for Retrieval where BGE-M3 is heading the
list. Moreover, while the instruct/non-instruct dif-
ference is not that significant for STS and retrieval,
the advantage of the instruct models becomes obvi-
ous for other task categories.

As for the non-instruct model analysis, it can
be seen that BGE-M3, ru-en-RoSBERTa, and
mE5large perform practically on par. Moreover, ru-
en-RoSBERTa performs better than its non-instruct
competitors on all task categories except for 2 (Re-
trieval and Reranking), probably due to the ab-
sence of the contrastive pre-train. For Retrieval and
Reranking, BGE-M3 and mE5large receive much
better scores, resulting in ru-en-RoSBERTa being

20This results are valid for 09.10.2024. Please, refer
to the leaderboard at https://huggingface.co/spaces/
mteb/leaderboard for the latest results.

in the second place. The evaluation results show
that ru-en-RoSBERTa is a robust embedding model
suitable for various textual tasks. Additionally, un-
like monolingual Russian models, the bilingual
nature of ru-en-RoSBERTa allows it to be further
trained or fine-tuned using the much more consid-
erable amount of English data available.

The evaluation results positively characterize the
benchmark as being complex enough for modern
embedding models, allowing researchers to evalu-
ate text embedding at a high level.

8 Conclusion

This paper introduces a new Russian-focused em-
bedding model, which also supports English, and
a new benchmark for text embedding evaluation,
comprising 23 datasets divided into 7 task types.
Among the benchmark datasets, 17 datasets are
new and were created within this research.

We report the new embedding model architec-
ture design, pre-training corpus, and training proce-
dure details. We describe the datasets comprising
the benchmark and propose the methodology for
the text embedding evaluation on it inspired by
the MTEB benchmark. We evaluate the presented
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encoding model and several baselines, thus verify-
ing the ruMTEB complexity and performing the
comparative analysis of our model results with the
results of standard encoders.

9 Limitation

Model limitations. The training data for ru-en-
RoSBERTa includes large segments from the In-
ternet domain. Consequently, it contains various
stereotypes and biases from English and Russian
sources. Therefore, a proper model evaluation is
still needed to explore their possible vulnerabili-
ties in generalizing to out-of-domain data. The
model’s context is limited to a length of 512. One
of the model’s limitations is that due to limited
computational resources, we skip the contrastive
pre-training stage, leaving it for future work, al-
though it was found (Wang et al., 2022a, 2023a) to
improve the results on the retrieval-related tasks.

Lack of evaluation in English. In this work, we
focus on the Russian language, and therefore, we
do not conduct ru-en-RoSBERTa evaluation in En-
glish as this is beyond the scope of this work and
quite resource-consuming. Nevertheless, we ac-
knowledge that evaluating the model on the ma-
chine translation task or on the English data (e.g.,
the full MTEB benchmark) is valuable. We leave
this to future work.

Speed and optimization. The ruMTEB bench-
mark comprises 23 tasks, including 6 tasks from
the multilingual version. As the project is collabo-
rative and we plan to expand the benchmark with
new representative tasks, this may lead to resource-
intensive and time-consuming runs. Additionally,
continuously updating the benchmark makes pre-
vious model results obsolete. Due to the potential
expansion of ruMTEB with new tasks and the gen-
eral trend toward using larger models, there is a
need to optimize the benchmark evaluation proce-
dure.

Datasets. The collaborative nature and aggrega-
tion of the existing sets in the benchmark make it
challenging to ensure uniformly high data quality
across all tasks. For all benchmark datasets we
checked the licenses and filtered the datasets. Un-
fortunately, despite the joint effort, some tasks still
possess errors (e.g., incorrect labels for some exam-
ples, grammatical errors, surplus technical symbols,
etc.). Moreover, there may still be biases in the data
across different domains and sources, and there is

still a need to extend tasks in some categories. We
encourage researchers to collaborate further to fill
the gaps and ensure a more comprehensive and
balanced language and task representation in the
benchmark.

Data leakage. All benchmark datasets are either
publicly available or created using data found on
the Web. This can lead to data leakage when some
models trained on parts of the dataset may produce
inflated scores on the benchmark. In the future,
it’s crucial to develop methods for automatically
identifying data leakage in the task.

10 Ethical Considerations

Inference Costs. Evaluating embedding models
on ruMTEB depends on its architecture and size
and can be optimized with distributed inference li-
braries. For example, one run of ru-en-RoSBERTa
of the complete evaluation experiment on a single
A100 GPU 80GB takes approximately 19 hours.

Energy Efficiency and Usage. We compute the
CO2 emissions from pre-training and fine-tuning
ru-en-RoSBERTa as Equation 1 (Strubell et al.,
2019):

CO2 =
PUE ∗ kWh ∗ ICO2

1000
(1)

The power usage effectiveness (PUE) of our data
centers is 1.3. The resulting CO2 emission is 3.66k
kg. Model compression techniques can reduce the
computational costs associated with model infer-
ence.

Potential Misuse. The ruMTEB can be used as
training data for acceptability classifiers, poten-
tially improving the quality of generated texts. We
acknowledge that these improvements in text gen-
eration might lead to the misuse of LLMs for harm-
ful purposes. The intended use of ruMTEB is for
research and development purposes, and we are
aware of the potential negative uses.

AI-assistants Help. We improve and proofread
the text of this paper using Grammarly21 to cor-
rect grammatical, spelling, and style errors and
paraphrasing sentences. Thus, some segments of
our publication can be potentially detected as AI-
generated, AI-edited, or human-AI-generated.

21https://app.grammarly.com/
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A Appendix

A.1 Training Data Details
A.1.1 Training Data Information
The list of datasets included in ru-en-RoSBERTa
training data and the corresponding prefix used for
them are given in Table 6.

We use the following basic rules to choose a
prefix:

• search_query and search_document pre-
fixes are for answer or relevant paragraph re-
trieval

• clustering prefix is for asymmetric retrieval
of title or summary and relevant document

• classification prefix is for symmetric
paraphrasing related tasks (STS, NLI, bitext
mining)

A.1.2 Data Filtration Details
We apply the following steps to the basic Rus-
sian datasets. First, texts longer than 500 to-
kens (ruRoBERTa-large22 tokenizer is used) are

22https://huggingface.co/ai-forever/
ruRoberta-large

filtered out. A small number of tokens is re-
served for instructions or prefixes. Pairs from
YandexQ23, Pikabu24, StackOverflow25, Habr26

and Habr QnA27 are filtered by content popular-
ity (e.g. views, ratings, votes). Cosine similarity
obtained from LaBSE (Feng et al., 2022) is applied
to filter NewsCommentary and MultiParaCrawl.
We filter pairs from paraphrase-NMT-Leipzig28 by
p_good score (equivalent meaning). The XNLI is
formed from entailment (relevant document) and
contradiction (irrelevant negative) examples. For
MIRACL, we use the title as the query and the
first paragraphs (until we reach the token limit) as
the document. We form pairs for Paraphrases 29

from paraphrases field, taking one as a query and
the others as positive documents. The content of
RuNews30 is not changed. After exact match dedu-
plication, the final training pairs for all datasets are
randomly sampled from the remaining pairs.

A.2 Model Training Details
A.2.1 Default training details
We fine-tune the model in bf16 dtype with gradi-
ent checkpointing and use AdamW (Loshchilov
and Hutter, 2017) with a learning rate of 1e-5
and weight decay of 0.01 for exactly one epoch,
which is approximately 3700 steps, of which linear
warmup is 200 steps. After fine-tuning, the SLERP
merging is applied to the base model with a factor
of 0.1.

We apply stratified sampling per device batch
(mini-batch). Therefore, the global batch in-
cludes mini-batches consisting of pairs of different
datasets. On the one hand, it becomes impossible
to exchange negatives between devices and thus
scale the number of in-batch negatives. On the
other hand, this increases the diversity of sources
in the global batch. Therefore, we do not apply
the DisCo (Chen et al., 2023) trick to exchange

23https://huggingface.co/datasets/IlyaGusev/
yandex_q_full

24https://huggingface.co/datasets/IlyaGusev/
pikabu

25https://huggingface.co/datasets/IlyaGusev/ru_
stackoverflow

26https://huggingface.co/datasets/IlyaGusev/
habr

27https://huggingface.co/datasets/its5Q/habr_
qna

28https://huggingface.co/datasets/cointegrated/
ru-paraphrase-NMT-Leipzig

29https://huggingface.co/datasets/inkoziev/
paraphrases

30https://huggingface.co/datasets/IlyaGusev/ru_
news
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negative examples across devices. The batch size is
128 per device, giving 1024 documents per query.
The context length is set to 512 for queries and
documents (Merrick et al., 2024).

Training is conducted on a single H100 node.
We utilize the BGE31 codebase and adapt it to our
experiments. PyTorch’s expandable_segments
helps us to mitigate fragmentation issues due to
variable sequence length.

A.2.2 Ablation training details

Remove prefixes. We omit prefixes and keep the
training process unchanged, preventing the model
from identifying task types during training and in-
ference.

Disable stratified sampling. Batch examples are
randomly selected from all datasets instead of the
single source. The prefixes are used only on the
query side; otherwise the objective becomes easy
to solve since different datasets have their own
prefixes. DisCo is enabled to increase the number
of negatives per query, unlike in stratified sampling.

Hard negatives. The number of hard negatives per
query is increased from 7 to 15, while the batch
size is reduced from 128 to 64 to maintain the same
total number of negatives, and the gradient step
accumulation (2 steps) is applied to keep training
steps consistent.

A.3 ruMTEB Dataset Description

This section describes new tasks we present with
the research and data preparation details.

A.3.1 Classification

KinopoiskSentimentClassification. In a senti-
ment classification dataset given a film review, one
has to predict whether it is Positive, Neutral, or
Negative (3 classes in total). The data was taken
from the original dataset (Blinov et al., 2013)32,
which contains reviews from July 2004 to Novem-
ber 2012. In the preprocessing phase, we removed
all mentions of the final rating from the review texts
and balanced the set, leaving only 4,500 samples
of each class. The resulting dataset was split into
three parts (train, validation, and test), with the
class balance preserved.

GeoReviewClassification. A classification dataset,
31https://github.com/FlagOpen/FlagEmbedding
32https://huggingface.co/datasets/blinoff/

kinopoisk

where given a review text one has to predict its
rating ranging from 1 to 5 (five classes in total).
The set is based on the Yandex Maps33 reviews34.
The original dataset was balanced and split into
three parts (train, validation, and test).

HeadlineClassification. In this dataset, the model
needs to determine which news category the arti-
cle title belongs to. The dataset was built based
on ParaPhraserPlus (Gudkov et al., 2020) and
contained 10,000 examples for each category, di-
vided into train/validation/test splits of 6000, 2000,
and 2000, respectively. A total of 6 classes are
used: sports, incidents, politics, science, culture
and economics. First, categories that contained at
least 10,000 examples were selected. Other cate-
gories were discarded due to overlap between cat-
egories. For this purpose, we trained a classifier
over SBERTlarge-nlu-ru embeddings.

RuReviewsClassification. A sentiment classi-
fication dataset where top-ranked goods from a
major e-commerce site were provided, and user-
ranked scores were used as class labels on a 5-
point scale. The data was sourced from the original
dataset RuReviews35, which contains reviews in
the “Women’s Clothes and Accessories” category.
During the preprocessing stage, duplicates were
removed, and the dataset was balanced, resulting in
only 25,000 samples for each class. The resulting
dataset was divided into three parts (train, valida-
tion, and test) while maintaining class balance.

RuSciBenchGRTNI/OECDClassification. This
is a dataset for the classification of scientific text
headings. Each article has its OECD and GRNTI
headings, with 29 OECD headings and 28 GRNTI
headings in the dataset (e.g., Mathematics, Biologi-
cal Sciences, Economics and Business, etc.). The
data was sourced from the original dataset RuS-
ciBench36. During preprocessing, duplicates were
removed, the title and abstract were combined, and
the set was balanced, leaving only the same num-
ber of samples for each class. The resulting dataset
was then divided into test and training parts.

InappropriatnessClassification. The dataset aims
to predict whether the message is inappropriate

33https://yandex.ru/maps
34https://github.com/yandex/

geo-reviews-dataset-2023
35https://github.com/sismetanin/rureviews?tab=

readme-ov-file
36https://huggingface.co/datasets/

mlsa-iai-msu-lab/ru_sci_bench
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or not in the form of binary classification. The
data is based on the Inappropriate Messages dataset
(version 3)37 (Babakov et al., 2021). We binarized
the inappropriateness scores using the 0.5 threshold.
The resulting dataset was balanced and split into
three parts (train, validation, and test), with the
class balance preserved.

A.3.2 Pair Classification

TERRa. The dataset was presented as one of the
Russian SuperGlue tasks (Shavrina et al., 2020) and
related to the Textual Entailment Recognition task.
Given two texts, the task is to determine whether
the meaning of one text entailed from the another
text. Since the test split is hidden, we took the dev
split without changes. A total of 307 examples are
available.

A.3.3 Multi-Label Classification

CEDRClassification. The dataset is a task of clas-
sifying comments into five emotions (joy, sadness,
surprise, fear, and anger). A total of 9,410 com-
ments were presented from the following sources:
social networks, news, and blogs. The dataset was
used as is, without any modifications (Sboev et al.,
2021). We took the original test split, which in-
cludes 1882 examples.

SensitiveTopicsClassification. The dataset con-
tains sentences that can be classified into one or
more sensitive topics38 (Babakov et al., 2021). The
original dataset includes 18 classes, all classes are
used. Since part of the dataset is not only manually
labeled, we first formed a test split from manu-
ally labeled examples, and the remaining examples
were combined with semi-automatically labeled
examples. We have selected the most reliable ex-
amples based on the confidence scores indicated in
the examples. The final test split consists of 2048
examples and preserves the original class distribu-
tion.

A.3.4 Clustering

GeoReviewClustering. A clustering dataset based
on the Yandex Maps39 reviews40, where given a

37https://github.com/s-nlp/
inappropriate-sensitive-topics/blob/main/
Version3/Inappapropriate_messages.csv

38https://github.com/s-nlp/
inappropriate-sensitive-topics/blob/main/
Version3/sensitive_topics.csv

39https://yandex.ru/maps
40https://github.com/yandex/

geo-reviews-dataset-2023

review text one has to cluster the samples accord-
ing to their rubrics or review categories (e.g., Bank,
Supermarket, Pharmacy, etc.). The original dataset
was balanced and split into three parts (train, vali-
dation, and test). For each review, we took its first
rubric as the main label, leaving only samples cor-
responding to the top 100 most popular labels. This
threshold limited the categories exceeding 10,000
examples. The final dataset was converted into the
MTEB format.

RuSciBenchGRTNI/OECDClustering. This is a
dataset for the clustering of scientific text headings.
Each article has its OECD and GRNTI headings,
and there are 29 OECD headings and 28 GRNTI
headings in the dataset (e.g., Mathematics, Biologi-
cal Sciences, Economics and Business, etc.). The
data was sourced from the original dataset RuS-
ciBench41. During preprocessing, duplicates were
removed, the title and abstract were combined, and
the set was balanced, leaving only the same num-
ber of samples for each class. The resulting dataset
was then divided into test and training parts.

A.3.5 Semantic Textual Similarity (STS)

RuSTSBenchmarkSTS. The dataset used for the
STS task is derived from the original multilingual
STS Benchmark 42. This multilingual set com-
prises various translations of the original English
version of the STSbenchmark dataset, with the
translations completed using deepl.com 43. The
Russian segment of the dataset was extracted and
refined using the RuCoLa (Mikhailov et al., 2022)
classifier 44. In all parts of the sets (train/dev/test),
instances categorized as not linguistically accept-
able were excluded. Additionally, any duplicate
entries were eliminated.

A.3.6 Reranking

RuBQReranking. The dataset is based on RuBQ
version 2.0 (Rybin et al., 2021). The dataset con-
tains examples of questions and paragraphs from
Wikipedia. Paragraphs that answer the question are
considered relevant. Paragraphs that contain the
answer are used as positive documents. Negative
documents are paragraphs relevant to the question’s
topic but not the answer. We only used questions

41https://huggingface.co/datasets/
mlsa-iai-msu-lab/ru_sci_bench

42https://github.com/PhilipMay/stsb-multi-mt
43https://www.deepl.com/ru/translator
44https://huggingface.co/RussianNLP/

ruRoBERTa-large-rucola
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from the test split with at least nine negative docu-
ments. The final test split contains 1551 examples.

A.3.7 Retrieval

RuBQRetrieval. Unique paragraphs from the
dataset are used for the document bank, resulting in
56,826 documents. Documents were deduplicated
while links to relevant documents were maintained.
The original test split was taken without changes
and has 2845 examples.

RiaNewsRetrieval. The original dataset Russi-
aSegodnya45 (also known as RiaNews) consists of
news articles and their headlines (Gavrilov et al.,
2019). Texts are presented in lowercase format, and
the capitalization of individual characters has not
been changed. Since the article texts are available
in HTML, we used the BeautifulSoup46 library to
clean them of markup. Additionally, texts were nor-
malized, and extra spaces were removed. We also
removed, if possible, the first sentence in each arti-
cle text since it does not relate to the article’s con-
tent and is a kind of meta information (“Moscow, 1
Dec — ria news.”). We filtered out the texts of arti-
cles with more than 2000 characters so that models
limited to a context of 512 tokens could handle the
entire text. All examples were deduplicated based
on the headline and text of the article. Our final
dataset consists of 10,000 randomly sampled head-
lines as queries, and article texts (724344) are used
as documents.

A.4 Experimental Setup Details

This section describes the prompt and embedding
configuration we used in our experiments. Namely,
we use normalized embeddings for evaluation on
all ruMTEB tasks. We use pooling and instruction
strategies required by the corresponding model we
evaluate. Table 7 presents all the prefixes and in-
structions used. Specifically:

• we do not utilize any special prompts for
rubert-tiny2, BGE-M3, SBERTlarge-nlu-ru, and
SBERTlarge-mt-nlu-ru;

• we use special prefixes for ru-en-RoSBERTa;

• mE5small/medium/large models share the same set
of prefixes;

45https://github.com/RossiyaSegodnya/ria_news_
dataset

46https://www.crummy.com/software/BeautifulSoup

• mE5large-instruct and E5mistral-7b-instruct models
share the same set of instructions.

A.5 Detailed Results
Table 8 shows results on individual ruMTEB
datasets. We run evaluation on NVIDIA A100
80GB with torch 2.2.1+cu118 and transformers
4.40.2. Please refer to PR47 to access the results.

A.6 Additional Experimental Findings
In this part, we describe early-stage experiments
that were conducted on different data subsets and
different base models.

Prefixes. We found that the E5 prefixes (Wang
et al., 2022a) performed slightly worse and assume
that the variant we use helps to better separate
tasks during training. The clustering prefix is
more suitable for tasks where thematic identifica-
tion is required, so in many classification problems,
we use it instead of classification, despite the
name. We tried adding prefixes with some probabil-
ity; this improved the results without using prefixes
and also worsened the results with them. In ad-
dition to stratified sampling, we implemented a
sampling strategy that takes pairs with the same
prefix but saw no improvement.

Losses. It was shown that Sigmoid Loss (Zhai
et al., 2023) performed better at smaller batch sizes.
We found that SigLIP is more sensitive to selecting
the initial values of the bias and temperature param-
eters to achieve convergence. CoSENT loss (Li and
Li, 2023) shows better results for STS-like tasks;
we adapted the loss for the case with many neg-
atives. In both cases, we were unable to achieve
comparable results and left this for further work.

Augmentations. Although the model trained on
1500 steps shows comparable results to full train-
ing, we tried to apply text level and embedding
level augmentations but found no meaningful per-
formance improvement. For the text level, we
used character-level augmentation from the Aug-
mentex48 library (Martynov et al., 2024) for both
languages. In another experiment, we applied the
NEFTune (Jain et al., 2023) with 3, 5, and 10 alpha
parameters.

47https://github.com/embeddings-benchmark/
results/pull/19

48https://github.com/ai-forever/augmentex
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Dataset Target task # of pairs (K) Prefix type

Basic English Datasets (Su et al., 2022)

AGNews Clustering 45.0 clustering
AmazonQA Retrieval 100.0 search_query/search_document
AmazonReviews Clustering 100.0 clustering
CCNews Clustering 25.0 clustering
CodeSearchNet Clustering 15.0 clustering
ELI5 Retrieval 25.0 search_query/search_document
Fever Retrieval 75.0 search_query/search_document
Flickr30k STS 25.0 classification
Gooaq Retrieval 25.0 search_query/search_document
HotpotQA Retrieval 40.0 search_query/search_document
MedMCQA Retrieval 30.0 search_query/search_document
MSMARCO Retrieval 175.0 search_query/search_document
AllNLI NLI 50.0 classification
NPR Clustering 25.0 clustering
NQ Retrieval 50.0 search_query/search_document
PAQ Retrieval 25.0 search_query/search_document
PubMed Clustering 30.0 clustering
S2ORC Title-Abstract Clustering 100.0 clustering
SimpleWiki STS 5.0 classification
SPECTER STS 50.0 classification
SQuAD Retrieval 25.0 search_query/search_document
StackExchange Duplicates STS 25.0 classification
Trex Retrieval 30.0 search_query/search_document
TriviaQA Retrieval 50.0 search_query/search_document
WikiAnswers STS 25.0 classification
WikiHow Clustering 25.0 clustering
WoW Retrieval 5.0 search_query/search_document
XSUM Clustering 30.0 clustering
Yahoo Title-Answer Retrieval 10.0 search_query/search_document
ZeroshotRE Retrieval 15.0 search_query/search_document

Basic Russian Datasets a

HabrQnA QA Retrieval 100.0 search_query/search_document
HabrQnA Title-Body Clustering 100.0 clustering
Habr Title-Abstract Clustering 50.0 clustering
Paraphrases STS 15.0 classification
MIRACL Title-Paragraph (Zhang et al., 2022) Clustering 100.0 clustering
MultiParaCrawl (Bañón et al., 2020) Bitext Mining 300.0 classification
NewsCommentary (Tiedemann, 2012) Bitext Mining 25.0 classification
paraphrase-NMT-Leipzig STS 210.0 classification
OPUS-100 (Zhang et al., 2020; Tiedemann, 2012) Bitext Mining 175.0 classification
Pikabu Title-Body Clustering 100.0 clustering
RuNews Title-Body Clustering 100.0 clustering
SberQuAD (Efimov et al., 2020) Retrieval 45.0 search_query/search_document
StackOverflow QA Retrieval 100.0 search_query/search_document
StackOverflow Title-Body Clustering 75.0 clustering
XNLI (Conneau et al., 2018) NLI 125.0 classification
YandexQ QA Retrieval 100.0 search_query/search_document
YandexQ Title-Body Clustering 55.0 clustering

Additional Synthetic Datasets

DINO-STS-x1x2 (Schick and Schütze, 2021) STS 13.0 classification
Query2doc (Wang et al., 2023b) Retrieval 500.0 search_query/search_document
RuHNP (Malashenko et al., 2024a) STS 100.0 classification
RuWANLI (Malashenko et al., 2024b) NLI 34.0 classification
WikiOmnia (Pisarevskaya and Shavrina, 2022) Retrieval 100.0 search_query/search_document

Additional Retrieval Datasets

MIRACL (Zhang et al., 2022; Multi-Granularity) Retrieval 11.0 search_query/search_document
Mr. Tydi (Zhang et al., 2021; Multi-Granularity) Retrieval 9.0 search_query/search_document

Table 6: The full training corpus with corresponding prefixes. We report the number of pairs in thousands. For the
tasks with two different prompts, query and document, they are written with a slash.

aFor non-cited datasets please refer to A.1.2
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Task name ru-en-RoSBERTa E5 prefix E5 instruction

Classification

GeoreviewClassification classification query Classify the organization rating based on the reviews
HeadlineClassification clustering query Classify the topic or theme of the given news headline
InappropriatenessClassification clustering query Classify the given message as either sensitive topic or not
KinopoiskClassification classification query Classify the sentiment expressed in the given movie review text
MassiveIntentClassification classification query Given a user utterance as query, find the user intents
MassiveScenarioClassification clustering query Given a user utterance as query, find the user scenarios
RuReviewsClassification classification query Classify product reviews into positive, negative or neutral sentiment
RuSciBenchGRNTIClassification clustering query Classify the category of scientific papers based on the titles and abstracts
RuSciBenchOECDClassification clustering query Classify the category of scientific papers based on the titles and abstracts

Clustering

GeoreviewClusteringP2P clustering query Identify the organization category based on the reviews
RuSciBenchGRNTIClusteringP2P clustering query Identify the category of scientific papers based on the titles and abstracts
RuSciBenchOECDClusteringP2P clustering query Identify the category of scientific papers based on the titles and abstracts

MultiLabelClassification

CEDRClassification classification query Given a comment as query, find expressed emotions (joy, sadness, surprise, fear, and anger)
SensitiveTopicsClassification clustering query Given a sentence as query, find sensitive topics

PairClassification

TERRa classification query Given a premise, retrieve a hypothesis that is entailed by the premise

Reranking

MIRACLReranking search_query/search_document query/passage Given a question, retrieve Wikipedia passages that answer the question
RuBQReranking search_query/search_document query/passage Given a question, retrieve Wikipedia passages that answer the question

Retrieval

MIRACLRetrieval search_query/search_document query/passage Given a question, retrieve Wikipedia passages that answer the question
RiaNewsRetrieval search_query/search_document query/passage Given a news title, retrieve relevant news article
RuBQRetrieval search_query/search_document query/passage Given a question, retrieve Wikipedia passages that answer the question

STS

RUParaPhraserSTS classification query Retrieve semantically similar text
RuSTSBenchmarkSTS classification query Retrieve semantically similar text
STS22 clustering query Retrieve semantically similar text

Table 7: Prompts used for ruMTEB evaluation. For the tasks with two different prompts, query and document, they
are written with a slash. E5 prefix shows prefixes used for mE5small/medium/large models. E5 instruction shows
instructions used for E5mistral-7b-instruct and mE5large-instruct models.
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rubert SBERT SBERT mE5 mE5 mE5 BGE- ru-en- mE5 E5
tiny2 large-nlu-ru large-mt small base large M3 RoSBERTa large- mistral-7b-

nlu-ru instruct instruct

Classification

GeoreviewClassification 39.64 39.97 39.67 44.66 46.05 49.69 48.27 49.70 55.90 56.72
HeadlineClassification 74.19 79.26 77.19 73.94 75.64 77.19 70.32 78.00 86.18 87.02
InappropriatenessClassification 58.57 62.52 64.64 59.16 58.78 61.59 59.87 61.32 65.53 70.36
KinopoiskClassification 49.06 49.51 50.33 49.96 50.89 56.59 58.23 63.27 66.12 68.35
MassiveIntentClassification 50.83 61.09 61.42 58.43 62.78 65.76 68.76 66.97 67.60 73.74
MassiveScenarioClassification 59.15 67.60 68.13 63.89 68.21 70.85 73.42 71.80 71.59 77.10
RuReviewsClassification 56.99 58.27 58.29 61.18 62.99 65.28 66.91 67.96 68.56 70.57
RuSciBenchGRNTIClassification 45.63 53.90 54.19 54.99 56.28 58.20 55.81 59.33 65.07 66.05
RuSciBenchOECDClassification 35.48 43.04 43.80 41.72 42.69 43.91 42.57 46.33 50.21 52.11

Clustering

GeoreviewClusteringP2P 41.58 57.12 57.07 58.57 54.46 59.59 63.09 65.42 74.34 76.32
RuSciBenchGRNTIClusteringP2P 39.78 49.70 51.44 51.14 51.56 51.98 50.83 55.47 62.21 62.27
RuSciBenchOECDClusteringP2P 35.98 44.48 45.36 44.33 44.79 45.12 43.21 47.29 53.09 54.13

MultiLabelClassification

CEDRClassification 36.87 35.84 36.81 40.07 42.32 44.84 43.47 44.69 50.01 51.94
SensitiveTopicsClassification 22.03 27.90 28.54 23.91 24.98 27.17 26.25 33.07 32.29 33.92

PairClassification

TERRa 51.87 50.17 51.97 55.14 54.98 58.42 60.60 60.79 63.89 60.81

Reranking

MIRACLReranking 15.81 18.80 24.99 59.11 60.47 63.71 65.38 56.91 62.49 63.61
RuBQReranking 46.09 46.81 56.14 71.45 72.01 75.60 74.03 70.87 75.84 76.32

Retrieval

MIRACLRetrieval 1.89 1.98 6.20 59.01 61.60 67.33 70.16 53.91 66.08 67.66
RiaNewsRetrieval 13.92 11.11 21.40 70.00 70.24 80.67 82.99 78.86 83.26 78.94
RuBQRetrieval 10.87 12.45 29.80 68.53 69.58 74.13 71.22 66.77 73.90 75.98

STS

RUParaPhraserSTS 65.14 62.06 65.17 70.46 70.17 71.82 74.90 76.16 75.40 76.17
RuSTSBenchmarkSTS 69.43 58.82 71.22 78.08 79.64 83.15 79.87 78.69 83.97 84.13
STS22 50.23 50.75 56.82 59.90 60.67 59.89 66.26 67.06 65.17 60.83

Average 42.22 45.35 48.72 57.29 58.34 61.41 61.58 61.77 66.03 67.18

Table 8: The full results of model evaluation on the ruMTEB benchmark. The aggregated score for each task
category is reported in Section 7. The best score is put in bold, the second best is underlined.
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