
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Industry Track), pages 988–997

April 30, 2025 ©2025 Association for Computational Linguistics

Pisets: A Robust Speech Recognition System for Lectures and Interviews

Ivan Bondarenko1, Daniil Grebenkin1,2, Oleg Sedukhin2, Mikhail Klementev1,2,
Roman Derunets1,2, Lyudmila Budneva1

1Novosibirsk State University, 2Siberian Neuronets LLC
Correspondence: i.bondarenko@g.nsu.ru

Abstract

This work presents a speech-to-text system
"Pisets" for scientists and journalists which
is based on a three-component architecture
aimed at improving speech recognition ac-
curacy while minimizing errors and halluci-
nations associated with the Whisper model.
The architecture comprises primary recogni-
tion using Wav2Vec2, false positive filtering
via the Audio Spectrogram Transformer (AST),
and final speech recognition through Whis-
per. The implementation of curriculum learn-
ing methods and the utilization of diverse
Russian-language speech corpora significantly
enhanced the system’s effectiveness. Addi-
tionally, advanced uncertainty modeling tech-
niques were introduced, contributing to further
improvements in transcription quality. The
proposed approaches ensure robust transcrib-
ing of long audio data across various acous-
tic conditions compared to WhisperX and the
usual Whisper model. The source code of
"Pisets" system is publicly available at GitHub:
https://github.com/bond005/pisets.

1 Introduction

Sustainable speech recognition systems are essen-
tial for scientists, journalists, and anyone process-
ing audio recordings of interviews and meetings.
They not only streamline transcription but also im-
prove the reliability and accuracy of the output,
facilitating better decision-making and communi-
cation.

We present the three-component architecture of
the offline speech recognition system designed to
enhance speech recognition accuracy while mini-
mizing errors and hallucinations associated with
the Whisper model. The architecture consists of
three key components: primary recognition based
on Wav2Vec2, false positive filtering using the
Audio Spectrogram Transformer (AST), and final
speech recognition utilizing Whisper.

We called this system "Pisets" (in Russian,
scribe), because it, like the ancient Roman scribe
Tiro after Cicero, shorthand recordings of scientific
speeches, interviews and other conversations.

1.1 Primary Recognition Based on Wav2Vec2
The first component of our architecture relies on
the Wav2Vec2 model (Baevski et al., 2020), which
effectively identifies the boundaries of the speech-
containing segments. Unlike standard Voice Activ-
ity Detection (VAD) methods, which may be less
sensitive and accurate, Wav2Vec2 offers a more
powerful approach, which we refer to as VAD “on
steroids”. This model has been trained on large
volumes of audio data and leverages contextual
information to more accurately determine the pres-
ence of speech segments.

To enhance Russian language recognition, we
used a curriculum learning approach, which pro-
gressively increases task complexity during train-
ing. This method is informed by the “Formal
Theory of Fun, Creativity, and Intrinsic Motiva-
tion.” (Schmidhuber, 2010). In our context, com-
plexity is characterized by the diversity of input
audio data, including various accents, background
noise, and acoustic conditions. We started with sim-
pler, well-annotated data and gradually introduced
more complex examples, which helped the model
manage a wider range of speech fragments. Our
model was trained using this curriculum learning
strategy (Bengio et al., 2009) on open Russian-
language speech corpora, including Golos (Karpov
et al., 2021), Russian Librispeech (Lib), RuDevices
(Zubarev et al., 2021), is publicly available at the
Huggingface.

1.2 False Positive Filtering Using the Audio
Spectrogram Transformer (AST)

The second component of the architecture focuses
on filtering false positive outputs generated by the
speech detector. We selected the Audio Spec-
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trogram Transformer (AST) (Gong et al., 2021),
trained on the Audioset ontology (Gemmeke et al.,
2017), due to its exceptional effectiveness in au-
dio signal classification. Its implementation en-
ables a reduction in the number of non-existent
speech fragments that may be misinterpreted as
actual speech. AST provides a deeper analysis
of audio signals, highlighting significant acoustic
features, which is particularly beneficial in noisy
environments or complex acoustic spatial condi-
tions.

1.3 Final Speech Recognition Using Whisper

The final component involves employing the Whis-
per model (Radford et al., 2023) to carry out the
concluding stage of speech recognition. Whisper
has demonstrated outstanding performance in var-
ious speech recognition tasks, and within our ar-
chitecture, it plays the role of interpreting audio
files that have undergone preliminary processing
informed by the results of the first two components.

To enhance recognition accuracy in our system,
we applied the BIRM (Bayesian Invariant Risk
Minimization) algorithm (Lin et al., 2022) and de-
veloped a speech environment concept. Construct-
ing this environment involved creating an annotated
speech corpora with a minimal error rate, allowing
the Whisper model to better tackle the recognition
task. Our training environment accounted for both
the quality of annotations and the diversity of audio
signals, resulting in a significant improvement in
recognition outcomes. The resulting model is also
available under the Apache 2.0 license on the Hug-
ginface. We utilized three diverse speech corpora
to enhance training across distinct linguistic and
acoustic environments: Russian Librispeech (Lib),
Taiga Speech (Shavrina and Shapovalova, 2017),
Podlodka Speech (pod).

In conclusion, the proposed three-component
architecture significantly reduces errors and hallu-
cinations in speech recognition (see Fig. 1). Each
component plays a vital role in the overall process,
creating a transformation chain from initial recogni-
tion to final output, ultimately leading to enhanced
overall system effectiveness.

2 Related Works

The development of automated transcription sys-
tems for lectures and interviews relies critically
on speech recognition methodologies. Beyond the
fundamental task of acoustic-to-text conversion,

Figure 1: Proposed three-component speech recognition
architecture

such systems must address ancillary linguistic pro-
cessing challenges to ensure output fidelity. These
include punctuation restoration, capitalization re-
covery, numeral normalization, and syntactic dis-
ambiguation—operations essential for producing
human-interpretable transcripts. Historically, these
subtasks were addressed through modular subsys-
tems: for instance, Kaldi-based frameworks em-
ploying classical Hidden Markov Model-Gaussian
Mixture Model (HMM-GMM) architectures for
speech recognition (Povey et al., 2011) , comple-
mented by separate neural modules (e.g., recur-
rent or transformer-based networks) for punctua-
tion prediction (Tilk and Alumäe, 2016; Courtland
et al., 2020). However, empirical advances in deep
learning consistently demonstrate that end-to-end
neural architectures outperform component-based
pipelines in overall accuracy and generalizability.

The introduction of Whisper (Radford et al.,
2023) , a unified neural model combining acous-
tic feature extraction with autoregressive language
modeling, exemplifies this paradigm shift. By
jointly optimizing acoustic and linguistic repre-
sentations, Whisper directly generates grammat-
ically coherent, punctuated text from raw audio
signals, obviating the need for cascaded subsys-
tems. Despite its advancements, Whisper exhibits
limitations inherent to autoregressive sequence-to-
sequence models:

1. Hallucination artifacts: The model occa-
sionally produces semantically inconsistent
or contextually implausible outputs, despite
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syntactic correctness.

2. Computational inefficiency: Autoregressive
token-by-token decoding imposes significant
latency, hindering real-time applications.

To mitigate these constraints, subsequent work
proposed WhisperX (Bain et al., 2023), a refined
framework incorporating algorithmic optimizations
such as non-autoregressive parallel decoding and
constrained beam search. These innovations aim
to enhance both transcription accuracy (reducing
hallucination rates) and inference speed, address-
ing critical bottlenecks in production-scale deploy-
ment.

2.1 Overview of WhisperX
WhisperX employs a multi-step architecture for
ASR, beginning with Voice Activity Detection
(VAD) using the pyannote.audio model (Bredin,
2023). This model utilizes parameters such as on-
set and offset thresholds, as well as durations for
speech detection, to effectively pinpoint the pres-
ence of speech in an audio stream. The VAD pro-
cess entails several stages, including prediction of
speech probability, binarization into speech and
non-speech segments, and smoothing to eliminate
noise and short pauses.

Following VAD, WhisperX adopts a Cut &
Merge Strategy for audio preprocessing. This
method segments long speech parts into optimal
chunks, allowing for parallel processing without ex-
ceeding 30 seconds in duration on segments of min-
imal speech activity. Thus, WhisperX enhances ef-
ficiency while minimizing errors at segment bound-
aries.

2.2 Key Differences with Our Proposed
Architecture

While WhisperX features innovative strategies for
maintaining accurate transcription and efficient par-
allel processing, our proposed architecture intro-
duces two crucial differences that substantially en-
hance its performance in reducing errors and hallu-
cinations.

2.2.1 VAD Implementation through
Wav2Vec2

Our solution implements Voice Activity Detection
(VAD) through the Wav2Vec2 model, which pro-
vides a more nuanced analysis of audio signals and
a better understanding of acoustics compared to the
fixed threshold approach used in WhisperX.

2.2.2 Additional Filtering Using Audio
Spectrogram Transformer (AST)

Unlike WhisperX, which applies VAD only prior
to transcription, our architecture incorporates a fil-
tering step after the initial recognition phase using
the Audio Spectrogram Transformer (AST). This
enhances the validity of the segments sent to Whis-
per for final transcription, significantly reducing
the likelihood of hallucinations.

2.2.3 Consistency Check Between Whisper
and Wav2Vec2 Outputs

Additionally, we compare the transcription results
from the Whisper model with the initial output
from Wav2Vec2 to mitigate potential inaccuracies.
This verification step, absent in WhisperX, serves
as a potent mechanism to further minimize errors,
ensuring that the system produces reliable and con-
textually appropriate transcriptions.

3 Uncertainty modeling

An uncertainty in transcription (word-wise or
segment-wise) may be beneficial in some use cases:

1. Highlighting uncertain places allows for a
quick manual correction without the need to
read the whole transcription.

2. Refusing to transcribe some hard to hear
phrases based on uncertainty scores is a useful
strategy. Incorrect transcriptions can disrupt
subsequent LLM-based text summarization
and potentially harm an individual’s reputa-
tion.

3. Correcting transcriptions using subsequent
stages such as language models may be more
effective if we provide uncertainty scores or
different transcription options.

Uncertainty modeling is a vast area of research.
In a current work we compare only the most
straightforward methods that we describe in details
later:

1. Token scores (output probabilities) from Whis-
per.

2. Disagreement between the predictions of the
two pipeline stages: Whisper and Wav2Vec2.
While we use Wav2Vec2 primarily for seg-
menting a long audio, we can make use of its
predictions in uncertainty modeling.
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3. Disagreement between the Whisper predic-
tions, obtained from the original and stretched
audio. For now we preferred audio stretch-
ing over other Test-Time Augmentation (TTA)
methods, as well as Monte Carlo Dropout.
Their comparison may be a future work.

3.1 Computational efficiency

At first glance it seems that the first option is
the most computationally efficient. However, the
Wav2Vec2 stage may increase the efficiency of
the whole pipeline: it helps to split audio pretty
quickly, and further Whisper can be run in parallel
on all segments, in contrast to the Whisper long-
form transcription that is sequential. After applying
Wav2Vec2, we obtain its predictions for free. The
third method, while requires multiple Whisper runs,
is not so costly if the GPU is not fully loaded, since
we can perform TTA in parallel using batching.

3.2 Model disagreement

Let we have transcriptions from the base (usually
better) and additional (usually worse) model, e.g.
from Whisper and a lightweight Wav2Vec2 seg-
menter. We perform the following stages:

1. Aligning a pair of transcriptions with se-
quence matching, and find all differences (in-
sertions, deletions and replacements).

2. Splitting or merging the differences to
achieve better linguistic matching. For ex-
ample, a sequence matcher identifying the re-
placement "Hello Richie" -> "Richard" is split
into the deletion of "Hello" and the replace-
ment "Richie" -> "Richard." Conversely, if it
finds the deletion of "no" followed by "thing"
-> "nothing," we merge these into "no thing"
-> "nothing."

3. Optional stage: applying some heuristics.
For example, we drop a replacement X -> Y
if X consists only of English letters, and Y
consists only of Russian letters, since it is
probably a transliteration, where both options
are valid. Dropping means that we accept
the variant from the base model. This helps
to reduce the number of differences that is
usually too large.

4. Optional stage: LM validation. To reduce
errors from additional models, we focus on
cases where the language model aligns with

the additional model, i.e., the variant from the
base model provides better sequence score.
This approach reduces the amount of differ-
ences. Additionally, we employ a look-ahead
algorithm to account for dependent subse-
quent differences.

3.3 Whisper scores

Whisper provides probabilities for each output to-
ken. While it has been noted that models are usu-
ally overconfident in their predictions, even if they
are wrong (Lakshminarayanan et al., 2017), this
problem is alleviated in robust models (Grabinski
et al., 2022). We aim to estimate the effectiveness
of Whisper probabilities as an uncertainty measure.

Whisper tokens are byte sequences of utf-8 en-
coding, and some utf-8 symbols can be split be-
tween two tokens. We designed an algorithm that
finds Whisper token indices corresponding to each
word. For example, the Russian word “ сети”,
starting with a space, consists of two tokens (“ с”,
“ети”), along with their log-probabilities. Since
we use word-based uncertainty, we need to reduce
these probabilities using min, sum or mean opera-
tion, and empirically min and sum perform on par,
and better than mean.

It is worth noting that sum of log-probabilities
is mathematically a log-probabilities of the whole
word, up to a certain tokenization. For example,
“ cat”, “ Cat”, “Cat” and “ C”+“at” are different
token sequences in Whisper, and the probability of
the spoken word “cat” is distributed between them.
We didn’t take this into account, leaving it for a
future work.

After obtaining a score for each word, we select
some threshold to mark each word as either certain
or uncertain. Comparing to the model disagree-
ment, here we do not have another suggestions for
uncertain words (however, we could in principle
extract them from Whisper).

4 Experiments

4.1 Lexical and semantic quality of speech
recognition

Evaluating speech recognition systems’ quality is
crucial due to their diverse applications, from voice
assistants to transcription services. While tradi-
tional measures like Word Error Rate (WER) have
been common, they may not adequately assess
modern autoregressive generative decoders.
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Model Quiet noises Loud noises (SNR = 1 dB)
WER ↓ BERT-F1 ↑ WER ↓ BERT-F1 ↑

Whisper-Large-V3 0.0931 0.9661 0.2409 0.9151
Whisper-Podlodka-V3 0.1199 0.9644 0.2119 0.9169

Table 1: Whisper-Large-V3 and Whisper-Podlodka-V3 comparison in best ASR pipeline

Metrics Pisets WhisperX
WER ↓ 0.1065 0.1683
BERT-score ↑ 0.9652 0.9479

Table 2: WhisperX and Pisets testing results on long audio lectures dataset

The main limitation of WER is that these sys-
tems can produce semantically accurate output that
differs lexically from the original speech, which
is vital in sensitive contexts like medical or legal
documentation. Therefore, semantic quality mea-
sures such as BERT score (F1) are recommended,
as they measure the semantic similarity between
generated text and the original.

Additionally, real-world recordings often en-
counter noise, which can adversely affect recog-
nition quality. Experimental evaluations should
simulate various noise levels and types to better
understand system performance across different
acoustic environments.

In summary, a comprehensive assessment of
speech recognition systems should incorporate both
lexical measures like WER and semantic measures
such as BERT score (F1) for a more complete un-
derstanding of their effectiveness.

4.2 Experimental evaluation of ASR quality

We experiment on seven long 20-40 minute Rus-
sian audios collected as a test set for our ASR sys-
tem. The audios belong to different lexical and
speech domains; they are parts of several Russian
scientific lectures on various subjects: philology,
mathematics, history, etc.

All recordings were made in relatively quiet
acoustic environments typical of lecture halls; how-
ever, some background noises, such as the sound
of chalk hitting a blackboard, were present. To sim-
ulate more noisy conditions, we mixed the record-
ings with speech-like and musical noise at a signal-
to-noise ratio of 1 dB.

Table 1 presents comparative results from var-
ious configurations of the Whisper architecture
within the Pisets system, while table 2 details the
comparative performance outcomes between the
Pisets and WhisperX architectures. Based on these

results, it can be inferred that the Pisets architecture
provides higher recognition quality compared to
WhisperX. Notably, the Whisper-Podlodka model
within the Pisets architecture slightly falls short of
the original Whisper-Large model under favorable
acoustic conditions but begins to demonstrate ad-
vantages as the levels of background speech-like
and musical noise increase.

4.3 Uncertainty modeling metrics
It is common to evaluate uncertainty via error-
retention curves (Lakshminarayanan et al., 2017),
when we drop a variable percent of least-certain
predictions and evaluate a quality on others, using
some metric of interest. However, in long-form
speech recognition, it is not clear how to evaluate
WER when ignoring some words. We therefore
rely on another metrics.

Let we have a list of predicted words and a
boolean flag for each word (certain or uncertain) 1.
We align them to ground truth words, we find incor-
rectly predicted words, i.e. words that correspond
to “delete” or “replace” operations. We thus form
a target for each word: is it correct or not? In this
way, the problem is reduced to binary classification.
We select two metrics that allow us to construct a
Pareto-optimal frontier:

1. Uncertainty ratio: the ratio of all predicted
words marked as uncertain.

2. Recall of error detection: the ratio of all
incorrect words marked as uncertain.

Note that all these calculations do not take into
account the ground truth words that are not pre-
dicted by the model, since we cannot mark as un-
certain a word that is not predicted. In theory, this

1Instead of boolean flags we could use scores and evaluate
something like ROC AUC, but some methods (such as model
disagreement) do not provide scores.
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Figure 2: The error detection recall and uncertainty ratio of different uncertainty estimation methods. The results are
averaged across 7 long Russian audios, and the results for individual audios are shown in semi-transparent. Whisper
scores method is show as a line for different score threshold. All model disagreement and ensembling methods
cannot reliably outperform Whisper scores as a source of uncertainty. It can be seen that if we mark only around
5% words as uncertain, we can accumulate in them 35% of all errors (excluding errors caused by missed words in
transcription).

allows the model to cheat our uncertainty metrics
by predicting only a small number of the most con-
fident words, along with the definitely incorrect
words. However, this will hurt WER that is the
main metric of interest.

4.4 Uncertainty modeling experiments
This experiments section consisted of the following
pipeline:

1. Our Wav2Vec2 model as segmenter and the
additional source of predictions;

2. Whisper-Large-v3 as the base source of pre-
dictions and token scores;

3. Whisper-Large-v3 accepting strecthed words
as the additional source of predictions. We use
a simple audio resampling using polyphase
filtering with upsampling by the factor 3 and
downsampling by the factor 4. Thus, the audio
is stretched by 33%, and the pitch of the voice
also changes.

We also tried to ensemble the uncertainty mask
from Whisper scores and model disagreement, con-
sidering the word as uncertain if at least one mask
marks it so.

Fig. 2 shows the average results. No model dis-
agreement methods consistently outperform Whis-
per scores as a source of uncertainty due to the

limited test set size. However, marking only about
5% of words as uncertain can capture 35% of all er-
rors (excluding those from missed words), making
this approach very practical.

For now we use the uncertainty only for high-
lighting dubious places in the transcription (see
Appendix D). We also conducted preliminary ex-
periments on feeding the text in into LLM, supple-
mented with instructions to resolve the disagree-
ments based on linguistic knowledge and common
sense. The experiments have shown that this may
reduce WER, however is beyond the scope of the
current work.

5 Conclusion

This paper presents a novel framework aimed at
improving speech recognition systems, addressing
challenges such as hallucinations, domain adapt-
ability, and acoustic-linguistic variability. The com-
bination of Wav2Vec2 for speech segmentation,
AST for false positive filtering, and Whisper for fi-
nal transcription significantly reduced errors across
various acoustic conditions. The integration of di-
verse Russian speech corpora, along with the use of
the BIRM model for fine-tuning, further enhanced
the system’s robustness to unfamiliar domains.

Additionally, the implementation of advanced
uncertainty modeling techniques provided practi-
cal recommendations for improving transcription
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quality. These enhancements led to the develop-
ment of a reliable system capable of delivering
high-quality transcription in a variety of scenarios,
including automatic dictation and conversational
AI systems.

Future work is planned to expand uncertainty
handling capabilities and enhance adaptation to
multilingual datasets, allowing for more effective
recognition of English speech by non-native speak-
ers, as well as the recognition of Bengali, Spanish,
and other languages.

6 Limitations

Our system currently demonstrates insufficient per-
formance when addressing the recognition of ho-
mophones and words or phrases that exhibit similar
phonetic characteristics. To enhance the efficacy of
speech recognition in such scenarios, it is impera-
tive to incorporate not only semantic but also prag-
matic levels of understanding within the system.
In the context of generative autoregressive mod-
els, the pragmatic level can be delineated through
instructions (prompts) that elucidate the local con-
versational context and specify the key terminology
employed by the interlocutors. Unfortunately, ar-
chitectures akin to Whisper exhibit limitations in
their capacity to adhere to these instructions. Con-
sequently, to address the challenge of effectively
integrating pragmatics into the speech recognition
system, we plan to incorporate large multimodal
models, such as Qwen-Audio.
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A Dictation mistakes overview

On April 20, 2024, our ASR system participated in
the “Total Dictation” (tot) event along with other
writers. “Total Dictation” is an annual mass event
in Russia where thousands of participants write
down a text read by a narrator.

A.1 Acoustic conditions
The dictation took place in a 200-person classroom
with a microphone and the text was read by a pro-
fessional philologist. The narrator pronounced the
text clearly and loudly, which was favorable for
the recognition process. The room where the dic-
tation took place had background noise due to the
presence of over a hundred participants. Conver-
sations, noise from people moving, coughing, and
rustling paper all created acoustic noise that hin-
dered speech recognition. The large auditorium
where the dictation was held had high reverberation,
which negatively affected the audibility of speech.
The input signal was obtained by classroom mi-
crophone, which recorded speech according the
acoustics of the room.

A.2 Linguistic Conditions of the Text
The text was written in Russian in a free, conversa-
tional style. It was dedicated to the topic of diaries
and their role in a person’s life. The text’s lexicon
was straightforward, using common words and ex-
pressions. The text had a clear structure, consisting
of several paragraphs.

First of all, the text was read entirely, then each
sentence was repeated at a fast pace. After that it
was dictated slowly by parts, sometimes the parts
were repeated at the request of the listeners. After
all, the sentence was repeated in full at a fast pace.
The narrator inserted additional comments into the
text that did not require transcription. This added
the task of separating the main text from extraneous
comments. Each paragraph was announced with
phrases like “We start the next sentence with a new
line” or “Let’s start a new paragraph”. At the end of
the dictation, the text was repeated once more at a
fast pace. The narrator also made some comments
not related to the content of the text. For example,
“Let’s take a break and warm our fingers, like we
did in school” or “Be patient, the end is near”.

To detect insertions we have trained the Long-
former model (Beltagy et al., 2020). As a dataset,
out-of-context inserts and line break inserts were
generated in texts. The text recognised at the first
dictation reading with all the inserts in the post-
processing was run through the Longformer. It was
not possible to remove a sufficient number of in-
serts, but it split the text into paragraphs correctly.
Then the text was recognized, which was repeated
by the speaker in the second reading without inserts.
The line break flags were taken from the first text
with inserts and applied to the second text without
inserts. Thus, the text without inserts and with line
breaks in the right places was obtained.

A.3 Typology of model mistakes
Based on the results of the dictation, the following
observations about the model work were made:

1. Two spelling errors were made. Both related
to the endings of a noun (“портрет гимна-
зистке” — genitive singular) and an adjective
(“ярко-синями”) and also three punctuation
errors (direct speech, homogeneous parts of a
sentence, comparative turnover).

2. Eight words (total count 276) (“рук”, “маска-
рады”, “разумеется”, “в мире почерком”,
“модным”, “приходило”) were missed at the
end of sentences. In this case, model did not
put a full stop, starting the next sentence with
a capital letter. Most of the omissions lead to
a violation of the sentence structure.

3. The ASR system ignored the parceling that
occurred twice in the text, although the narra-
tor drew attention to it. For example, the last
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sentences of the text were combined into one:
“Главное, чего не следовало делать, это
вырывать исписанные страницы. Отка-
зываться от своего прошлого” . However,
in both cases, punctuation marks were placed
correctly, and such a case would not have been
counted as an error when checking other writ-
ers.

4. In eight cases, the ASR system made “mis-
hearings”, writing down words that sounded
close but in most cases were far in meaning
from the original ones: instead of “клеенча-
тых” — “кальиончатых”, “чернилами” —
“черепами”, “катки” — “ходки”, “храни-
лись” — “хоронились”, “наивысшего” —
“наявившего”, “свадьбой” — “спать” . It
should be noted that the words “клеенчатых”
and “почерком” caused the greatest difficul-
ties for other dictation writers. The construc-
tion “читай – не хочу” , which the model
recorded as “Считай, не хотите” , was not
recognized by the model.

5. We will separately point out the “mishear-
ing” that led to the fact that the content of
the sentence was violated, but a similar error
is common among others who wrote the text:
instead of “Она мечтала о славе и так сме-
ло открывалась в своих записях. . . ” it
was “Она мечтала о славе, и та смело
открывалась в своих записях. . . ” .

Overall, the “model” copes well with spelling
and punctuation rules, ignores repetitions of parts
of sentences and words not related to the content
of the text, and correctly places paragraphs. The
number of spelling and punctuation errors made by
the system is less than that of most who wrote the
same text. The model is able to transform the origi-
nal text without violating the rules of the Russian
language. However, in some cases, the model in-
correctly perceives words and expressions, mainly
at the end of a sentence, omitting them or replacing
them, including with non-existent forms. The ex-
perts of “Total Dictation” (professional philologists
and linguists) evaluated the work of our ASR sys-
tem as B (“good”). For comparison, many people
write “Total Dictation” with a grade of F, making a
small number of mistakes.

B Noisy audio testing

The tables 3 and 4 show different results of ASR
pipeline configurations on noisy and clean audio.

C Testing computational efficiency

The table 5 shows that using Wav2Vec2 "smart"
chunking outperforms the uniform chunking of the
original Whisper model in terms of inference time.

D Uncertainty places in final
transcription

The example of highlighting dubious places in the
transcription, based on uncertainty estimation with
model disagreement are shown on Fig. 3.

996



Configuration WER ↓ BERT-F1 ↑
Whisper with uniform chunking 0.1995 0.9102
Whisper with Wav2Vec2 "smart" chunking 0.1065 0.9652
Whisper with Wav2Vec2 "smart" chunking and AST 0.1109 0.9588

Table 3: Different ASR pipeline configurations’ results for quiet noises audio

Configuration WER ↓ BERT-F1 ↑
Whisper with uniform chunking 0.3825 0.8508
Whisper with Wav2Vec2 "smart" chunking 0.2119 0.9169
Whisper with Wav2Vec2 "smart" chunking and AST 0.2133 0.9160

Table 4: Different ASR pipeline configurations’ results for loud noises audio

Configuration Max ↓ Average ↓ Median ↓
Whisper with uniform chunking 192.045 136.377 121.090
Whisper with Wav2Vec2 "smart" chunking 152.524 133.219 134.918
Whisper with Wav2Vec2 "smart" chunking and AST 151.923 131.495 130.809

Table 5: Different ASR pipeline configurations’ time (in seconds) results for noised audio

Figure 3: The example of highlighting dubious places in the transcription, based on uncertainty estimation with
model disagreement.
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