
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Industry Track), pages 833–848

April 30, 2025 ©2025 Association for Computational Linguistics

Distill-C: Enhanced NL2SQL via Distilled Customization with LLMs

Cong Duy Vu Hoang1∗, Gioacchino Tangari2∗, Clemence Lanfranchi3∗,
Dalu Guo2, Paul Cayet3, Steve Siu2, Don Dharmasiri2, Yuan-Fang Li2,

Long Duong2, Damien Hilloulin3, Rhicheek Patra3, Sungpack Hong3, Hassan Chafi3

1Oracle Analytics Cloud (OAC), Australia
2Oracle Health & AI (OHAI), Australia

3Oracle Labs, Switzerland
{vu.hoang, gioacchino.tangari, clemence.lanfranchi}@oracle.com

Abstract

The growing adoption of large language mod-
els (LLMs) in business applications has am-
plified interest in Natural Language to SQL
(NL2SQL) solutions, in which there is com-
peting demand for high performance and effi-
ciency. Domain- and customer-specific require-
ments further complicate the problem. To ad-
dress this conundrum, we introduce Distill-C, a
distilled customization framework tailored for
NL2SQL tasks. Distill-C utilizes large teacher
LLMs to produce high-quality synthetic data
through a robust and scalable pipeline. Fine-
tuning smaller and open-source LLMs on this
synthesized data enables them to rival or out-
perform teacher models an order of magni-
tude larger. Evaluated on multiple challenging
benchmarks,1 Distill-C achieves an average im-
provement of 36% in execution accuracy com-
pared to the base models from three distinct
LLM families. Additionally, on three internal
customer benchmarks, Distill-C demonstrates a
22.6% performance improvement over the base
models. Our results demonstrate that Distill-C
is an effective, high-performing and general-
izable approach for deploying lightweight yet
powerful NL2SQL models, delivering excep-
tional accuracies while maintaining low com-
putational cost.

1 Introduction

The increasing capabilities of large language mod-
els (LLMs) have led to their growing integration
into business environments for streamlining rou-
tine tasks (Minaee et al., 2024; Liu et al., 2024). A
key application is NL2SQL (Natural Language to
SQL) translation, where developers frequently need
to generate SQL queries for diverse business use
cases (Zhu et al., 2024). Although state-of-the-art
LLMs achieve high performance on public bench-

*Equal contributions & corresponding authors
1Datasets are available at https://github.com/

ClemenceLanfranchi/Distill-C

marks, their large resource and computational de-
mands, coupled with performance limitations in
certain real-world contexts, make smaller special-
ized models a more suitable option for many prac-
tical applications. However, smaller LLMs often
underperform relative to their larger counterparts,
limiting their practical effectiveness in demanding
scenarios.

One of the primary motivations for this work is
the emerging area of NL2SQL data synthesis and
knowledge distillation. Existing research has ex-
plored approaches to data synthesis and distillation
for NL2SQL applications, yet these methods re-
main generalized rather than tailored to the specific
needs of real-world customer environments. In re-
cent work (Yang et al., 2024a) propose a "SQLer"
model that generates training examples across di-
verse topics and domains. However, this approach
does not tailor the distillation process to specific
business applications. Similarly, another study
(Chen et al., 2023) introduced personalized distilla-
tion for code generation by addressing small-model
code execution errors, though it is not extended to
NL2SQL.

We propose Distill-C (Distilled Customization),
a novel framework for NL2SQL distillation that
introduces customizable elements to address spe-
cific customer use cases, requirements, and expec-
tations. Distill-C leverages teacher LLMs to gener-
ate distilled knowledge, which is then transferred
to smaller student models. By incorporating cus-
tomized synthesis techniques, error-driven refer-
ence examples, and tailored distillation strategies,
our approach enhances the accuracy and resource
efficiency of smaller NL2SQL models, making
them more practical for real-world applications.

Our contributions feature a scalable pipeline
with the following key components:

• Customization: Integrates customer-specific
features into the data synthesis for high-
quality NL2SQL data.

833

https://github.com/ClemenceLanfranchi/Distill-C
https://github.com/ClemenceLanfranchi/Distill-C

SQL Synthesizer Multi-Step Filtering Synthesized
SFT Data

CUSTOMIZATION INFORMATION

Custom Instructions (LearnPrior)

Reference Examples (AddRef)

Instructions when generating the SQL with
DateTime:
 - 'this quarter': TRUNC(DATE_column, 'Q')
= TRUNC(SYSDATE, 'Q')
 - 'last quarter':
TRUNC(DATE_column, 'Q') =
ADD_MONTHS(TRUNC(SYSDATE, 'Q'), -3)
 - 'last year':
TO_CHAR(DATE_column, 'YYYY') =
TO_CHAR(ADD_MONTHS(SYSDATE, -12), 'YYYY')
 - 'in the last X months': DATE_column
BETWEEN ADD_MONTHS(SYSDATE, -X) AND SYSDATE
...

Show margin by project vertical in the last
quarter of last year.

Which project has the largest indirect
costs since last January?

…

…

Show the total tonnage of all cargoes
loaded or unloaded at the port of
Singapore before last April

What's the total tonnage of all cargoes
loaded or unloaded at the port of
Singapore in Q2 of 2021

Question (New)

Question (New)

SELECT SUM(c.tonnage) FROM cargoes c JOIN
ports p ON c.port_id = p.id WHERE p.name =
'Singapore' AND (EXTRACT(YEAR FROM
c.load_date) < EXTRACT(YEAR FROM
SYSDATE) - 1 OR (EXTRACT(YEAR FROM
c.load_date) = EXTRACT(YEAR FROM
SYSDATE) - 1 AND EXTRACT(MONTH FROM
c.load_date) < 4));

We use the `before/prior to last April` condition,
which is translated to Oracle SQL as:
 + `EXTRACT(YEAR FROM c.load_date) <
EXTRACT(YEAR FROM SYSDATE) - 1` (before
last year)
 + `OR (EXTRACT(YEAR FROM c.load_date) =
EXTRACT(YEAR FROM SYSDATE) - 1 AND
EXTRACT(MONTH FROM c.load_date) < 4)` (last
year, but before April)

…

Completion (New)

…

Prompt (new)

Completion (new)

Prompt (new)

Completion (new)

Model
Finetuning+

Bootstrapping
SFT Data

LLM Pool

Customers
Developers

Pattern Matching

Execution Validation

LLMs-as-Juries

Filtering Feedback

NL Synthesizer

Reference Failures (FixIt)
Failure description: incorrect datetime
range
Reference Failures
Question: Fetch all payments for vision
operations this quarter
Expected SQL: SELECT * FROM
paymentDetail_view_payablesPayment WHERE
organizationUnit.name = 'Vision Operations' AND
TRUNC(paymentDate, 'Q') = TRUNC(SYSDATE, 'Q')
Predicted SQL (wrong): SELECT * FROM
paymentDetail_view_payablesPayment WHERE
organizationUnit.name = 'Vision Operations' AND
paymentDate BETWEEN DATE_TRUNC('quarter',
SYSDATE) AND SYSDATE

Figure 1: The Proposed Distill-C Framework.

• Targeted Distillation: Utilizes an ensemble
of LLMs to balance their strengths and weak-
nesses, generating tailored datasets with fea-
tures like date-time handling, financial analyt-
ics, and SQL compliance.

• Modular Synthesis: Separates natural lan-
guage and SQL synthesis, leveraging multiple
LLMs for better data diversity and robustness.

• Quality Assurance: Uses a multi-step fil-
tering process (pattern matching, execution
checks, LLM juries) to refine data quality.

Our Distill-C framework effectively enables
small LLMs to perform on par with, or even sur-
pass, their teacher models, exhibiting gains of 36%
on average across different families of models and
on various challenging benchmarks.

2 Methodology

2.1 Customization Scenarios
We present three distinct scenarios, including Ad-
dRef, LearnPrior, and FixIt - each of which is
based on a reasonable assumption often confirmed
in enterprise settings, where product and engineer-
ing teams typically have the capacity to provide
a few examples, instructional guidance, and error
feedback from early model deployments.

AddRef: Incorporating Reference Examples.
Reference examples consist of a pre-defined subset
of natural language (NL) queries provided by the
Customer and serve as a basis for guiding data
generation by LLMs. It is essential that these gen-
erated NL examples not only closely resemble the

reference examples but also exceed them in com-
plexity and originality.

LearnPrior: Leveraging Prior Custom Instruc-
tions. The Customer provides a limited set of
statements detailing prior requirements and expec-
tations for SQL responses generated by NL2SQL
models. These statements convey the Customer’s
insights into how model outputs should align with
their specific needs.

FixIt: Distilling Targeted Knowledge from Er-
ror Feedback. In this scenario, the Customer
has initial access to a baseline model that is evalu-
ated to identify a set of unacceptable model errors.
These errors serve as starting points for bootstrap-
ping targeted improvements, helping the model
avoid similar issues in subsequent iterations.

2.2 The Distill-C Framework

We developed our Distilled Customization frame-
work, abbreviated as Distill-C, to synthesize tai-
lored knowledge specifically adapted to the cus-
tomer scenarios described above. The core com-
ponents of our proposed Distill-C framework are
illustrated in Figure 1. The framework comprises
distinct NL and SQL synthesizers, followed by a
three-stage filtering pipeline, and it enables the in-
tegration of knowledge from multiple advanced
LLMs at each stage.

2.2.1 Distillation Pipelines
Our framework decouples NL and SQL synthe-
sis, which, though less resource-efficient than

834

Synthesized
SFT Data

(rawly distilled)

Pattern-based
Filtering

Execution-based
Filtering

LLM-based Relevance
Evaluation

LLM-based Quality
Evaluation Synthesized

SFT Data

LLM Pool
"question": "show oldest ship in
the port of Singapore"
…

Irrelevant Examples

Prompt Constructor
(NL Synthesizer)

Filtering Feedback

Figure 2: The Multi-Step Filtering Pipeline in our Distill-C Framework.

a single-step approach, offers two key benefits:
First, independent generation by different LLMs
enhances data diversity; Second, it leverages
model-specific strengths. For example, while
Llama3.1-70B-Instruct excels at generating real-
istic queries for a database schema, it may miss
OracleSQL-specific nuances better addressed by
Mixtral-8x22B-Instruct-v0.1, as shown in Table 1.

NL Synthesizer Pipeline. The NL synthesizer
produces new NL queries or questions, guided by
the customer’s customization scenarios, including
reference NL examples2 (AddRef); prior expert
instructions (LearnPrior); and targeted knowledge
from error feedback (FixIt). These scenarios can
be applied individually or in combination.

The NL synthesis process3 begins with Ref-
erence NL Extraction & Sampler, where NL
queries are sampled from reference examples, bal-
ancing inspiration with diversity within the LLM’s
context window. The Prompt Constructor then
assembles NL generator prompts by combining
these sampled NL examples and a database (DB)
schema.4 We also utilize discarded examples from
previous generation rounds, incorporating a limited
selection of them into the prompt as negative ex-
amples, which helps to iteratively refine the natural
language synthesis process.

Finally, multiple LLMs (preferably 50B+ pa-
rameters) generate diverse NL queries by leverag-
ing high-temperature sampling and varied random
seeds, benefiting from their superior instruction fol-
lowing and generation diversity.5 The outcome of

2consisting of 100 examples or fewer to initiate the data
synthesis process.

3as further illustrated in Appendix Figure 5.
4sampled from a pool of training DB schemas.
5Despite their capability, proprietary LLMs (OpenAI; An-

thropic; Gemini) are excluded from this process due to licens-
ing restrictions on production use of their generated data.

the NL synthesis phase is a set of new NL queries
relevant to the customer use case, each mapped to
a DB schema.

SQL Synthesizer Pipeline. Starting with a set
of {NL question, DB schema} pairs generated in
earlier steps, the SQL synthesizer employs multiple
Generator LLMs to translate each question into its
corresponding SQL query. This process produces
a preliminary, or "raw", distillation dataset (prior
to filtering), where each entry forms a complete
NL2SQL data point pairing the DB schema and NL
question as the prompt with the SQL query as the
completion. This dataset serves as a foundation for
transferring knowledge from strong foundational
LLMs into smaller models.

Key aspects of the SQL synthesis process (de-
tailed in Appendix Figure 6) include:

• Diverse LLMs as Generators: Multiple
LLMs enhance data diversity and address
model-specific gaps, with some excelling in
constructs like the Oracle SQL dialect.

• Instruction-Conditioned Generation: Task-
specific instructions (LearnPrior) ensure SQL
outputs align with customer requirements, in-
cluding handling complex datetime structures
(intervals, absolute and relative references).6

The synthesis process includes three key steps:
1. Prompt Constructor: Combines user queries,

database schemas, and task-specific instruc-
tions to create effective prompts.

2. SQL Generation: LLMs generate SQL
queries with descriptions, forming a synthetic
supervised fine-tuning (SFT) dataset that clar-
ifies complex SQL elements.

3. Prompt Post-Processing: Strips instructions
from prompts in the SFT dataset to ensure

6as further illustrated in Appendix Figure 8.

835

Model Variant DateTime (%) Financial Analytics (%) OracleSQL
Compliance (%)

spd-ora spd-lite bd-lite bd-ora spd+bd-ora spd+bd-lite spd-ora bd-ora
Student LLMs & SFT with Distill-C (A-Full Setting)

CodeQwen1.5-7B-Chat 30.4 58.1 37.9 2.6 24.8 47.8 33.9 4.6
+Distill-C (A-Full) 74.0 68.7 57.2 33.8† 89.5† 84.1† 77.6 34.8†
Llama-3.1-8B-Instruct 29.8 62.6 41.3 2.6 17.0 35.9 36.1 3.1
+Distill-C (A-Full) 81.2† 67.6 59.3 29.5 83.2 78.2 79.4† 32.0
Mistral-7B-Instruct-v0.3 22.1 46.4 22.2 2.6 21.1 24.5 38.4 4.4
+Distill-C (A-Full) 74.6 65.4 38.8 31.2 84.5 80.4 77.3 28.2

Out-of-the-Box Strong LLMs (selected)
Qwen2-72B-Instruct (teacher) 32.0 67.0 55.7 8.1 41.2 62.1 42.4 9.0
Llama-3.1-70B-Instruct (teacher) 24.3 62.0 61.6† 4.3 1.6 42.3 34.4 4.4
Mixtral-8x22B-Instruct-v0.1 (teacher) 48.6 64.8 42.0 21.4 67.5 71.3 54.1 16.9
Mistral-Large-Instruct-2407 51.4 73.7† 53.9 16.2 83.6 83.2 58.1 20.6
DeepSeek-Coder-V2-Instruct 44.2 71.5 55.3 15.0 65.2 78.2 53.8 19.4

Table 1: Task performances on DateTime, Financial Analytics, and OracleSQL Compliance. †marks column
bests; bold shows Distill-C induced performance. Notations: spd: Spider, bd: Bird, ora: OracleSQL, lite: SQLite.

smaller models learn directly from distilled
examples.

2.2.2 Multi-Step Filtering Pipeline
The training examples derived from the NL & SQL
Synthesizer pipelines, consisting of (i) a prompt
with a new question and (ii) an SQL completion,
undergo a multi-step filtering process, as illustrated
in Figure 2, to ensure data quality and minimize
noise:

• Pattern-Based Filtering: Removes examples
with non-target syntax (e.g., MySQL-specific
keywords for Oracle SQL), reducing the load
on resource-intensive downstream filters.

• Execution-Based Filtering: Validates SQL
by executing it on real databases linked to
schema contexts, discarding non-executable
queries to prevent negatively impacting model
performance.

• LLM-Based Quality Evaluation: Uses mul-
tiple strong LLMs as "juries" (Verga et al.,
2024) to evaluate and rank examples for se-
mantic accuracy to ensure alignment with in-
tended NL meaning. This automated approach
replaces manual review for large datasets.

• LLM-Based Relevance Evaluation: Ensures
examples are relevant to the target use case by
requiring unanimous agreement among LLMs.
Irrelevant data is flagged as "Filtering Feed-
back" (Figure 1) for refining the NL synthesis.

2.2.3 Finetuning
The final step involves finetuning the smaller tar-
get LLM using synthesized instruction data and a
small bootstrapping dataset, which is crucial for
mitigating biases and preventing model collapse
(Gerstgrasser et al., 2024).

3 Experiments

3.1 Evaluation Tasks

We evaluate our approach on customer-identified
tasks, including:

• DateTime: Generating SQL for complex tem-
poral conditions, including relative (e.g., "last
2 quarters") and composite clauses (e.g., "first
quarter of the last 5 years").

• Financial Analytics: Querying trends, corre-
lations, and financial metric breakdowns (e.g.,
profits by country or quarter).

• OracleSQL Compliance: Producing syntac-
tically correct OracleSQL queries.

3.2 Data and Evaluation Settings

Experimental Data. We built our experimental
data using Spider (1.0) (Yu et al., 2018) and BIRD
(Li et al., 2024a). For each task, we prepared three
datasets: (i) a curated test set; (ii) a small develop-
ment set for customization via AddRef, LearnPrior,
and FixIt scenarios; (iii) a training set generated
with the Distill-C pipeline. The training, testing
and dev sets respectively comprise 199, 31, 10 dis-
joint DB schemas to prevent data leakage. Data
statistics are in Table 3.
Metric. We use execution accuracy (Zhong et al.,
2020) to evaluate our framework, which com-
pares the execution results of the generated SQL
query and the ground-truth on the corresponding
database.

3.3 Model Settings

We evaluated our proposed Distill-C framework
with a series of settings, progressing from NL-only
(B) to complete (A-Full), which enables systematic
evaluation of the impact of increasing supervision

836

Customer Use Case Student Model Distill-C Model Distill-C Impact

Customer 1 Account payables and receivables management (4
schemas; 192/497 examples with datetime)

80% 97% Distill-C → DateTime

Customer 2 Information technology services and consulting (1
schema; 25/28 examples with financial analytics)

54% 78% Distill-C → Financial
Analytics

Customer 3 Autonomous database (6 schemas; 99/99 exam-
ples with OracleSQL compliance)

42% 71% Distill-C → OracleSQL
Compliance

Table 2: Impact of Our Distill-C Method on Customer Benchmarks.

Task Origin SQL Dialect Train Dev Test
DateTime Bird OracleSQL 9,621 115 533

Bird SQLite 33,173 78 234
Spider OracleSQL 13,460 131 680
Spider SQLite 37,172 97 179

Financial Bird OracleSQL 13,460 63 1,753
Analytics Bird SQLite 23,091 113 734

Spider OracleSQL 17,734 108 3,820
Spider SQLite 35,749 123 1,366

OracleSQL Bird OracleSQL 29,877 319 1,469
Compliance Spider OracleSQL 39,369 326 1,478

Table 3: Statistics of Train, Dev, and Test Datasets.

Setting Description

B Distill-C w/ AddRef (NL): Uses 10 to 100 NL-only examples
for data synthesis without SQL supervision.

C Distill-C w/ AddRef (NL) + LearnPrior: Adds tailored instruc-
tions to NL-only examples to guide SQL generation.

D Distill-C w/ AddRef (NL+SQL): Adds SQL supervision with
paired NL + SQL examples for explicit NL-to-SQL mappings.

E Distill-C w/ AddRef (NL) + LearnPrior + FixIt: Extends C with
incorrect SQL examples to train error recognition.

A-Full Full Distill-C: AddRef (NL+SQL) + LearnPrior + FixIt

Table 4: Summary of evaluation settings.

and tailored training signals on model performance,
as shown in Table 4. The distillation signals from
teacher LLMs are derived in Table 5.

3.4 Public Main Results

The experimental results in Table 1 highlight the
effectiveness of our proposed Distill-C frame-
work, which integrates three customization sce-
narios (AddRef, LearnPrior, FixIt) to enhance
the performance of various student LLMs across
three challenging tasks: DateTime, Financial An-
alytics, and Oracle SQL Compliance. Our ap-
proach achieves significant performance gains
across three foundational LLMs: CodeQwen1.5-
7B-Chat (26.2%, 55.5%, 36.9%), Llama-3.1-8B-
Instruct (25.3%, 54.3%, 36.1%), and Mistral-7B-

Student LLM Teacher LLM(s)
Qwen1.5-7B-Instruct Qwen2-72B-Instruct, Mixtral-8x22B-Instruct-

v0.1
Llama3.1-8B-Instruct Llama3.1-70B-Instruct, Mixtral-8x22B-

Instruct-v0.1
Mistral-7B-Instruct-v0.3 Mixtral-8x22B-Instruct-v0.1, Llama3.1-70B-

Instruct

Table 5: Student & Teacher LLMs used for distillation.

Instruct-v0.3 (29.2%, 59.7%, 31.4%) for DateTime,
Financial Analytics, and OracleSQL Compliance,
respectively. These improvements across multi-
ple benchmarks underscore the robustness of our
method in enhancing LLM capabilities across di-
verse tasks.

Furthermore, the distilled models surpass
several strong out-of-the-box LLMs, includ-
ing their teacher models such as Qwen2-72B-
Instruct, Llama-3.1-70B-Instruct, and Mixtral-
8x22b-Instruct-v0.1, which can be attributed to the
tailored prompts that are used to guide the data
synthesis process, fostering better SQL generation
from the teacher models. Our fine-tuned mod-
els outperform larger state-of-the-art LLMs (e.g.,
Mistral-Large-Instruct-2407 and DeepSeek-Coder-
V2-Instruct) on multiple benchmarks, showcasing
the effectiveness of the Distill-C framework. These
findings demonstrate the potential of the Distill-C
framework to significantly enhance smaller LLMs,
enabling them to handle complex tasks more effec-
tively while providing substantial efficiency bene-
fits for deployment.

3.5 Customer Impact

We demonstrated the business impact of our Distill-
C method through enhanced performance gains on
internal and customer-specific datasets.7

The performance boost of Distill-C on domain-
specific tasks, as shown in Table 2, highlights its
capability to address key challenges in customer-
specific tasks such as DateTime handling, financial
analytics, and SQL compliance, improving average
accuracy significantly, by 22.6 absolute points. For
DateTime tasks in Customer 1’s account manage-
ment use case, Distill-C achieved near-perfect ac-
curacy (97%), demonstrating its robustness in han-
dling temporal data critical for financial workflows.
In Customer 2’s financial analytics use case, the
model significantly improved performance from

7Due to proprietary restrictions, we are unable to disclose
the specifics of the customer schemas as well as benchmark
sets for the NL2SQL tasks.

837

0 10 20 30 40 50 60 70 80

COUNT

ORDER BY

GROUP BY

2x JOIN

1x JOIN

0x JOIN

Comparators

Set Operations
(UNION, INTERSECT, etc.)

Analytics
(SUM, AVG, etc.)

Overall

410

237

277

72

320

626

156

124

120

1034

(a) FixIt experiment on Llama-3.1-8B-Instruct as
Student model and Llama-3.1-70B-Instruct as Teacher model

Student Model (Base) FixIt-enhanced Model Teacher Model

0 10 20 30 40 50 60 70 80

410

237

277

72

320

626

156

124

120

1034

(b) FixIt experiment on CodeQwen1.5-7B-Chat as
Student model and Qwen2-72B-Instruct as Teacher model

Accuracy on Spider SQLite Dev Set (in %)

Figure 3: FixIt Ablation Study Experiments. Performance of student models finetuned with the FixIt scenario
using Distill-C on Spider (dev) sub-groups, showing results for student, finetuned, and teacher models, with sample
counts per group.

54% to 78%, showcasing its ability to handle com-
plex financial datasets and provide actionable in-
sights. Finally, for Customer 3, focused on Ora-
cleSQL compliance in autonomous database use
case, Distill-C delivered a substantial gain, raising
accuracy from 42% to 71%. These results under-
score Distill-C’s versatility and effectiveness in en-
hancing precision and reliability across specialized
tasks in diverse domains.

3.6 Ablation Study

We conduct two ablation studies to assess the im-
pact of individual scenarios in Distill-C.

Individual FixIt Scenario. We evaluate the
FixIt scenario using Llama-3.1-8B-Instruct and
CodeQwen1.5-7B-Chat as student LLMs. Er-
rors identified from the Spider training set (Yu
et al., 2018) are processed through our data gen-
eration pipeline, where the NL Prompt Construc-
tor (Figure 5) utilize these errors to guide teacher
LLMs (Qwen2-72B-Instruct for CodeQwen and
Llama-3.1-70B-Instruct for Llama) to create tar-
geted datasets used to finetune the student models,
producing FixIt-enhanced versions.

On the Spider development set, FixIt achieves
performance improvements of 6.4% and 8%
for Llama-3.1-8B-Instruct and CodeQwen1.5-7B-
Chat, respectively, significantly narrowing gaps
with their teacher models. Figure 3 shows notable
gains in Analytics and Set Operations, effectively
addressing key weaknesses.

Full Scenarios. Figure 4 demonstrates

the consistent and substantial improvements
achieved by integrating all scenarios (Ad-
dRef+LearnPrior+FixIt) within our Distill-C frame-
work. While the AddRef scenario alone (Setting B)
already brings a significant improvement of 24.7%
on average, showcasing the importance of finetun-
ing models on tasks that are similar to the target
tasks, we also see that providing prior knowledge
and leveraging errors is key to obtaining optimal
performance. Moreover, the similarity in perfor-
mance between scenarios C and D (respectively
+30.4% and +32.6% on average) tends to show
that custom instructions and examples of ground
truth SQL queries are both valid options to distill
prior knowledge. This integration leads to signif-
icant performance gains across a diverse range of
benchmarks, including DateTime, Financial An-
alytics, and Oracle SQL Compliance, showcas-
ing the versatility and robustness of our approach.
Notably, these improvements are observed consis-
tently across multiple student LLMs, underscoring
the generalizability and effectiveness of the pro-
posed framework. Overall, the results highlight
how the synergistic combination of these scenarios
enables Distill-C to address complex challenges
and deliver superior outcomes, making it a com-
pelling solution for advancing language understand-
ing and task-specific performance.

4 Related Work

Recent advancements in NL2SQL research have
explored techniques to enhance the performance of

838

20
40

60
80

100

spd-ora-dt

spd-lite-dt

bd-lite-dt

bd-ora-dt

spd+bd-ora-ana

spd+bd-lite-ana

spd-ora-cpl

bd-ora-cpl

X=Qwen1.5-7B-Chat

20
40

60
80

100

spd-ora-dt

spd-lite-dt

bd-lite-dt

bd-ora-dt

spd+bd-ora-ana

spd+bd-lite-ana

spd-ora-cpl

bd-ora-cpl

X=Llama3.1-8B-Instruct

20
40

60
80

100

spd-ora-dt

spd-lite-dt

bd-lite-dt

bd-ora-dt

spd+bd-ora-ana

spd+bd-lite-ana

spd-ora-cpl

bd-ora-cpl

X=Mistral-7b-v0.3-Instruct

Model Accuracies Across Benchmarking Datasets

Models
LLM-X-OOTB-Baseline
LLM-X-SFTed-Setting-B

LLM-X-SFTed-Setting-C
LLM-X-SFTed-Setting-D

LLM-X-SFTed-Setting-E
LLM-X-SFTed-Setting-A-Full

Figure 4: Ablation study with distillation settings (Table 4). Notations: spd: Spider, bd: Bird, dt: DateTime, ana:
Analytics, ora: OracleSQL, lite: SQLite, cpl: Compliance. Numerical results are reported in Appendix B.3.

Large Language Models (LLMs).

Prompt Engineering and Reasoning. Prompt
engineering has been explored to optimize
NL2SQL capabilities of LLMs. PET-SQL (Li
et al., 2024b) adopts a two-round framework with
enhanced representations, and EPI-SQL (Liu and
Tan, 2024) generates error-prevention prompts to
reduce LLM errors. Self-correction and iterative re-
finement have also been explored in SQL-CRAFT
(Xia et al., 2024) and DART-SQL (Mao et al.,
2024), which integrate interactive feedback loops.
However, these approaches are not well-suited to
smaller Large Language Models (LLMs) because
they necessitate acute reasoning capabilities that
such models typically lack. On the other hand,
Distill-C addresses this limitation by focusing on
bridging the performance gap between large and
small LLMs. This method leverages the advanced
reasoning abilities of larger LLMs to distill their
knowledge into more compact forms, thereby en-
hancing the capabilities of smaller models without
requiring extensive computational resources.

Synthetic Data Generation. Recent works
have shown the great promise of synthetic data.
SQL-GEN (Pourreza et al., 2024) produces dialect-
specific synthetic training data, while SENSE
(Yang et al., 2024b) utilizes synthetic data for do-
main generalization and preference learning. Our
approach focuses on creating tailored datasets that
cater to specific customer needs by integrating tar-
geted instructions and relevant examples into our
data generation pipeline. Unlike previous work, we

further customize the data generation process for
individual student language models (LLMs) using
error-driven reference examples.

5 Conclusion

We introduce Distill-C, a novel customizable dis-
tillation framework for enhancing small LLMs in
NL2SQL tasks for enterprise applications. Despite
their smaller sizes, the enhanced models by Distill-
C achieve significant gains over strong baselines
across benchmarks, including DateTime, Finan-
cial Analytics, and Oracle SQL Compliance. The
initial costs associated with Distill-C, which in-
volve hosting larger LLMs for data generation and
fine-tuning smaller models, are offset by long-term
advantages. These benefits arise because business
units can then utilize more efficient and specialized
smaller LLMs, ultimately leading to a substantial
return on investment. Our work lays the founda-
tion for robust distillation solutions, enabling the
development of specialized NL2SQL models that
can be tailored to specific business needs.

Our future work will explore extensions to pref-
erence alignment training (Rafailov et al., 2024)
and applications to other practical tasks.

Acknowledgments

We extend our sincere appreciation to our col-
leagues at the Science Team within Oracle Cloud
Infrastructure (OCI) for their support and valuable
feedback.

839

We are grateful to Giulia Carocari for her assis-
tance in translating SQL queries between SQLite
and Oracle SQL, as well as the anonymous review-
ers whose valuable feedback significantly improved
this work.

References
Hailin Chen, Amrita Saha, Steven Hoi, and Shafiq Joty.

2023. Personalized distillation: Empowering open-
sourced LLMs with adaptive learning for code gen-
eration. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 6737–6749, Singapore. Association for Com-
putational Linguistics.

Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey,
Rafael Rafailov, Henry Sleight, John Hughes,
Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, An-
drey Gromov, Daniel A. Roberts, Diyi Yang, David L.
Donoho, and Sanmi Koyejo. 2024. Is model col-
lapse inevitable? breaking the curse of recursion
by accumulating real and synthetic data. Preprint,
arXiv:2404.01413.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng,
Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang
Li, Kevin C.C. Chang, Fei Huang, Reynold Cheng,
and Yongbin Li. 2024a. Can llm already serve as
a database interface? a big bench for large-scale
database grounded text-to-sqls. In Proceedings of the
37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA.
Curran Associates Inc.

Zhishuai Li, Xiang Wang, Jingjing Zhao, Sun Yang,
Guoqing Du, Xiaoru Hu, Bin Zhang, Yuxiao Ye,
Ziyue Li, Rui Zhao, and Hangyu Mao. 2024b.
Pet-sql: A prompt-enhanced two-round refinement
of text-to-sql with cross-consistency. Preprint,
arXiv:2403.09732.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi
Jiang, Yuyu Luo, Yuxin Zhang, Ju Fan, Guoliang Li,
and Nan Tang. 2024. A survey of nl2sql with large
language models: Where are we, and where are we
going? Preprint, arXiv:2408.05109.

Xiping Liu and Zhao Tan. 2024. Epi-sql: Enhancing
text-to-sql translation with error-prevention instruc-
tions. Preprint, arXiv:2404.14453.

Toby Mao. 2024. Sqlglot: Python sql parser and tran-
spiler. https://github.com/tobymao/sqlglot.
Accessed: 2024-11-29.

Wenxin Mao, Ruiqi Wang, Jiyu Guo, Jichuan Zeng,
Cuiyun Gao, Peiyi Han, and Chuanyi Liu. 2024. En-
hancing text-to-SQL parsing through question rewrit-
ing and execution-guided refinement. In Findings of
the Association for Computational Linguistics ACL

2024, pages 2009–2024, Bangkok, Thailand and vir-
tual meeting. Association for Computational Linguis-
tics.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,
Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. 2024. Large language
models: A survey. Preprint, arXiv:2402.06196.

Mohammadreza Pourreza, Ruoxi Sun, Hailong Li, Lesly
Miculicich, Tomas Pfister, and Sercan O. Arik. 2024.
Sql-gen: Bridging the dialect gap for text-to-sql
via synthetic data and model merging. Preprint,
arXiv:2408.12733.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2024. Direct preference optimization: your language
model is secretly a reward model. NIPS ’23, Red
Hook, NY, USA. Curran Associates Inc.

Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yix-
uan Su, Aleksandra Piktus, Arkady Arkhangorodsky,
Minjie Xu, Naomi White, and Patrick Lewis. 2024.
Replacing judges with juries: Evaluating llm gen-
erations with a panel of diverse models. Preprint,
arXiv:2404.18796.

Hanchen Xia, Feng Jiang, Naihao Deng, Cunxiang
Wang, Guojiang Zhao, Rada Mihalcea, and Yue
Zhang. 2024. r3: "this is my sql, are you with me?"
a consensus-based multi-agent system for text-to-sql
tasks. Preprint, arXiv:2402.14851.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Jun-
yang Lin, and Chang Zhou. 2024a. Synthesizing
text-to-SQL data from weak and strong LLMs. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 7864–7875, Bangkok, Thailand.
Association for Computational Linguistics.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024b. Synthesizing text-
to-sql data from weak and strong llms. Preprint,
arXiv:2408.03256.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic
evaluation for text-to-SQL with distilled test suites.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 396–411, Online. Association for Computa-
tional Linguistics.

Xiaohu Zhu, Qian Li, Lizhen Cui, and Yongkang Liu.
2024. Large language model enhanced text-to-sql
generation: A survey. Preprint, arXiv:2410.06011.

840

https://doi.org/10.18653/v1/2023.emnlp-main.417
https://doi.org/10.18653/v1/2023.emnlp-main.417
https://doi.org/10.18653/v1/2023.emnlp-main.417
https://arxiv.org/abs/2404.01413
https://arxiv.org/abs/2404.01413
https://arxiv.org/abs/2404.01413
https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2404.14453
https://arxiv.org/abs/2404.14453
https://arxiv.org/abs/2404.14453
https://github.com/tobymao/sqlglot
https://doi.org/10.18653/v1/2024.findings-acl.120
https://doi.org/10.18653/v1/2024.findings-acl.120
https://doi.org/10.18653/v1/2024.findings-acl.120
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2408.12733
https://arxiv.org/abs/2408.12733
https://arxiv.org/abs/2404.18796
https://arxiv.org/abs/2404.18796
https://arxiv.org/abs/2402.14851
https://arxiv.org/abs/2402.14851
https://arxiv.org/abs/2402.14851
https://doi.org/10.18653/v1/2024.acl-long.425
https://doi.org/10.18653/v1/2024.acl-long.425
https://arxiv.org/abs/2408.03256
https://arxiv.org/abs/2408.03256
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://arxiv.org/abs/2410.06011
https://arxiv.org/abs/2410.06011

A Additional Figures

We include additional figures to illustrate the com-
ponents of our Distill-C framework: the NL Synthe-
sizer Pipeline in Figure 5 and the SQL Synthesizer
Pipeline in Figure 6, respectively.

B Additional Tables

B.1 Experimental Setup: Training and
Inference Configurations

We also provide our training and inference hyper-
parameter configurations in Table 8.

B.2 Evaluation Tasks
In Table 6, we present detailed descriptions and ex-
amples of the three evaluation tasks used to assess
the impact of our Distill-C framework.

B.3 Ablation Study Evaluation
We further provide the detailed results of our abla-
tion study (shown in Figure 4) in Table 7.

C SQL Dialect Conversion

We utilize the SQLGlot library (Mao, 2024) to
translate SQL queries from the Bird and Spider
datasets from SQLite to the OracleSQL dialect. To
enhance the translations, we apply a custom post-
processor to address potential parsing issues and
align with OracleSQL conventions.

D Prompts in The Distill-C Framework

D.1 Prompts for NL and SQL Synthesizer
Pipelines

We also present additional prompt templates uti-
lized across various components of our Distill-C
framework, including:

• Figure 7 - An example prompt template for the
NL Synthesizer pipeline (AddRef scenario).

• Figure 8 - An example prompt template for
the SQL Synthesizer pipeline (LearnPrior sce-
nario) with a focus on DateTime use case.

D.2 Prompts for Multi-Step Filtering Pineline
Given the large scale of the Synthetic SFT Data
(over 10,000 instances), manual or human-in-the-
loop evaluation is not feasible. Therefore, we rely
on soft evaluation using multiple strong LLMs as
judges, following (Verga et al., 2024). We em-
ployed two primary evaluation phases as shown in
Figure 2 as follows:

• LLM-based Quality Evaluation. In this eval-
uation, each ’judge’ LLM assigns a 1-to-5 star
score per criterion, with a cut-off as a hyper-
parameter: consensus on ’5 stars’ is required
for SQL correctness and compliance, and at
least ’4 stars’ for NL quality (Figure 9).

• LLM-based Relevance Evaluation This eval-
uation step queries multiple LLMs to assess
the relevance of a generated example to the
use case in the Reference Examples, using
prompts in Figure 10. Examples marked ’rele-
vant’ by all LLMs are added to the final syn-
thetic fine-tuning set, while those marked ’ir-
relevant’ are stored as ’irrelevant examples’
for the Input Schema to guide future NL gen-
eration (Figure 5).

841

Task Name Description DB Schema Sample NL Query Sample OracleSQL Query

DateTime Handling complex temporal
conditions, including absolute,
relative, and composite clauses.
Absolute clauses use fixed dates,
relative clauses involve SYSDATE,
and composite clauses mix both.

wta_1 (Spider) Get the ranking history
of Serena Williams
since March 2015.

SELECT rankings.* FROM rankings JOIN
players ON rankings.player_id =
players.player_id WHERE
players.first_name = ’Serena’ AND
players.last_name = ’Williams’ AND
TO_CHAR(rankings.ranking_date,
’YYYY-MM’) >= ’2015-03’

financial (Bird) Which client got his/her
card issued since last
May? Show the client
ID.

SELECT T2.client_id FROM "client" T1
INNER JOIN disp T2 ON T1.client_id =
T2.client_id INNER JOIN card T3 ON
T2.disp_id = T3.disp_id WHERE
TRUNC(T3.issued, ’MM’) >=
ADD_MONTHS(TRUNC(SYSDATE - INTERVAL ’1’
YEAR, ’YYYY’), 4)

Financial
Analytics

Producing trends, correlations, and
breakdown of financial metrics by
date-time intervals and categories.
Includes handling complex clauses
like GROUP BY, ORDER BY, and
Common Table Expressions
(CTEs).

e_commerce
(Spider)

What is the total revenue
generated by each
product for each
customer in 2023, and
which product generated
the highest revenue for
each customer?

SELECT c.customer_id,
c.customer_first_name,
c.customer_last_name, p.product_id,
p.product_name, SUM(p.product_price) AS
total_revenue, RANK() OVER (PARTITION
BY c.customer_id ORDER BY
SUM(p.product_price) DESC) AS
revenue_rank FROM Customers c JOIN
Orders o ON c.customer_id =
o.customer_id JOIN Order_Items oi ON
o.order_id = oi.order_id JOIN Products
p ON oi.product_id = p.product_id JOIN
Shipments s ON o.order_id = s.order_id
JOIN Invoices i ON s.invoice_number =
i.invoice_number WHERE EXTRACT(YEAR
FROM i.invoice_date) = 2023 GROUP BY
c.customer_id, c.customer_first_name,
c.customer_last_name, p.product_id,
p.product_name ORDER BY c.customer_id,
total_revenue DESC

financial (Bird) Calculate the total loans
approved per district in
2023, broken down by
status, sorted in
descending order.

SELECT d.district_id, d.A2 AS
district_name, l.status, SUM(l.amount)
AS total_loan_amount FROM district d
JOIN "account" a ON d.district_id =
a.district_id JOIN loan l ON
a.account_id = l.account_id WHERE
EXTRACT(YEAR FROM l."date") = 2023
GROUP BY d.district_id, d.A2, l.status
ORDER BY total_loan_amount DESC

OracleSQL
Compliance

Handling OracleSQL-dialect
syntax, including ORDER BY with
"FETCH FIRST/LAST {N}
ROWS", correct quoting, and
casing for schema object names.

car_1 (Spider) What are the different
models created by either
General Motors or over
3500 lbs?

SELECT DISTINCT T1."model" FROM
model_list T1 JOIN car_makers T2 ON
T1.Maker = T2."id" JOIN car_names T3 ON
T1."model" = T3."model" JOIN cars_data
T4 ON T3.MakeId = T4."id" WHERE
T2.FullName = ’General Motors’ OR
T4.Weight > 3500

financial (Bird) List out the accounts
who have the earliest
trading date in 1995 ?

SELECT account_id FROM trans WHERE
EXTRACT(YEAR FROM "date") = 1995 ORDER
BY "date" ASC FETCH FIRST 1 ROWS ONLY

Table 6: Details of the Evaluation Tasks.

842

Reference NL
Extraction & Sampler

Prompt Constructor NL Generator

LLM Pool

Training DB
Schemas

"question": "show oldest ship in
the port of Singapore"
…

Irrelevant Examples

"question": "show due amount for
payments after last July",

"question": "show all orders of food
products which had order date on last
Tuesday&Thursday",
....

Set of Reference NL Examples

Given a Input Schema used in a NL2SQL system, your task is to
generation {N} new Natural Language queries inspired on the
Reference Examples below and appropriate to the Input Schema
- The Reference Examples refer to a particular Customer use-
case, which is the target for the data generation
- The new examples should have similar or higher level of
complexity of the Reference Examples provided below.
- While taking inspiration on the Reference Examples, you
should also be creative in generating original queries.
- In addition to the Reference Example, please refer to Irrelevant
Examples (if any) for examples of NL queries that are not
relevant to the Customer use-case

Reference Examples
{REFS}

Irrelevant Examples
{IRR_REFS}

Input Schema
{SCHEMA}

Generated Examples

NL Generator Prompt

Synthetic NL
Dataset

Schema_x
Question (New)

Show the total tonnage of all cargoes loaded or
unloaded at the port of Singapore before last April

Schema_y
Question (New)

What's the average tonnage of all cargoes for
shipments in Q2 of 2021

CUSTOMIZATION INFORMATION

Reference Examples (AddRef)

Show margin by project vertical in the last
quarter of last year.

Which project has the largest indirect
costs since last January?

…

Customers
Developers

Reference Failures (FixIt)
Failure description: incorrect datetime
range
Reference Failures
Question: Fetch all payments for vision
operations this quarter
Expected SQL: SELECT * FROM
paymentDetail_view_payablesPayment WHERE
organizationUnit.name = 'Vision Operations' AND
TRUNC(paymentDate, 'Q') = TRUNC(SYSDATE, 'Q')
Predicted SQL (wrong): SELECT * FROM
paymentDetail_view_payablesPayment WHERE
organizationUnit.name = 'Vision Operations' AND
paymentDate BETWEEN DATE_TRUNC('quarter',
SYSDATE) AND SYSDATE

Figure 5: The NL Synthesizer Pipeline in our Distill-C Framework.

CUSTOMIZATION INFORMATION

Custom Instructions (LearnPrior)

Customers
Developers

Prompt Constructor SQL Generator

LLM Pool

SQL Generator Prompt

Synthetic NL
Dataset

Schema_x
Question (New)

Show the total tonnage of all cargoes
loaded or unloaded at the port of
Singapore before last April

Schema_y
Question (New)

What's the average tonnage of all
cargoes for shipments in Q2 of 2021

Prompt Postprocessor

Here is the database schema context:

CREATE TABLE ports(
 id INT,
 name VARCHAR(255),
 country VARCHAR(255)
)

CREATE TABLE cargoes(
 id INT,
 name VARCHAR(255),
 tonnage INT,
 port_id INT,
 load_date DATE
)

Question: What's the total tonnage of all cargoes
loaded or unloaded at the port of Singapore before
last April

Write a SQL query in Oracle SQL dialect,
compatible with the latest version of Oracle
Database, that answers the question above, along
with a short free-text explanation of the generated
SQL.

Generated
SELECT SUM(c.tonnage) FROM cargoes c JOIN
ports p ON c.port_id = p.id WHERE p.name =
'Singapore' AND (EXTRACT(YEAR FROM
c.load_date) < EXTRACT(YEAR FROM SYSDATE) -
1 OR (EXTRACT(YEAR FROM c.load_date) =
EXTRACT(YEAR FROM SYSDATE) - 1 AND
EXTRACT(MONTH FROM c.load_date) < 4));

We use the `before/prior to last April` condition,
which is translated to Oracle SQL as:
 + `EXTRACT(YEAR FROM c.load_date) <
EXTRACT(YEAR FROM SYSDATE) - 1` (before last
year) + `OR (EXTRACT(YEAR FROM c.load_date) =
EXTRACT(YEAR FROM SYSDATE) - 1 AND
EXTRACT(MONTH FROM c.load_date) < 4)` (last
year, but before April)

…

Synthesized
SFT Data

(rawly distilled)

(New) Prompt
Here is the database schema context:

CREATE TABLE ports(
 id INT,
 name VARCHAR(255),
 country VARCHAR(255)
)

CREATE TABLE cargoes(
 id INT,
 name VARCHAR(255),
 tonnage INT,
 port_id INT,
 load_date DATE
)

Question: What's the total tonnage of all cargoes loaded or
unloaded at the port of Singapore before last April

Write a SQL query in Oracle SQL dialect, compatible with
the latest version of Oracle Database, that answers the
question above.

SELECT SUM(c.tonnage) FROM cargoes c JOIN ports p
ON c.port_id = p.id WHERE p.name =
'Singapore' AND (EXTRACT(YEAR FROM c.load_date) <
EXTRACT(YEAR FROM SYSDATE) - 1 OR
(EXTRACT(YEAR FROM c.load_date) = EXTRACT(YEAR
FROM SYSDATE) - 1 AND EXTRACT(MONTH FROM
c.load_date) < 4));

We use the `before/prior to last April` condition, which is
translated to Oracle SQL as:
 + `EXTRACT(YEAR FROM c.load_date) <
EXTRACT(YEAR FROM SYSDATE) - 1` (before last year)
 + `OR (EXTRACT(YEAR FROM c.load_date) =
EXTRACT(YEAR FROM SYSDATE) - 1 AND
EXTRACT(MONTH FROM c.load_date) < 4)` (last year, but
before April)

(New) Completion

Instructions when generating the SQL with
DateTime:
 - 'this quarter': TRUNC(DATE_column, 'Q')
= TRUNC(SYSDATE, 'Q')
 - 'last quarter':
TRUNC(DATE_column, 'Q') =
ADD_MONTHS(TRUNC(SYSDATE, 'Q'), -3)
 - 'last year':
TO_CHAR(DATE_column, 'YYYY') =
TO_CHAR(ADD_MONTHS(SYSDATE, -12), 'YYYY')
 - 'in the last X months': DATE_column
BETWEEN ADD_MONTHS(SYSDATE, -X) AND SYSDATE
...

Figure 6: The SQL Synthesizer Pipeline in our Distill-C Framework.

843

Model Variant DateTime Financial Analytics OracleSQL
Compliance (%)

spd-ora spd-lite bd-lite bd-ora spd+bd-ora spd+bd-lite spd-ora bd-ora

Qwen1.5-7B-Chat

OOTB-Baseline 30.4 58.1 37.9 2.6 24.8 47.8 33.9 4.6
SFTed-Setting-B 49.2 60.3 45.3 14.5 73.4 77.5 62.7 18.9
SFTed-Setting-C 67.4 62.6 46.6 24.4 78.7 77.8 70.1 28.0
SFTed-Setting-D 65.7 61.5 42.7 26.5 85.9 78.1 69.8 31.2
SFTed-Setting-E 72.9 60.5 44.5 29.1 85.4 79.1 66.8 37.0
SFTed-Setting-A-Full 74.0 68.7 57.2 33.8 89.5 84.1 77.6 34.8

Llama3.1-8B-Instruct

OOTB-Baseline 29.8 62.6 41.3 2.6 17.0 35.9 36.1 3.1
SFTed-Setting-B 44.2 66.5 45.7 19.2 74.6 75.9 57.4 18.0
SFTed-Setting-C 61.3 63.1 47.8 33.3 76.9 76.7 72.2 30.8
SFTed-Setting-D 69.1 69.3 48.9 35.5 78.1 74.1 72.9 35.8
SFTed-Setting-E 68.5 62.6 50.2 34.6 80.8 75.6 73.3 40.8
SFTed-Setting-A-Full 81.2 67.6 59.3 29.5 83.2 78.2 79.4 32.0

Mistral-7b-v0.3-Instruct

OOTB-Baseline 22.1 46.4 22.2 2.6 21.1 24.5 38.4 4.4
SFTed-Setting-B 66.3 63.1 36.5 23.9 82.6 70.7 68.4 28.8
SFTed-Setting-C 69.6 60.9 37.4 31.2 81.3 76.6 71.2 33.7
SFTed-Setting-D 74.0 70.9 37.4 35.9 82.0 79.7 71.3 35.1
SFTed-Setting-E 81.8 64.5 39.0 40.6 62.0 23.8 73.7 38.5
SFTed-Setting-A-Full 74.6 65.4 38.8 31.2 84.5 80.4 77.3 28.2

Table 7: Performance comparison of model variants on DateTime, Financial Analytics, and OracleSQL
tasks for the different distillation scenarios. Notations: OOTB (Out-Of-The-Box), spd (Spider), bd (Bird), ora
(OracleSQL), lite (SQLite).

Finetuning Configuration

Pretrained Checkpoints CodeQwen1.5-7B-Chat, Llama3.1-8B-Instruct, Mistral-7B-Instruct-v0.3
Batch Size 512 examples per step
Learning Rate 1e-6 (with linear decay)
Warmup Steps 2,000
Max Sequence Length 8192 tokens
Optimizer Paged AdamW 8-bit (β1 = 0.9, β2 = 0.95)
Weight Decay N/A
Gradient Clipping 1.0
Training Steps 20,000
Evaluation Metrics Checkpoint-based Execution Accuracy
Hardware Setup 8 NVIDIA A100 40GB GPUs

Inference Configuration

Decoding Strategy Random Sampling
Temperature 0.5
Top-k Sampling 40
Top-p Sampling 0.9
Max Sequence Length 2048 tokens
Batch Size 32

Table 8: Configuration details for training and inference in our experiments.

844

Prompt Example for NL Synthesizer Pipeline (AddRef)

Given a Input Schema used in a NL2SQL system, your task is to generation 5 new Natural
Language queries inspired on the Reference Examples below and appropriate to the Input
Schema

- The Reference Examples refer to a particular Customer use-case, which is the target for the
data generation

- The new examples should have similar or higher level of complexity of the Reference
Examples provided below.

- While taking inspiration on the Reference Examples, you should also be creative in
generating original queries.

- In addition to the Reference Example, please refer to Irrelevant Examples (if any) for
examples of NL queries that are not relevant to the Customer use-case

Reference Examples
- show the distance of the flights that arrived before last May
- visits made past more than twelve days
- show a list containing staff names and their respective genders who were assigned 2 days ago
- Find the names of the university which has more faculties in 2002 than every university in

Orange county.
- What is all the information about employees hired until June 21, 2002?

Irrelevant Examples
- show oldest ship in the port of Singapore

Input Schema
CREATE TABLE ports(
id INT,
name VARCHAR(255),
country VARCHAR(255)
)

CREATE TABLE cargoes(
id INT,
name VARCHAR(255),
tonnage INT,
port_id INT,
load_date DATE
)

Generated Examples

Figure 7: Prompt Example for NL Synthesizer Pipeline (AddRef).

845

Prompt Example for SQL Synthesizer Pipeline (LearnPrior)

Here is the database schema context:

CREATE TABLE ports(
id INT,
name VARCHAR(255),
country VARCHAR(255)

)

CREATE TABLE cargoes(
id INT,
name VARCHAR(255),
tonnage INT,
port_id INT,
load_date DATE

)

DateTime Instructions:
- With a DATE_column, refer to the following instructions:

- 'today': TRUNC(DATE_column) = TRUNC(SYSDATE)
- 'yesterday': TRUNC(DATE_column) = TRUNC(SYSDATE)-1
- 'tomorrow': TRUNC(DATE_column) = TRUNC(SYSDATE)+1
- 'this year': EXTRACT(YEAR FROM DATE_column) = EXTRACT(YEAR FROM SYSDATE)
- 'this month': TO_CHAR(DATE_column, 'YYYY-MM') = TO_CHAR(SYSDATE, 'YYYY-MM')
- 'last month': TO_CHAR(DATE_column, 'YYYY-MM') = TO_CHAR(ADD_MONTHS(SYSDATE, -1)

'YYYY-MM')
- 'next month': TO_CHAR(DATE_column, 'YYYY-MM') = TO_CHAR(ADD_MONTHS(SYSDATE, +1)

'YYYY-MM')
- 'until last month' TO_CHAR(DATE_column, 'YYYY-MM') <= TO_CHAR(ADD_MONTHS(SYSDATE, -1)

'YYYY-MM')
- 'until next month' TO_CHAR(DATE_column, 'YYYY-MM') <= TO_CHAR(ADD_MONTHS(SYSDATE, +1)

'YYYY-MM')
- 'this quarter': TRUNC(DATE_column, 'Q') = TRUNC(SYSDATE, 'Q')
- 'last quarter': TRUNC(DATE_column, 'Q') = ADD_MONTHS(TRUNC(SYSDATE, 'Q'), -3)
- 'last year': TO_CHAR(DATE_column, 'YYYY') = TO_CHAR(ADD_MONTHS(SYSDATE, -12), 'YYYY')
- 'in the last X months': DATE_column BETWEEN ADD_MONTHS(SYSDATE, -X) AND SYSDATE
- 'in the last X quarters': DATE_column ADD_MONTHS(TRUNC(SYSDATE, 'Q'), -3*X) AND

TRUNC(SYSDATE, 'Q')
- 'in the last X years': DATE_column BETWEEN ADD_MONTHS(SYSDATE, -12*X) AND SYSDATE
- 'in next X days': (TRUNC(DATE_column) BETWEEN TRUNC(SYSDATE) AND TRUNC(SYSDATE) + X)
- 'in year XXXX': EXTRACT(YEAR FROM DATE_column) = XXXX
- 'after year XXXX': EXTRACT(YEAR FROM DATE_column) > XXXX
- 'day X of month Y of year Z': TO_CHAR(DATE_column, 'YYYY-MM-DD') = 'ZZZZ-MM-XX'
- 'after day X of month Y of year Z': DATE_column > TO_DATE('ZZZZ-YY-XX', 'YYYY-MM-DD')
- 'next week': TO_CHAR(dueDate, 'YYYY-IW') = TO_CHAR(SYSDATE + 7, 'YYYY-IW')
- 'in this February: EXTRACT(YEAR FROM DATE_column) = EXTRACT(YEAR FROM SYSDATE) AND

EXTRACT(MONTH FROM DATE_column) = 2
- 'in this October: EXTRACT(YEAR FROM DATE_column) = EXTRACT(YEAR FROM SYSDATE) AND

EXTRACT(MONTH FROM DATE_column) = 10
- 'in last February': EXTRACT(YEAR FROM DATE_column) = EXTRACT(YEAR FROM SYSDATE) - 1 AND

EXTRACT(MONTH FROM DATE_column) = 2
- 'in next February': EXTRACT(YEAR FROM DATE_column) = EXTRACT(YEAR FROM SYSDATE) + 1 AND

EXTRACT(MONTH FROM DATE_column) = 2
- 'from this April': TRUNC(DATE_column, 'MM') >= ADD_MONTHS(TRUNC(SYSDATE, 'YYYY'), 4-1) #

beginning of this year + 3 months to align with start of April (EXTRACT(MONTH not
needed here)

- 'from this January': TRUNC(DATE_column, 'MM') >= TRUNC(SYSDATE, 'YYYY') # beginning of
this year + 0 months to align with start of January (EXTRACT(MONTH not needed here)

- 'from this October': TRUNC(DATE_column, 'MM') >= ADD_MONTHS(TRUNC(SYSDATE, 'YYYY'),
10-1) # beginning of this year + 9 months to align with start of October
(EXTRACT(MONTH not needed here)

- 'until this February': TRUNC(DATE_column, 'MM') <= ADD_MONTHS(TRUNC(SYSDATE, 'YYYY'),
2-1) # beginning of this year + 1 months to align with start of February
(EXTRACT(MONTH not needed here)

... (truncated)

Question: What's the total tonnage of all cargoes loaded or unloaded at the port of Singapore
before last April

Write a SQL query in Oracle SQL dialect, compatible with the latest version of Oracle
Database, that answers the question above.

Figure 8: Prompt Example for SQL Synthesizer Pipeline (LearnPrior).

846

LLMs-as-Juries Quality Evaluation Prompt Example

Given an input Question and a Oracle SQL query, prepare an assessment based on the following
criteria:

SQL Correctness
- Add one star if the Oracle SQL query returns incorrect results
- Add one more star, i.e. award 2 stars if the Oracle SQL query executes but returns

partially correct results
- Add one more star, i.e. award 2 stars if the Oracle SQL query returns mostly correct

results but with minor inaccuracies or omissions
- Add one more star, i.e. award 2 stars if the Oracle SQL query returns correct results

with negligible issues
- Add one more star, i.e. award 2 stars if the Oracle SQL query returns accurate and

complete results as per the requirement

Compliance with Oracle SQL Standards
- Add one star if the SQL query does not follow Oracle SQL standards or best practices,

using deprecated or non-standard syntax
- Add one more star, i.e. award 2 stars if the SQL query loosely follows Oracle SQL

standards, with several deviations from best practices.
- Add one more star, i.e. award 2 stars if the SQL query generally follows Oracle SQL

standards but has room for better alignment with best practices.
- Add one more star, i.e. award 2 stars if the SQL query closely follows Oracle SQL

standards and adheres to many best practices.
- Add one more star, i.e. award 2 stars if the SQL query strictly adheres to Oracle SQL

standards and best practices, showcasing exemplary coding standards.

Quality of the Natural Language Query
- Add one star if the natural language query does not match the SQL, or cannot be

answered given the provided Schema.
- Add one more star, i.e. award 2 stars if the natural language query matches the SQL,

but the question does not make any sense to be asked (totally unrealistic).
- Add one more star, i.e. award 3 stars if the natural language query is consistent with

the SQL, but it it does not look natural (no domain knowledge, the style looks
synthetic-templated, does not use "domain-specific" words).

- Add one more star, i.e. award 4 stars if the natural language query is correct and
consistent, but the NL Question can further be improved for clarity, conciseness,
small typos.

- Add one more star, i.e. award % stars if the natural language query is perfect.

The Schema context is provided below.

CREATE TABLE ports(
id INT,
name VARCHAR(255),
country VARCHAR(255)

)

CREATE TABLE cargoes(
id INT,
name VARCHAR(255),
tonnage INT,
port_id INT,
load_date DATE

)

Question: What's the total tonnage of all cargoes loaded or unloaded at the port of Singapore
before last April

Oracle SQL: SELECT SUM(c.tonnage) FROM cargoes c JOIN ports p ON c.port_id = p.id WHERE
p.name = 'Singapore' AND (EXTRACT(YEAR FROM c.load_date) < EXTRACT(YEAR FROM SYSDATE) -
1 OR (EXTRACT(YEAR FROM c.load_date) EXTRACT(YEAR FROM SYSDATE) - 1 AND EXTRACT(MONTH
FROM c.load_date) < 4));

The output must have following items in an orderly manner:
- The final star ratings of criterions in a list-wise manner
- The final star ratings of criterions in a json format
- Explain the scores with a short text (< 100 words).

Figure 9: Prompt for LLM-based Quality Evaluation.

847

LLMs-as-Juries Relevance Evaluation Prompt Example

Given an a Natural Language query and the corresponding SQL Query generated for a NL2SQL
Model, your goal is to assess whether the generated example is relevant to the Customer
use-case represented by any of the Reference Examples shown below.

Reference Examples
- show the distance of the flights that arrived before last May
- visits made past more than twelve days
- show a list containing staff names and their respective genders who were assigned 2 days ago
- Find the names of the university which has more faculties in 2002 than every university in

Orange county.
- What is all the information about employees hired until June 21, 2002?
- Show me the aircraft names that travelled 8430 kms that departed before November of 4 years

ago
- How many students exist who are registered with just a single allergy?
- show all maintenance contracts that end until next Dec
- Give me the list of actors which was last updated until last Saturday
- show the distance of the flights that arrived before last January
- show all machines made in 1992
- Show me invoices that are due to be paid in the next half year.
- What is all the information about employees hired until June 21, 2002?
- show all order items delivered before last march
- Show the number of attendees in year 2008 or 2010.
- Show me all students who registered for a course from 3 days ago, including the course name

and student details.
- give people addresses who lived on address till april.
- List all customers who placed an order from the next 30 days and the order status is 'New'.
- show all maintenance contracts that end until next May
- How many customers are not responded to mailshot sent from week 5 2018

Input Natural Language query and SQL query
Natural language query: What's the total tonnage of all cargoes loaded or unloaded at the

port of Singapore before last April
SQL Query: SELECT SUM(c.tonnage) FROM cargoes c JOIN ports p ON c.port_id = p.id WHERE p.name

= 'Singapore' AND (EXTRACT(YEAR FROM c.load_date) < EXTRACT(YEAR FROM SYSDATE) - 1 OR
(EXTRACT(YEAR FROM c.load_date) EXTRACT(YEAR FROM SYSDATE) - 1 AND EXTRACT(MONTH FROM
c.load_date) < 4));

Assessment ("**Relevant**"/"**Irrelevant**")

Figure 10: Prompt for LLM-based Relevance Evaluation.

848

