
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Industry Track), pages 662–671

April 30, 2025 ©2025 Association for Computational Linguistics

Query Variant Detection Using Retriever as Environment

Minji Seo1˚ Youngwon Lee1˚ Seung-won Hwang1:
Seoho Song2 Hee-Cheol Seo2 Young-In Song2

1Seoul National University 2NAVER Corp.

Abstract

This paper addresses the challenge of detect-
ing query variants—pairs of queries with iden-
tical intents. One application in commercial
search engines is reformulating user queries
with its variant online. While measuring pair-
wise query similarity has been an established
standard, it often falls short of capturing se-
mantic equivalence when word forms or order
differ. We propose leveraging the retrieval as
an environment feedback (EF), based on the
premise that desirable retrieval outcomes from
equivalent queries should be interchangeable.
Experimental results on both proprietary and
public datasets demonstrate the efficacy of the
proposed method, both with and without LLM
calls.

1 Introduction

Identifying query variants—semantically equiva-
lent queries—is critical for ensuring search engines
consistently return identical results for queries that
reflect the same intent. One application of this de-
tection is query reformulation, where a user query
q is augmented or replaced with its variant q1 to im-
prove quality and consistency in retrieval results.

However, identifying query variants is non-
trivial as a highly similar query pair, often relying
heavily on lexical similarity between q and q1, may
fail to differ in word form, order, or phrasing de-
spite sharing the same intent (Iida and Okazaki,
2021).

When latency requirements are relaxed, Large
Language Models (LLMs) may offer an improved
semantic understanding (Chen et al., 2023), and
have been used for query understanding related
tasks such as classifying search intent (Srinivasan
et al., 2022). LLMs have the advantage of observ-
ing query variants in diverse surrounding contexts

˚Equal contribution.
: Correspondence to: seungwonh@snu.ac.kr.

during pretraining, which allows them to more reli-
ably identify query variants. However, their com-
putational cost makes them impractical for latency-
sensitive, real-time applications involving commer-
cial search engines.

Our work demonstrates how leveraging the
retriever as an Environment Feedback (EF) en-
hances query variant detection across diverse
scenarios. EF utilizes retrieval results as addi-
tional features—by quantifying query-document
or document-document similarity—beyond tradi-
tional pairwise query similarity. For instance, re-
trieval results for query variants exhibit high simi-
larity (Ni et al., 2021). Specifically, we show these
additional EF features improve performance in both
latency-sensitive cases (by training an efficient clas-
sifier) and latency-relaxed cases (by integrating
with LLMs). Our generalized approach naturally
supports public data with limited training annota-
tions, or weaker EF as well.

Our contributions are as follows:

• We designed and trained an efficient classifier
that effectively utilizes EF without LLM calls.

• We show that our method, outperforms LLM-
only approach, by combining with both
stronger and weaker types of EF.

• We release expert annotations to foster future
efforts.1

2 Related Work

This section overviews the task of query variant
identification (Section 2.1), and relevant literature
on utilizing the environment feedback from re-
triever (Section 2.2).

2.1 Query Similarity and Query Variants
Query variant task is an instance of a broader class
of query understanding, used for query clustering

1https://github.com/Minji-Seo/
NAACL-25-Industry-ManualDataset.git

662

mailto:seungwonh@snu.ac.kr
https://github.com/Minji-Seo/NAACL-25-Industry-ManualDataset.git
https://github.com/Minji-Seo/NAACL-25-Industry-ManualDataset.git


and query rewriting (Chien et al., 2018; Azhir et al.,
2021; Li et al., 2022; Farzana et al., 2023). By or-
ganizing related queries or reformulating them, the
retrieval quality of search engines can be enhanced.
While expert annotation is required, the following
pseudo signals have been used as proxy for scaling.

Lexical Matching Word overlaps or edit distance
quantify lexical similarity (Zhang and Dong, 2002;
Li et al., 2006; Gao et al., 2010) as a proxy of
pairwise similarity.

Clicks Co-clicks, a representative example of a
post-search behavior feature, provide a useful sig-
nal that hints query similarity and helps distinguish-
ing false positives in lexical matching (e.g., ‘SVN’
and ‘SVM’), often derived from co-clicked URLs
or session data (Beeferman and Berger, 2000; Wen
et al., 2001; Paredes and Chávez, 2005; Cao et al.,
2008). As clicks are collected only from high-
ranked results, they are rank-biased.

Taxonomy Hierarchical taxonomies (Zhang and
Dong, 2002; Farzana et al., 2023) of co-clicked
documents provides deeper semantic signals.

2.2 Our Distinction

Our distinction is leveraging retriever and LLM as
verification signals, and extend to consider query-
document (QD) and document-document (DD) re-
lations for verification.

The most well-known form of EF from a
retriever is pseudo-relevance feedback (PRF)
methods such as Rocchio’s or Relevance
Model (Lavrenko and Croft, 2003). Top-k results
from the retriever are used as a proxy of gold
relevance annotations for true query-document
relevance, R˚pq, dq. Unlike existing work using
the rank as an entangled feedback for a single
query, we disentangle the QQ, QD and DD
similarities, as described in Section 4.

While incurring additional computational cost,
verifiers as proxies or supplements to LLMs have
been actively adopted to balance accuracy and effi-
ciency (Chen et al., 2023; Wang et al., 2024). We
show this information can enhance verification.

3 Preliminaries

We first provide the task formulation and basic
notation to be used for the rest of the paper.

3.1 Retrieving Top-k Documents

Given a search query q and the corpus of documents
D, the goal of the retriever is to surface the set of
relevant documents

Rq̊ “ td | d P D, R˚pq, dq “ 1u, (1)

where R˚pq, dq denotes the underlying true binary
relevance label, in its top-k retrieval result Rpkq

q ,

Rpkq
q “ topkpRpq, dqq, (2)

where Rpq, dq is the relevance score the retriever
assigned to d with respect to q. For the sake of
simplicity of notation, we will be referring to R

pkq
q

as simply Rq, as we will consider a fixed k for
top-k retrieval throughout the paper’s context.

3.2 Problem Statement

In this paper, we consider the task of query variants
identification, or semantic equivalence classifica-
tion of deciding whether two given queries q and q1
are equivalent. Two queries are considered equiva-
lent, if and only if their relevant document sets are
the same, that is,

q „ q1 iff. Rq̊ “ Rq̊1 . (3)

We consider a basic form of lightweight classi-
fier f , or, verifier, that only considers the pairwise
query similarity between the two, which can be
denoted as

ŷ “ fpq, q1q, (4)

where ŷ is the binary prediction on query equiva-
lence. An LLM verifier θ can be used in-place as
a stronger classifier, with their access to vast para-
metric knowledge obtained during their pretraining

ŷ “ LLMpq, q1; θq, (5)

at increased inference costs.

4 Method

We first discuss the baseline of training the veri-
fier f in a supervised fashion according to Eq. 4,
utilizing the queries q and q1 only, in Section 4.1.
Then, in Section 4.2, we explain how we designed
and trained our efficient verifier f , incorporating
EF signals. Finally, we explain how such a system
can be scaled in Section 4.3.

663



4.1 Deployed Baseline

As a baseline, we consider directly modeling the
query variant relation given the two queries as in-
put, as described in Equation 4. To build a verifier,
we combine three sources in Section 2 at train-
ing/inference:

• Expert Annotation: Training signals can be
human-annotated to supervise f , though
costly and inefficient at scale.

• Retriever and LLM: Retriever can be used as
an EF and LLM can be prompted as a verifier.

Expert Annotation We obtained 100k expert an-
notations based on real user queries that have been
issued to a commercial search engine. The annota-
tions were obtained from the consensus between
two expert annotators, trained and employed at
the company, on query pairs with named entities
replaced with type tags, essentially yielding a tem-
plate. Classifying this template ensures that anno-
tations are not biased by the annotators’ familiar-
ity with specific entities, and also allows to easily
scale 3,725 entity-typed template annotations into
a larger dataset consisting of 100k examples by
replacing the tag with real-life entities.

We obtained a balanced 1:1 mix of positive and
negative annotations, with the negative annotations
including hard negatives that have high lexical over-
lap. Meanwhile, we also consider a public dataset
scenario without expert annotations, to show our
framework generalizes to diverse scenarios.

EF on QQ Similarity An encoder h from the
retriever projects both queries into the same latent
space, and the resulting similarity score can be di-
rectly interpreted as the output of the query variant
classification task,

sqq “ simphpqq, hpq1qq, (6)

where hp¨q is the embedding function defined by
the encoder and sim is any similarity metric of
choice.

LLM Verifier In an alternative scenario where
LLM calls can be afforded, LLM can be prompted
as a verifier, shown in Equation 5. Stronger LLMs,
having been exposed to observing variants in a
larger amount of context, show stronger perfor-
mance (Table 2) at an increased inference cost.

4.2 Ours: fEF using Strong EF
Our distinction is to improve f using strong EF
signals, over extended context beyond query pair.
Figure 1 describes documents from the retriever,
which yields an updated verifier fEF to leverage
stronger signals including QD and DD relations:

ŷ “ fEFpq, q1, D “ Rpqq, D1 “ Rpq1qq. (7)

Encoder Resembling the baseline architecture,
our fEF also builds on an encoder h extracting top-
k retrieved documents from the retriever as EF, and
mapping them to features. To this end, h considers
queries and retrieved documents simultaneously,
and maps them to embedding vectors in a shared
latent space and computes the similarity scores be-
tween them. In particular, we consider the follow-
ing closeness features to model the environment
feedback:

• QD similarity: The similarity between each
of the query and its retrieved document, along
with the cross-similarity between the query
and the counterpart’s documents.

• DD similarity: The pairwise document simi-
larity from the two retrieved sets.

Formally, QD similarity scores are defined as

sqD “ p simphpqq, hpRqrisqq q1ďiďk

sq1D1 “ `
simphpq1q, hpRq1risqq ˘

1ďiďk

sqD1 “ `
simphpqq, hpRq1risqq ˘

1ďiďk

sq1D “ `
simphpq1q, hpRqrisqq ˘

1ďiďk
,

(8)

where Rqris denotes the i-th ranked document re-
trieved for query q.

Similarities between the query and its retrieved
documents, sqD and sq1D1 , implicitly capture the
reliability of the retrieval result for each query. The
cross-similarity scores, sqD1 and sq1D function as a
proxy to measures such as co-click statistics, and
also directly model to what extent the retrieval re-
sults for the two queries are interchangeable.

DD similarity scores, given as

sDD “ `
simphpRqrisq, hpRq1rjsqq ˘

i,j
, (9)

capture retrieval consistency, modeling how close
Rq and Rq1 are, which serves as an extended PRF.
These features augment the model’s understanding
of equivalence beyond direct query comparisons,

664



Figure 1: Overall structure of our verifier, which incorporates qq, qd and dd similarities as environment feedback
from the retriever to make more informed decisions on query variant identification. For illustration brevity, we show
average in place of raw QD and DD similarity scores.

encoded as the QQ similarity score defined in Equa-
tion 6.

In total, considering the top-k retrieval results
for both queries yields 1 QQ score, 4k QD scores,
and k2 DD scores for each input pair. Figure 1
illustrates how these scores are obtained and how
they contribute to variant detection, though only
the average numbers are shown due to presentation
brevity. We provide more detailed description of
the example in the figure in Section 5.5.

Predictor The predictor g, an MLP classification
head taking the aforementioned similarity scores as
input features, aggregates them into a single scalar
score which models the probability the given two
queries are query variants or not:

P pq „ q1q “ σpgpsqq, sqD, ¨ ¨ ¨ , sq1D1 , sDDqq,
(10)

where σ denotes the sigmoid function, i.e., σpxq “
1

1`exp p´xq which maps any real-valued number to
a value lying in p0, 1q.

Train Objective and Inference The predictor g
is trained to minimize the binary cross-entropy loss
against the ground-truth label y, while the encoder
h is frozen.

At test time, the predicted probability from the
model is converted to a binary classification result
with hard thresholding as follows:

ŷ “ 1pP pq „ q1q ě 0.5q. (11)

Test-time LLM Prompting with EF When an
LLM call can be afforded, we can inject similar-
ity scores (and their statistics) from the retriever

to LLM inference. While scores can be directly
passed, providing LLMs with ranked retrieval re-
sults in text format, where each document is sum-
marized into a snippet, was more effective: This
approach better leverages the LLM’s pretrained
knowledge to generate more accurate predictions
by helping it retrieve and aggregate relevant infor-
mation from the context. The prompt templates are
provided in Appendix A.

4.3 Scaling EF

This section discusses how we scale the training
dataset (Section 4.3.1) or test-time inference (Sec-
tion 4.3.2) for improving classification.

4.3.1 Scaling Training Data with Automated
Annotation

To avoid reliance on costly expert annotation and
efficiently scale training, we utilized the following
features to obtain an automatically annotated train
set.

Co-click URLs Post-search behaviors can func-
tion as a strong indicator for query equivalence
(Zhang and Dong, 2002; Farzana et al., 2023), as
we reviewed in Section 2. Query pairs that co-click
URLs above the threshold2 were considered posi-
tive.

QQ Similarity from LM As clicks are collected
only for exposed documents, and those ranked
higher are more likely to be clicked by users (pre-
sentation bias), we employed MonoT5 (Nogueira
et al., 2020) to compute QQ similarity score as

2Empirically set as 100/week.

665



an additional signal for pairs with fewer co-clicks.
This allowed us to mine positive pairs or hard neg-
atives with high MonoT5 similarity.3 As MonoT5
was trained to model the relevance between a query
and a passage/document, q1 was fed to the model
as if it was a passage associated to q.

Rule-based Rewriting Expert-written rules,
such as swapping or replacing entities, were used
to obtain positive pairs by transforming an existing
query q to q1.

4.3.2 Scaling Test-time Compute with LLM
Our lightweight classifier can be scaled along test-
time compute, by predicting in conjunction with
an LLM. If the predictions from the LLM and our
EF-aware verifier fEF do not agree,

LLMpq, q1; θq ‰ fEFpq, q1, D,D1q, (12)

or in other words, LLM prediction fails the veri-
fication, a fallback logic is used to determine the
output again. As the simplest instantiation of this
strategy, we considered invoking a stronger LLM,
combining the complementary viewpoint of fEF
and LLM, capturing retriever and pretrained knowl-
edge, respectively.

5 Results

5.1 Experimental Settings
5.1.1 Benchmarks
We evaluate our method on both proprietary dataset
with manual annotation described in Section 4, and
also on a public dataset.

Proprietary Test Set Proprietary annotation in
Section 4.1, was randomly split into training and
test sets, each consisting of 50k samples while
maintaining a 1:1 ratio of positive to negative sam-
ples in both splits.

Public: PAWS-QQP We also evaluate our
method on a publicly available dataset. Unlike the
proprietary set, where features like co-click data
can be used to assert that negative pairs are reason-
ably non-trivial, such signals cannot be collected
with public datasets in general.

Specifically, we use the PAWS-QQP (Zhang
et al., 2019) benchmark, where all the query pairs
are carefully constructed to exhibit high lexical sim-
ilarity. Stemming from the original QQP (Quora

3Empirically tuned with 3+ coclicks and 0.9+ similarity for
positive and no coclick and 0.5+ similarity for hard negative.

Question Pairs), PAWS-QQP constructed a more
challenging set of paraphrase and non-paraphrase
pairs by controlling word swaps, applying back
translation and evaluating fluency and correctness
by human annotators.

As PAWS-QQP only provides the pair of queries
pq, q1q, we used Google cloud custom search en-
gine API to retrieve 10 documents for each query
from the web. Then, the document text was ob-
tained by crawling the content of the retrieved URL,
followed by processing with trafilatura. In ad-
dition, as queries in PAWS-QQP have complex
sentence forms and tend to span several tens of
words in length, we employed GPT-4 to rewrite
the queries to mimic real queries issued to search
engines, which are typically much simpler. The
prompt template used for this query rewriting phase
can be found in Appendix A.

5.1.2 Implementation Details and Evaluation
Metrics

While our method is orthogonal to the specific
choice of encoder and predictor module, we report
results with SBERT (Reimers, 2019) used as the
encoder h. For the classification head g, we used a
stack of 12 linear layers with output dimension 1
(single scalar output).

The predictor g is trained to minimize the binary
cross-entropy loss against the ground-truth label y:

LBCE “ ´ `
y logP pq „ q1q

` p1 ´ yq log `
1 ´ P pq „ q1q˘

. (13)

The encoder h was frozen. We instantiated g as a
stack of 12 linear layers with output dimension 1,
returning a single scalar output. We used Adam
optimizer (Diederik, 2014) with learning rate of 1e-
4, weight decay of 1e-4, and the StepLR scheduler
with step size of 10 and gamma of 0.5. We trained
the model for 100 epochs with an effective batch
size of 2048. The experiment was conducted in the
environment of Python 3.8.8.

For the LLM, we experimented with two vari-
ants from the OpenAI GPT-4 family, namely
gpt-4o-mini and gpt-4o.

For evaluation, we considered two widely used
metrics for binary classification tasks, accuracy and
F1 score where precision and recall are computed
with respect to positive-labeled examples.

5.2 Experimental Results
This section validates EF scaling in training and
test, as discussed in Section 4.

666



QQ QQ+QD QQ+QD+DD
Train Test Acc F1 Acc F1 Acc F1

Manual Manual 80.33 80.58 82.78 81.64 83.78 84.54
Automatic Manual 75.23 78.77 75.74 78.91 83.08 84.34

Table 1: Accuracy and F1 scores of our verifier, trained with manual and automatic train set evaluated on manual
test set from proprietary dataset. Best results are boldfaced, demonstrating the effectiveness of EF.

Proprietary PAWS-QQP
Method Verifier Acc F1 Acc F1
Reference: LLM classifiers

LLM-only (GPT-4o mini) ´ 86.84 86.72 64.52 56.18
LLM-only (GPT-4o) ´ 88.14 87.83 68.76 58.74

Ours
Ours (lightweight) ´ 83.78 84.54 65.53 56.53
LLM (GPT-4o mini) + Verification with Ours fEF 88.65 88.56 ´ ´

" weak EF ´ ´ 66.55 57.82

Table 2: Results on proprietary and public (PAWS-QQP) test sets. Best results are boldfaced, while the second best
is underlined, without consideration of costs.

Figure 2: Accuracy versus train data size shows auto
train data can lead to comparable performance to man-
ual, when scaled to 5-fold in size.

First, Table 1 shows scaling input features to ac-
commodate more diverse EF during training, such
as QD and DD similarities, yields performance
gains. Notably, these gains are more significant
when f is trained on automatically collected data.
A qualitative example illustrating how EF informs
predictions is provided in Section 5.5.

Second, Figure 2 highlights that increasing the
size of the training data improves performance. Us-
ing only auto-labeled data, the model achieves re-
sults comparable to those obtained with a manual
training set.

Finally, Table 2 illustrates the benefits of scal-
ing test-time compute by integrating LLMs into

our framework, which we dive deeper with two
research questions RQ1 and RQ2.

5.3 RQ1: Integrating LLM with Ours

The lightweight fEF, trained on a proprietary
dataset and optimized for latency-sensitive scenar-
ios, naturally underperforms, when unfairly com-
pared to standalone LLM classifiers designed for
higher computational budget.

In this new high budget scenario, we show EF
signals from fEF combines with predictions from
a smaller LLM, GPT-4o mini, to achieve higher
accuracy than a larger LLM alone (as shown in the
4th row of Table 2).

Moreover, selectively delegating to the larger
LLM only when the verifier disagrees with the
smaller LLM’s prediction reduces calls to the larger
model to less than 20%, while still improving per-
formance. This demonstrates that when the pre-
trained knowledge of the LLM aligns with explicit
EF signals from the search engine, the result is
more reliable than relying solely on a more power-
ful model like GPT-4o.

5.4 RQ2: Generalization to Public Data

For the PAWS-QQP dataset, EF from retriever is
limited solely to retrieved documents, or “weaker
EF” than Proprietary dataset, where additional fea-
tures like co-clicks or expert annotations are pro-
vided.

667



Our findings on this public benchmark, denoted
as weak EF in Table 2, are as follows:

• Even with weaker EF, performance improves
compared to the LLM-only baseline.

• However, weaker EF does not surpass the
stronger LLM, while stronger EF does so.

5.5 Qualitative Example
Finally, in order to qualitatively illustrate how EF
guides the prediction, we consider Figure 1 as a
running example. Given the query pair (q: “New
York swim”, q1: “New York swimming pool”), pre-
dicting solely based on QQ similarity would lead
to a false positive, as q and q1 are lexically similar.

However, their search intents are distinguished
clearly: q is likely a general search related to swim-
ming, such as swimming competitions, swimming
programs for lessons, swimsuits or beachwear, or
Swim Week, a fashion week for swimwear. In com-
parison, q1 is more specific to swimming pool loca-
tions, facilities, or contact information.

Such discrepancy can be detected from EF fea-
tures, especially sqD1 , scoring lower than the global
average similarity scores for negative pairs strongly
indicate non-equivalence. While the actual design
of fEF leverages individual similarity scores to sup-
port signals in diverse granularity, we simplified
to show the average scores for illustration brevity;
still, it is captured in the average similarity scores
as well that the search results for this example are
not so interchangeable and that the retrieved docu-
ments exhibit notably low similarity in general, a
strong indicator for non-variant pairs.

6 Conclusion

In this paper, we explored the use of EF to iden-
tify query variants. Our findings demonstrate that
our approach substantially outperforms deployed
baselines, in both budget-constrained and less re-
stricted scenarios. In addition, we release the expert
annotations to support future development in this
area.

Acknowledgments

This work was supported by the National Re-
search Foundation of Korea (NRF) grant funded
by the Korean government (MSIT) (No. RS-2024-
00414981), and by Institute of Information & com-
munications Technology Planning & Evaluation
(IITP) grant funded by the Korea government

(MSIT) (No. 2022-0-00077/RS-2022-II220077, AI
Technology Development for Commonsense Ex-
traction, Reasoning, and Inference from Heteroge-
neous Data).

References
Elham Azhir, Nima Jafari Navimipour, Mehdi Hossein-

zadeh, Arash Sharifi, and Aso Darwesh. 2021. An
automatic clustering technique for query plan recom-
mendation. Information Sciences, 545:620–632.

Doug Beeferman and Adam Berger. 2000. Agglom-
erative clustering of a search engine query log. In
Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 407–416.

Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao,
Enhong Chen, and Hang Li. 2008. Context-aware
query suggestion by mining click-through and ses-
sion data. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery
and data mining, pages 875–883.

Angelica Chen, Jason Phang, Alicia Parrish, Vishakh
Padmakumar, Chen Zhao, Samuel R Bowman, and
Kyunghyun Cho. 2023. Two failures of self-
consistency in the multi-step reasoning of llms. arXiv
preprint arXiv:2305.14279.

I Chien, Chao Pan, and Olgica Milenkovic. 2018. Query
k-means clustering and the double dixie cup problem.
Advances in Neural Information Processing Systems,
31.

P Kingma Diederik. 2014. Adam: A method for stochas-
tic optimization. (No Title).

Shahla Farzana, Qunzhi Zhou, and Petar Ristoski. 2023.
Knowledge graph-enhanced neural query rewriting.
In Companion Proceedings of the ACM Web Confer-
ence 2023, pages 911–919.

Jianfeng Gao, Chris Quirk, et al. 2010. A large scale
ranker-based system for search query spelling cor-
rection. In The 23rd international conference on
computational linguistics.

Hiroki Iida and Naoaki Okazaki. 2021. Incorporating
semantic textual similarity and lexical matching for
information retrieval. In Proceedings of the 35th
Pacific Asia Conference on Language, Information
and Computation, pages 582–591.

Victor Lavrenko and W Bruce Croft. 2003. Relevance
models in information retrieval. In Language model-
ing for information retrieval, pages 11–56. Springer.

Mu Li, Muhua Zhu, Yang Zhang, and Ming Zhou. 2006.
Exploring distributional similarity based models for
query spelling correction. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for
Computational Linguistics, pages 1025–1032.

668



Sen Li, Fuyu Lv, Taiwei Jin, Guiyang Li, Yukun Zheng,
Tao Zhuang, Qingwen Liu, Xiaoyi Zeng, James
Kwok, and Qianli Ma. 2022. Query rewriting in
taobao search. In Proceedings of the 31st ACM Inter-
national Conference on Information & Knowledge
Management, pages 3262–3271.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Hernández Ábrego, Ji Ma, Vincent Y Zhao,
Yi Luan, Keith B Hall, Ming-Wei Chang, et al.
2021. Large dual encoders are generalizable retriev-
ers. arXiv preprint arXiv:2112.07899.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and
Jimmy Lin. 2020. Document ranking with a pre-
trained sequence-to-sequence model. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 708–718, Online. Association
for Computational Linguistics.

Rodrigo Paredes and Edgar Chávez. 2005. Using the
k-nearest neighbor graph for proximity searching in
metric spaces. In String Processing and Informa-
tion Retrieval: 12th International Conference, SPIRE
2005, Buenos Aires, Argentina, November 2-4, 2005.
Proceedings 12, pages 127–138. Springer.

N Reimers. 2019. Sentence-bert: Sentence embed-
dings using siamese bert-networks. arXiv preprint
arXiv:1908.10084.

Krishna Srinivasan, Karthik Raman, Anupam Samanta,
Lingrui Liao, Luca Bertelli, and Michael Bendersky.
2022. QUILL: Query intent with large language mod-
els using retrieval augmentation and multi-stage dis-
tillation. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing:
Industry Track, pages 492–501, Abu Dhabi, UAE.
Association for Computational Linguistics.

Fei Wang, Chao Shang, Sarthak Jain, Shuai Wang,
Qiang Ning, Bonan Min, Vittorio Castelli, Yas-
sine Benajiba, and Dan Roth. 2024. From instruc-
tions to constraints: Language model alignment with
automatic constraint verification. arXiv preprint
arXiv:2403.06326.

Ji-Rong Wen, Jian-Yun Nie, and Hong-Jiang Zhang.
2001. Clustering user queries of a search engine. In
Proceedings of the 10th international conference on
World Wide Web, pages 162–168.

Dell Zhang and Yisheng Dong. 2002. A novel web
usage mining approach for search engines. Computer
Networks, 39(3):303–310.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: Paraphrase adversaries from word scrambling.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1298–1308,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

669

https://doi.org/10.18653/v1/2020.findings-emnlp.63
https://doi.org/10.18653/v1/2020.findings-emnlp.63
https://doi.org/10.18653/v1/2022.emnlp-industry.50
https://doi.org/10.18653/v1/2022.emnlp-industry.50
https://doi.org/10.18653/v1/2022.emnlp-industry.50
https://doi.org/10.18653/v1/N19-1131


Prompt for Query Rewriting for Benchmark Preprocessing

Given a question in its natural sentence form, convert it into a more concise format that is more
likely to be issued as a search query to search engines. The search intent of the user must be
preserved. As in the following examples, decide whether the two given queries are equivalent or
not.
Here is the question in sentence form, convert it to concise form that is more likely to be a real
search query.
Question: {query (q)}
Answer:

Figure 3: Prompt for rewriting the query in PAWS-QQP.

Prompt for Classifying Query Variant without EF

The equivalent query condition requires that both queries have the same search intent, and that if the
same search result is presented to the user for both queries, the user’s satisfaction level should be
the same as well. As in the following examples, decide whether the two given queries are equivalent
or not. Your final answer should be either ‘Yes’ or ‘No’.
Here are the two queries to be tested for equivalence:
Query 1: {query 1 (q)}
Query 2: {query 2 (q1)}
Answer:

Figure 4: Prompt for deciding query equivalence.

A Prompt Template Examples

Here we provide prompt templates used for inference with LLMs. Figure 3 shows the prompt used for
rewriting the queries in the PAWS-QQP benchmark to follow more realistic styles, Figure 4 shows the
prompt for deciding query equivalence, and Figure 5 shows the prompt for incorporating environment
feedback through prompting.

670



Prompt for Classifying Query Variant with EF

The equivalent query condition requires that both queries have the same search intent, and that if the
same search result is presented to the user for both queries, the user’s satisfaction level should be
the same as well. As in the following examples, decide whether the two given queries are equivalent
or not. Your final answer should be either ‘Yes’ or ‘No’.
In addition to the queries themselves, you will be also provided with top-10 search results from the
search engine, with titles and summarized snippets from each retrieved web document. Analyze the
similarities and dissimilarites in search results to make your decision more informed. But remember,
search engines can also fail, giving results with lots of discrepancies even if the real user intent
was staying the same, or vice versa. And more importantly, the rankings themselves encode lots of
information as well.
Here are the two queries to be tested for equivalence:
Query 1: {query 1 (q)}
Query 2: {query 2 (q1)}
And here is the search result summarization:
[Search result for Query 1]
Title: {title of document 1 for query 1}
Snippet: {summarization of document 1 for query 1}
...
Title: {title of document 10 for query 1}
Snippet: {summarization of document 10 for query 1}
[Search result for Query 2]
...
Title: {title of document 10 for query 2}
Snippet: {summarization of document 10 for query 2}
But remember, your goal is to decide if the following two queries have the same search intent or
not, think about whether the user’s satisfaction would be the same even if the search results are
exchanged. These search results were not tested on the user who issued these queries, and it is not
known whether these results are satisfactory or not.
Query 1: {query 1 (q)}
Query 2: {query 2 (q1)}
Answer:

Figure 5: Prompt for deciding query equivalence with environment feedback.

671


