
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Industry Track), pages 598–606

April 30, 2025 ©2025 Association for Computational Linguistics

Implementing Retrieval Augmented Generation Technique on
Unstructured and Structured Data Sources in a Call Center of a Large

Financial Institution

Syed Shariyar Murtaza1, Yifan Nie1, Elias Avan1, Utkarsh Soni1, Wanyu Liao1,
Adam Carnegie2, Cyril John Mathias2, Junlin Jiang2 and Eugene Wen1

1Manulife, 200 Bloor St E, Toronto, ON M4W 1E5, Canada
2John Hancock , 200 Berkeley St, MA 02116, USA

1{syed_shariyar_murtaza,yifan_nie,elias_abdollahnejad}@manulife.com
1{utkarsh_soni,vanessa_liao,eugene_wen}@manulife.com

2 {acarnegie,cyril_mathias,junlin_jiang}@jhancock.com

Abstract

The retrieval-augmented generation (RAG)
technique enables generative AI models to ex-
tract accurate facts from external unstructured
data sources. For structured data, RAG is
further augmented by function calls to query
databases. This paper presents an industrial
case study that implements RAG in a large
financial institution’s call center. The study
showcases experiences and architecture for a
scalable RAG deployment. It also introduces
enhancements to RAG for retrieving facts from
structured data sources using data embeddings,
achieving low latency and high reliability. Our
optimized production application demonstrates
an average response time of only 7.33 seconds.
Additionally, the paper compares various open-
source and closed-source models for answer
generation in an industrial context.

1 Introduction

With the rapid development of Generative AI tech-
nologies (et al., 2020), the retrieval-augmented
generation (RAG) (Chen et al., 2024; Zhang
et al., 2024) technique has become popular in
academia and industrial applications (Zhu et al.,
2024; Lashinin et al., 2023; Shahin et al., 2024).
RAG involves two phases: ingestion, where doc-
ument chunks are vectorized and stored in vector
databases, and inference, where relevant chunks
are retrieved to answer questions using a Large
Language Model (LLM). Although RAG is ef-
fective with unstructured data, industrial applica-
tions often involve structured data. A common
approach in the literature to retrieve structured
data is to leverage LLM to translate a text query
into a database-specific query (such as SQL), then

call a database function to retrieve relevant facts
(LangChain, 2024b,a). This approach increases
the number of calls to LLM (incurring cost and
delay) and sometimes it doesn’t translate queries
correctly.

In this paper, we present a case study on apply-
ing the RAG technique to a call center of a busi-
ness unit of a very large financial institution. The
call center has been in business for many decades.
Its data span various structured and unstructured
sources. When a customer calls, a customer ser-
vice representative (CSR) answers the questions by
looking up information from unstructured policy
documents or structured data sources. Some of
these sources can overlap and complicate the ef-
forts of a CSR to respond to queries promptly. Our
RAG application converts structured and unstruc-
tured data into chunks and vectorizes them using
embedding models during the ingestion phase. This
optimization improves latency (fewer LLM calls)
and accuracy at inference time.

We implement our approach by converting head-
ers and rows of structured data (database tables)
into JSON strings and grouping them by business
concepts. These JSON chunks are transformed
into embeddings and stored in a vector database
index. Similarly, we convert unstructured policy
documents into chunks and store them in a sepa-
rate index. During inference, we retrieve the top
k relevant chunks from both indexes based on the
input query, combine them into a prompt, and use
GPT-3.5 to generate a grounded answer. An inde-
pendent model (Llama 3 or GPT-4) validates the
answer’s quality with a confidence rating. We mon-
itor performance by capturing confidence ratings,
human feedback and response times.

598

Our production application has consistently gen-
erated accurate, grounded answers without halluci-
nations since May 2024. We observed occasional
errors due to missing data or ambiguous contexts.
These were fixed through updates to data pipelines
and prompt revisions. We also optimized response
times from an initial launch of an average of 21.91s
to an average of 7.33 seconds. We present a com-
parison study of popular LLMs in the RAG applica-
tion to facilitate model selection. Finally, we also
present our application architecture, which will
help the community in developing industrial-scale
RAG applications.

2 Background and Related Work

To develop a RAG (retrieval-augmented genera-
tion) application, documents are first divided into
smaller chunks (Finardi et al., 2024). These chunks
can be created using a sliding window approach
with some overlaps of words between chunks
(Zhong et al., 2024), or through advance methods
such as semantic chunking to keep semantically co-
herent text together in one chunk (Qu et al., 2024).
Later, each chunk is indexed with its corresponding
vector representation using an embedding model.
During inference, these chunks are retrieved based
on their semantic similarity with a question and are
passed as part of the prompt to an LLM to generate
an answer (Monir et al., 2024). If data is in a struc-
tured format like a relational database, then below
are some of the methods to process the data for a
RAG application.

Raw SQL Query: SQL is widely used for query-
ing structured data due to its rapid query processing
capabilities for real-time data analysis and simple
syntax for SQL queries (Balkesen et al., 2018).
(Faroult and Robson, 2006). SQL queries can be
used to retrieve structured data in the RAG tech-
nique, and then LLM can generate the answer using
the prompt created from the retrieved data. How-
ever, the raw SQL query approach could not be di-
rectly applied with a user’s natural language query.
The Text-to-SQL method is proposed to bridge this
gap.

Text-to-SQL: To bridge the gap between natu-
ral language queries and SQL queries, the Text-to-
SQL (Qin et al., 2022) approach converts natural
language queries into SQL using encoder-decoder
models, typically based on LSTM (Yu et al., 2018;
Stower and Krechel, 2019) or Transformer archi-
tectures (Hwang et al., 2019; Lei et al., 2020).

The encoder transforms natural language into vec-
tors, while the decoder generates SQL queries, ei-
ther through sketch-based methods (breaking down
SQL clauses) or end-to-end generation (produc-
ing entire SQL queries). Text-to-SQL systems are
user-friendly, eliminating the need for program-
ming skills (Ahkouk et al., 2021). Modern Large
Language Models (LLMs) can convert text to SQL.
This means that we can use an LLM to convert
a query to SQL in the RAG technique and then
make a function call to a database to retrieve data
(LangChain, 2024c). However, these models can be
sensitive to input variations and may struggle with
queries outside their training domain (Qin et al.,
2022). This approach also increases the number of
calls to an LLM, resulting in increased latency.

Training table embedding model: Other ap-
proaches such as TaPas (Herzig et al., 2020) use
transformer-based architectures to pretrain tabular
embedding models by flattening tables into 1-D
sequences and adding various positional embed-
dings to understand table structures. The pretrain-
ing employs a masked language model loss func-
tion (Devlin et al., 2019), followed by fine-tuning
with questions, tables, and answers. However, this
method has limitations: it requires the full table in-
put, which is impractical for large tables, and often
only a subset of the table is relevant to the query,
leading to noise and confusion.

3 Methodology

The architecture of our application is shown in Fig-
ure 1, with four major components: ingestion and
indexing, inference, monitoring, and user interface.

3.1 Ingestion and Indexing

We collaborated with business partners to consoli-
date the data into three main sources: (a) general
insurance policy documents for US states, (b) CSR
notes, and (c) a structured database with specific
customer policy information. Those sources are
shown on the top right of Figure 1. Policy docu-
ments and CSR notes are stored in PDFs on Mi-
crosoft SharePoint and ingested into Azure Data
Lake Storage (ADLS) upon updates, while struc-
tured data are ingested daily into Azure Synapse
Lake for big data analysis. To implement the RAG
technique for efficient answer generation, we vec-
torized (Karpukhin et al., 2020) both structured
and unstructured data. Vectorization helps retrieve
semantically relevant information more precisely

599

Figure 1: Application Architecture

than a keyword search, particularly for structured
data. It also facilitates in keeping latency low at
inference time.

We indexed unstructured data (PDF files) by
chunking text into 400-token segments with over-
laps and vectorizing into 1536-dimensional vectors
using the text-embedding-ada-002 model1.These
vectors are subsequently stored in an Azure AI
Search 2 index using AI Search SDK.

Our structured data consists of large database
tables that contain detailed information about each
policy and client. These tables contain numeri-
cal, categorical, and textual information. An illus-
trative example is shown in Table 1. We imple-
mented an innovative method to index structured
data. Specifically, we de-normalized multiple ta-
bles in our structured database and also aggregated
them by concepts; e.g., ‘Comfort Keepers’, ‘Care
Champions’, etc. There were three distinct tables
after our processing. There were 4.5 million rows
in these tables after our processing compared to 50
million rows before processing them. Each row of
each table is then converted into a JSON string with
table headers as keys and cells as values. This is
also shown in Table 13. We used this JSON string

1https://learn.microsoft.com/en-us/azure/ai-
services/openai/concepts/models

2https://azure.microsoft.com/en-ca/products/ai-
services/ai-search

3This is an illustrative table with synthetic data to show
how the structured data are indexed, real data has more fields

as a chunk for vectorization. The maximum length
of the JSON string (chunk) was 1300 tokens.

Table 1: Sample Tabular Data

Policy Number Section Name Product Rule Benefit Amount
0000-0001 Policy Feature ABC... 123.45
0000-0007 Policy Feature DEF... 345.67

JSON representation for row 1: {‘Policy
Number’:‘0000-0001’, ‘Section Name’: ‘Policy Feature’ ,
‘Product Rule’:‘ABC...’, ‘Benefit Amount’: ‘123.45’ }

The JSON strings from all tables are vector-
ized using the text-embedding-ada-002 model and
stored in one Azure AI Search index. This index
was separate from the unstructured index. We also
store metadata, such as policy numbers, state, city,
page numbers, and file locations, with each JSON
string. This meta-information facilitates precise
and relevant information retrieval for queries (e.g.,
retrieving chunks relevant only to questions related
to a specific policy number). It also provides refer-
ences to sources (i.e., file locations) for validation
of answers during inference.

The customer-specific policy values are updated
regularly in the structured database. It is inefficient
to re-index the entire dataset in AI Search database.
We run a nightly job that detects updated policy
numbers, indexes new records, and replaces exist-
ing vectors with updated ones. The new records are
inserted into the existing index along with vectors.

and due to its confidentiality, not presented here.

600

In addition, we optimize the speed of indexing by
using parallelization in code and a higher through-
put tier of Azure AI Search.

3.2 Inference

Inference is an important part of our implemen-
tation. We developed the inference application
with Promptflow framework1 in Python. The in-
ference application is deployed on an Azure Ku-
bernetes Service (AKS)2 cluster (see Figure 1).
When a user inputs a question, the inference appli-
cation processes it. The application first employs
a query_rewording function to replace acronyms
with their full forms, avoiding ambiguities in the
query (e.g., D.C. to Death Certificate). The ex-
panded query is then formatted for Azure AI vector
search to retrieve the relevant top K chunks from
both unstructured and structured indexes, which
are combined in the prompt as context for further
use (see Figure 1). Here K is subjective, we chose
K values based on priority of our data sources in
the range of 2-4. An example prompt is shown
below.

System: You are a call center agent answering
customer questions. Answer the following question
based on the information provided in the following
CONTEXT.
-If the CONTEXT is EMPTY, please state "I cannot
answer this question based on the available infor-
mation"
-If the CONTEXT in NOT EMPTY, MAKE SURE
to consider all the sources to answer the question.
Indicate in parentheses the source numbers for each
answer bullet point.
-For answers with a single word or number, answer
within a brief sentence.
#CONTEXT { "Source":1, "Policy Number":
"******", "Section Name":"***", "Product Rules":
"...covered by policy rules...", }
User: {{#QUESTION: What are the product
rules for this policy?}}
{{#Output_format: Answer in bullet points}}

We engineered our prompt with the RACE frame-
work (Liu et al., 2023) to ensure accurate answer
generation, adding instructions to prevent hallu-
cinations, expanding one-word answers into full
sentences, and identifying the source of each an-
swer from the context. Users can choose output
formats such as paragraphs or bullet points, with
sources listed at the end of bullet points to trace an-
swers and mitigate hallucinations. We used Azure
OpenAI’s GPT-3.5-turbo model3 for this process.

1https://microsoft.github.io/promptflow/
2https://azure.microsoft.com/en-us/products/kubernetes-

service
3https://learn.microsoft.com/en-us/azure/ai-

To avoid hallucinations in generated answers, in
addition to the guardrails and source references, we
also validate answers with a secondary LLM (GPT-
4 in our application). A special prompt rates the
groundedness of answers on a scale of 1 to 5, em-
ploying few-shot prompting techniques with exam-
ples of both good, partially good, and bad answers
provided in JSON format. This final validation pro-
cess reduces hallucinations and informs users about
confidence ratings (groundedness) and rationales.
An illustrative validation prompt is shown below.
System: You are an answer validation assistant.
You will be given a CONTEXT and an ANSWER.
The CONTEXT is composed of various source
pieces
User: Your evaluation should be based on the
following rating scale:
Independent Examples:
Example 1 Input: {"CONTEXT": ’{"policy num-
ber": "***", "Type": "Regular", "lifetime value":
*******}’, "ANSWER": "Your benefit type is "Su-
perCare".}
Example 1 Output: {answer: 1, reason: "The an-
swer contains information not present in the con-
text."}

3.3 Monitoring and LLM Operations

To ensure efficient operation of our application, we
automated its deployment and incorporated com-
prehensive monitoring functionalities, including
application logging, data monitoring, continuous
integration and deployment (CI/CD), and model
monitoring (see Figure 1). Application logs are
sent to a Devo server to aid in debugging issues
such as crashes or latency. Data monitoring in-
volves versioning data sources upon ingestion and
assessing their quality using checks for null val-
ues, data types, and parsability. We also version
prompts to maintain consistency and reliability as
the prompts(or LLM) evolve. For CI/CD, TeamC-
ity 4is used to automatically deploy the application
on an AKS cluster upon code changes in Git repos-
itories.

Model monitoring includes content logging on
the user interface, where we capture CSRs’ ques-
tions, generated answers, and confidence ratings
from the secondary LLM. This is supplemented
with optional CSRs’ feedback on answer accu-
racy and completeness. A statistics dashboard in
PowerBI analyzes this data, identifying trends and
quality issues in generated answers. This helps
maintain high customer satisfaction by addressing

services/openai/concepts/models
4https://www.jetbrains.com/teamcity/

601

low-feedback and low-confidence answers.

3.4 User Interface
The user interface for CSRs is easy-to-use, featur-
ing a text box for questions and a list of frequently
asked questions (see Figure 4 in Appendix). CSRs
can type questions or select from the list and must
provide a policy number or related information to
receive customer-specific answers. The interface
displays answers with source lists, summaries, and
clickable URLs for quick navigation. The source
numbers are cited in the answer for easy validation
as shown in Figure 5 in the appendix. We present
both structured and unstructured data sources and
users can submit feedback on answer quality.

4 Evaluation and Discussion

4.1 Evaluation
In this study, to demonstrate the effectiveness of our
proposed methodology, we performed evaluations
by surveying users’ feedback on answers’ accuracy
and completeness. The business users are either
CSRs or their managers who are familiar with the
products and are considered as subject matter ex-
perts. We implemented a feedback mechanism
where users could rate each answer’s accuracy and
completeness on a scale of 1-5 by clicking one
of the five stars on the user interface. Meanwhile,
our validation model depicted in Section 3 rates
confidence on the same scale. We also evaluate
the response latency of our inference pipeline to
highlight the rapid response time of our applica-
tion. To perform this evaluation, we extract users’
activity data for 26 weeks from May 13 to Nov 10,
2024 with a total of 27471 queries, among which
1302 received feedback. We plotted the weekly
averaged metrics 1 in Figure 2.

User Feedback Evaluation: Figure 2 shows
the weekly average feedback from users on accu-
racy and completeness. It also shows the weekly
average response times and the weekly average
confidence ratings of the secondary LLM. It can
be observed that weekly averages for accuracy and
completeness remained high (3 to 4 star ratings) in
most of the weeks, except for weeks 12 to 14. The
confidence ratings of the secondary LLM remained
greater than 4 in all weeks.

1We exclude the cases with null response times from all
analyses. Additionally, for the response time analyses, any
outliers falling outside the Inter-Quartile Range are also re-
moved. Due to the limited space in the paper, we plot weekly
averaged metric, instead of individual log record in this figure.

Figure 2: Weekly Average of Metrics over Week 1-26

In Figure 2, we observe that the accuracy and
completeness rating dropped between week 12 and
week 14. This occurred when CSRs were searching
for answers on a policy that was not present in the
index, and the prompt also needed an adjustment
to avoid the generation of an ambiguous answer
from another source. Once the missing data was
ingested, the accuracy and completeness feedback
improved again.

We further analyzed the data and observed that
52.07% of the responses received 5-star ratings
for accuracy and 53.69% of the answers received
5-star ratings for completeness. The confidence rat-
ings are 5 stars 77.83% of the times; showing that
majority of the times secondary LLM was having
the same opinion as the primary LLM.

Higher scores on the metrics throughout the pro-
duction evaluation period demonstrates that the
answers are consistently reliable and that business
users could adopt them confidently. Our applica-
tion reduces CSRs’ workload and minimizes the
risk of overlooking information, a significant im-
provement over the previous system, where CSRs
were required to sift through multiple knowledge
bases on different screens and read policy docu-
ments.

Response Time: We also monitored the weekly
average response time during the same evaluation
period (measured in seconds) as shown in Figure
2. We can observe that during week 1 to week
13, the average response time hovers around 20
seconds with an average of 21.91s. To reduce re-
sponse time, on Week 14, we improved the retrieval
step from the database index by discarding vectors
(embeddings) from the retrieved results and only
retrieved text of the relevant chunks with metadata
for prompt generation. This optimization signifi-
cantly improved the response time. Note that we

602

already implemented multi-threading for data re-
trieval and switched to higher tier subscription of
Azure AI Search (vector database). After week 14,
our weekly average response time ranges between
6.56s and 9.19s, with an average of 7.33s. This is
a significant improvement in response time.

To further illustrate, our application achieves
such low latency in generating a response during in-
ference time, we pick 35 random execution records
between August 2024 and November 2024 from
our execution log and calculate the average the ex-
ecution time for each step. The averaged step-wise
latency is presented in Figure 3.

Figure 3: Latency Decomposition by Steps

In Figure 3, we can observe that user queries
received a valid response within 7.20s. This is
an impressive response time considering the num-
ber of steps in the entire RAG pipeline. The first
few steps of query pre-processing take a few mil-
liseconds, then question embedding and document
retrieval take 1.3s and 1.1s respectively. The re-
trieved snippets of context are then passed to the
answer generation step, which takes 1.5s, and the fi-
nal groundedness (confidence) validation step takes
2s in the execution of the whole pipeline. It is to
be noted that we have used higher tier of Azure
AI Search (tier L2, 12 partitions, 24 search units)
and Azure Open AI PTU (Provisioned Throughput
Unit)1 and optimized the retrieval step by retain-
ing only the metadata and text chunk for improved
performance in a production application.

Comparison of LLMs on Answer Generation:
We also compared multiple LLMs for answer gen-
eration. Our method of comparison is as follows.
We first labeled the ground truth answers by col-

1https://learn.microsoft.com/en-us/azure/ai-
services/openai/how-to/provisioned-throughput-onboarding

lecting user feedback on the answer generated by
GPT 3.5 model. We picked those answers where
the user generated a feedback rating of 5 star on
both accuracy and completeness. These are about
35 questions and their answers. We then gener-
ated the same answer using other popular open
source LLMs and GPT family’s LLMs. Our list of
LLMs include: GPT-4, GPT-4o, LLama-3, Mistal-
large, Mistral-small, Micorosoft’s Phi128-small.
Although this is not a comprehensive list, it pro-
vides a good understanding of industrial study. We
also tried some other models not in this list but they
hallucinated in preliminary tests so we excluded
them from our comparison, such as Dolly-v2, and
Cohere’s LLM. We used three metrics to compare
them: ROUGE (Briman and Yildiz, 2024), BLEU
(Reiter, 2018) and cosine similarity (Dehak et al.,
2010) scores. These three metrics are popular met-
rics in the literature for comparing generative text
against a bench mark. Our results are shown in
Table 2. It can be observed from Table 2, LLama-3
and GPT-4o are closest to answer generation com-
pared to GPT 3.5. Mistral-small also shows some
impressive performance despite its smaller model
size (22B). Those results demonstrate that quality
of answer generation is not dependent on the model
size but on the type of data it was trained/fine-tuned
on. This comparison also helped us to decide which
models can be used to replace the other ones for
answer generation and helped us control the cost.

Table 2: LLM Comparison Results

Model Avg Bleu
Score

Avg Rouge
Score

Avg Cossim
Score

Llama-3-70B 0.279 0.421 0.838

Mistral-Large 0.101 0.333 0.698

Phi128-Small 0.193 0.283 0.700

Mistral-Small 0.207 0.376 0.785

GPT-4o 0.397 0.492 0.784

4.2 Discussion and Limitations
Although our framework achieves high accuracy,
low latency, and strong groundedness in question-
answering on a large structured dataset, it does have
its limitations. One limitation is the time required
for the offline indexing step compared with the text-
to-SQL method with an LLM function call. This
text-to-SQL method can directly leverage existing
structured data stored in the databases at inference
time without indexing. Our method requires an
offline embedding and indexing step to convert

603

the structured data into a searchable vector index.
This step may take longer if the size of the data
is large. This is a trade-off between the higher
accuracy and lower response time at inference time
versus the delay at the data ingestion stage. We
mitigated this impact by aggregating our structured
data to reduce the number of calls for embedding
model. We also improved our data indexing method
by using parallelization in the code. In addition,
when structured data changed, we identified the
change using keys and only updated vectors for
the changes. In case of aggregation level questions
(count, sum, group by) for this approach, it is better
to list them in advance and index data in a way that
it can be answered faster at inference time.

5 Conclusion and Future Work

In this paper, we presented an industrial case study
on the implementation of RAG technique. We pre-
sented a novel enhancement to the RAG technique
by transforming structured data to JSON format
and then embedding it in the same way as unstruc-
tured data for faster and accurate answer gener-
ation. We also showed a comparison of popular
open-source and closed-source LLMs on answer
generation in our business case. We conclude that
lower response time and highly accurate answers
can be retrieved using our approach combined with
scalable infrastructure. We also conclude that LL-
MOps is important for industrial applications and
helps in maintaining the high quality of answer gen-
eration. We also conclude that LLama-3, GPT-4o
and Mistral small are as good as GPT-3.5 in answer
generation.

Our proposed methodology is highly generaliz-
able and could be easily applied to other business
use cases, where both structured and unstructured
data are queried to generate a grounded answer.
In the future, we will expand the application to
serve other business lines such as presale consult-
ing services, where sales agents need access to both
unstructured knowledge articles and product speci-
fications stored in structured databases. In addition
to serving financial institutions, our application
can be readily adapted for other industries, such
as healthcare institutions where a large amount of
structured and unstructured medical data needs to
be leveraged to answer a complex question. We
hope that this work can provide insights into the
use of both structured and unstructured data in an
end-to-end manner in RAG applications and inspire
new advanced RAG applications in industry.

References
Karam Ahkouk, Mustapha Machkour, Khadija Majhadi,

and Rachid Mama. 2021. A review of the text to
SQL frameworks. In NISS2021: The 4th Interna-
tional Conference on Networking, Information Sys-
tems & Security, KENITRA, Morocco, April 1 - 2,
2021, pages 45:1–45:6. ACM.

Cagri Balkesen, Nitin Kunal, Georgios Giannikis, Pit
Fender, Seema Sundara, Felix Schmidt, Jarod Wen,
Sandeep R. Agrawal, Arun Raghavan, Venkatanathan
Varadarajan, Anand Viswanathan, Balakrishnan
Chandrasekaran, Sam Idicula, Nipun Agarwal, and
Eric Sedlar. 2018. RAPID: in-memory analytical
query processing engine with extreme performance
per watt. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Con-
ference 2018, Houston, TX, USA, June 10-15, 2018,
pages 1407–1419. ACM.

Mohammed Khalid Hilmi Briman and Beytullah Yildiz.
2024. Beyond ROUGE: A comprehensive evalua-
tion metric for abstractive summarization leveraging
similarity, entailment, and acceptability. Int. J. Artif.
Intell. Tools, 33(5):2450017:1–2450017:23.

Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun.
2024. Benchmarking large language models in
retrieval-augmented generation. In Thirty-Eighth
AAAI Conference on Artificial Intelligence, AAAI
2024, Thirty-Sixth Conference on Innovative Applica-
tions of Artificial Intelligence, IAAI 2024, Fourteenth
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2014, February 20-27, 2024, Van-
couver, Canada, pages 17754–17762. AAAI Press.

Najim Dehak, Réda Dehak, James R. Glass, Douglas A.
Reynolds, and Patrick Kenny. 2010. Cosine similar-
ity scoring without score normalization techniques.
In Odyssey 2010: The Speaker and Language Recog-
nition Workshop, Brno, Czech Republic, June 28 -
July 1, 2010, page 15. ISCA.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Tom B. Brown et al. 2020. Language models are few-
shot learners. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual.

Stephane Faroult and Peter Robson. 2006. The art of
SQL. O’Reilly.

604

Paulo Finardi, Leonardo Avila, Rodrigo Castaldoni, Pe-
dro Gengo, Celio Larcher, Marcos Piau, Pablo B.
Costa, and Vinicius Fernandes Caridá. 2024. The
chronicles of RAG: the retriever, the chunk and the
generator. CoRR, abs/2401.07883.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. Tapas: Weakly supervised table parsing
via pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
4320–4333. Association for Computational Linguis-
tics.

Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on wikisql with table-aware word contextualization.
CoRR, abs/1902.01069.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6769–6781. Associa-
tion for Computational Linguistics.

LangChain. 2024a. Build a question answering applica-
tion over a graph database.

LangChain. 2024b. Build a question/answering system
over sql data.

LangChain. 2024c. Tool calling.

Oleg Lashinin, Kirill Bykov, Marina Ananyeva, and
Sergey Kolesnikov. 2023. Gpt3recbot: a universal
chatbot recommender of movies, books and music
in telegram. In Proceedings of the Fifth Knowledge-
aware and Conversational Recommender Systems
Workshop co-located with 17th ACM Conference on
Recommender Systems (RecSys 2023), Singapore,
September 19th, 2023, volume 3560 of CEUR Work-
shop Proceedings, pages 35–43. CEUR-WS.org.

Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan, Wei
Lu, Min-Yen Kan, and Tat-Seng Chua. 2020. Re-
examining the role of schema linking in text-to-sql.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 6943–
6954. Association for Computational Linguistics.

Xiaoxia Liu, Jingyi Wang, Jun Sun, Xiaohan Yuan, Guo-
liang Dong, Peng Di, Wenhai Wang, and Dongxia
Wang. 2023. Prompting frameworks for large lan-
guage models: A survey. CoRR, abs/2311.12785.

Solmaz Seyed Monir, Irene Lau, Shubing Yang, and
Dongfang Zhao. 2024. Vectorsearch: Enhancing
document retrieval with semantic embeddings and
optimized search. CoRR, abs/2409.17383.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,
Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022.
A survey on text-to-sql parsing: Concepts, methods,
and future directions. CoRR, abs/2208.13629.

Renyi Qu, Ruixuan Tu, and Forrest Sheng Bao. 2024.
Is semantic chunking worth the computational cost?
CoRR, abs/2410.13070.

Ehud Reiter. 2018. A structured review of the validity
of BLEU. Comput. Linguistics, 44(3).

Mohammad Shahin, F. Frank Chen, and Ali Hossein-
zadeh. 2024. Harnessing customized AI to create
voice of customer via GPT3.5. Adv. Eng. Informat-
ics, 61:102462.

Kevin Stower and Dirk Krechel. 2019. Seq2sql - evalu-
ating different deep learning architectures using word
embeddings. In Machine Learning and Data Mining
in Pattern Recognition, 15th International Confer-
ence on Machine Learning and Data Mining, MLDM
2019, New York, NY, USA, July 20-25, 2019, Proceed-
ings, Volume I, pages 343–354. ibai Publishing.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and
Dragomir R. Radev. 2018. Typesql: Knowledge-
based type-aware neural text-to-sql generation. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT, New Orleans, Louisiana, USA, June
1-6, 2018, Volume 2 (Short Papers), pages 588–594.
Association for Computational Linguistics.

Zihan Zhang, Meng Fang, and Ling Chen. 2024. Re-
trievalqa: Assessing adaptive retrieval-augmented
generation for short-form open-domain question an-
swering. In Findings of the Association for Compu-
tational Linguistics, ACL 2024, Bangkok, Thailand
and virtual meeting, August 11-16, 2024, pages 6963–
6975. Association for Computational Linguistics.

Zijie Zhong, Hanwen Liu, Xiaoya Cui, Xiaofan Zhang,
and Zengchang Qin. 2024. Mix-of-granularity:
Optimize the chunking granularity for retrieval-
augmented generation. CoRR, abs/2406.00456.

Kun Zhu, Xiaocheng Feng, Xiyuan Du, Yuxuan Gu,
Weijiang Yu, Haotian Wang, Qianglong Chen, Zheng
Chu, Jingchang Chen, and Bing Qin. 2024. An in-
formation bottleneck perspective for effective noise
filtering on retrieval-augmented generation. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), ACL 2024, Bangkok, Thailand, August 11-
16, 2024, pages 1044–1069. Association for Compu-
tational Linguistics.

605

https://arxiv.org/abs/1902.01069
https://arxiv.org/abs/1902.01069
https://python.langchain.com/docs/tutorials/graph/
https://python.langchain.com/docs/tutorials/graph/
https://python.langchain.com/docs/tutorials/sql_qa/
https://python.langchain.com/docs/tutorials/sql_qa/
https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/

A Appendix

The user interface of the application is shown in Figure 4 and Figure 5.

Figure 4: GUI of the Application: Input Section

Figure 5: GUI of the Application: Answer and References

606

