
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Industry Track), pages 449–459

April 30, 2025 ©2025 Association for Computational Linguistics

MedCodER: A Generative AI Assistant for Medical Coding

Krishanu Das Baksi1∗, Elijah Soba2∗, John J. Higgins2, Ravi Saini1,
Jaden Wood2, Jane Cook2, Jack Scott2, Nirmala Pudota1,

Tim Weninger3, Edward Bowen2, Sanmitra Bhattacharya2,

1Deloitte & Touche Assurance & Enterprise Risk Services India Private Limited,
2Deloitte & Touche LLP, 3University of Notre Dame

Abstract

Medical coding standardizes clinical data but
is both time-consuming and error-prone. Tra-
ditional Natural Language Processing (NLP)
methods struggle with automating coding due
to the large label space, lengthy text inputs,
and the absence of supporting evidence an-
notations that justify code selection. Recent
advancements in Generative Artificial Intelli-
gence (AI) offer promising solutions to these
challenges. In this work, we introduce Med-
CodER, an emerging Generative AI framework
for automatic medical coding that leverages ex-
traction, retrieval, and re-ranking techniques
as core components. MedCodER achieves a
micro-F1 score of 0.62 on International Classi-
fication of Diseases (ICD) code prediction, sig-
nificantly outperforming state-of-the-art meth-
ods. Additionally, we present a new dataset
containing medical records annotated with dis-
ease diagnoses, ICD codes, and supporting
evidence texts (https://doi.org/10.5281/
zenodo.13308316). Ablation tests confirm
that MedCodER’s performance depends on the
integration of each of its aforementioned com-
ponents, as performance declines when these
components are evaluated in isolation.

1 Introduction

The International Classification of Diseases (ICD)1,
developed by the World Health Organization
(WHO)2, is a globally recognized standard for
recording, reporting, and monitoring diseases. In
the United States, the use of ICD codes is man-
dated by the U.S. Department of Health and Human
Services (HHS) for entities covered by the Health
Insurance Portability and Accountability Act for
insurance purposes.

*These authors contributed equally to this work.
1https://www.cms.gov/medicare/coding-billing/

icd-10-codes
2https://www.who.int/standards/

classifications/classification-of-diseases

ICD codes have undergone various revisions
over time to reflect advancements in medical sci-
ence3. The 10th revision, known as ICD-10-CM
(referred to as ICD-10 hereafter) in the U.S, is the
standard for modern clinical coding and comprises
over 70,000 distinct codes. These codes follow
a specific alphanumeric structure (Hirsch et al.,
2016) and are organized into a hierarchical ontol-
ogy based on the medical concepts they represent.
ICD-10 differs significantly from previous versions,
making translation between versions challenging.

Accurate ICD coding is essential for medical
billing, health resource allocation, and medical re-
search (Campbell and Giadresco, 2020). This task
is performed by specialized professionals known as
medical or clinical coders, who use a combination
of manual techniques and semi-automated tools to
process large volumes of medical records. Their
primary responsibility is to accurately assign ICD-
10 codes to medical records based on documented
diagnoses and procedures. The coding process is
often time-consuming and costly, and the difficulty
depends on the complexity of the patient records
and the level of detail in the documentation. Errors
in ICD coding can have significant financial and le-
gal implications for patients, healthcare providers,
and insurers. Despite the critical importance of
accurate coding, few reliable solutions exist to sup-
plement or automate this process.

Automation of ICD coding is an active research
area within the NLP community. While various
approaches have been proposed, recent methods
typically frame this task as a multi-label classifi-
cation problem: given the raw text of a medical
record, the goal is to predict each of the relevant
ICD codes (Yan et al., 2022). Although the ob-
jective is straightforward, several challenges make
automatic ICD coding difficult. These include the

3https://www.cdc.gov/nchs/hus/
sources-definitions/icd.htm
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Medical Record

Martha Collins is a 50-year-old female with a past history of 
congestive heart failure who presents for her annual exam.

Congestive heart failure.

• Medical Reasoning: She has been compliant with her
medication. Her echocardiogram showed an ejection
fraction of 45%, as well as some mitral regurgitation.

• Additional Testing: We will order a repeat
echocardiogram. We will also repeat a lipid panel this year.

Hypertension

• Medical Reasoning: Elevated systolic and diastolic
pressure.
• Medical Treatment: We will increase her lisinopril to 40
mg daily.

“Disease”: “Hypertension”,
“Retrieved ICD Codes”: [

“I10” – “Essential Hypertension”,

“I15.9”: “Secondary hypertension, unspecified”, 
……….
]

“Disease”: “Congestive Heart Failure”,

“Retrieved ICD Codes”: [

“I50.22” , “I50.20”, “I50.9”, …

]

ICD 
Code 

Vector 
DB

Re-Ranking

Final ICD-10

“Disease”: “Hypertension”,
“Supporting Evidence”: [“Blood Pressure: Elevated – 180/120.”, 

“Medical Reasoning: Elevated systolic and diastolic pressure. ”, 

“Medical Treatment: We will increase her lisinopril to 40 mg 

daily”],

“ICD Code”: “I11.95”

“Disease”: “Congestive Heart Failure”,

“Supporting Evidence”: [“Her echocardiogram 

showed an ejection fraction of 45%, as well as some 

mitral regurgitation”, …]

“ICD Code”: “I50.22”

Retrieval

I50.9 ✓

Suggestions 

@ k

Extraction

Her echocardiogram 

showed an ejection …
I50.22  

I50.8 

Supporting Evidence

Congestive 

Heart Failure

Disease

Highlight Disease Mention 

and Supporting Evidence

Hypertension
Elevated systolic and 

diastolic pressure

I10 ✓
I11.9 
I11.0 

Figure 1: A schematic diagram of the MedCodER framework illustrates three primary components: extraction of
disease diagnoses, supporting evidence and an initial list of ICD-10 codes, retrieval of candidate ICD-10 codes for
the extracted diagnosis using a vector database, and re-ranking these combined codes to produce a final list of k
ICD-10 codes. Extracted disease mentions and supporting evidence are mapped back to the medical record for
in-context highlighting, aiding medical coders in the coding process.

extremely large label space, the diversity and lack
of standardization in medical record data, and the
severely imbalanced distribution of labels. State
of the art NLP techniques still fall short of fully
automating the process, and these methods often
lack interpretability.

Large Language Models (LLMs) have shown re-
markable capabilities in text generation and reason-
ing, particularly in zero-shot scenarios. However,
early efforts to apply LLMs for automatic ICD cod-
ing have produced unsatisfactory results (Boyle
et al., 2023; Soroush et al., 2024). In the present
work, we hypothesize that augmenting the intrin-
sic (parametric) knowledge of LLMs with comple-
mentary techniques, such as retrieval (Lewis et al.,
2020) and re-ranking (Sun et al., 2023), can signifi-
cantly improve their accuracy in this domain.

Furthermore, evaluation and benchmarking for
automatic ICD coding tools, particularly those
based on Generative AI, are challenged by restric-
tive licensing terms and lack of expert annotations.
Medical records contain sensitive data that discour-
age the use of third party API providers such as
OpenAI or Anthropic. In addition, a majority of
datasets in this space only contain ICD-10 labels
and not the text that justifies it. In practice, the
justification of an ICD-10 code is just as important
as its classification.

To address the challenges associated with apply-
ing Generative AI approaches to ICD coding and
the lack of third-party-friendly ICD coding datasets,
this paper makes the following contributions:

1. We introduce an open-source dataset designed
for evaluating ICD coding methodologies, in-
cluding those based on Generative AI. This

dataset includes not only ICD-10 codes but
also extracted diagnoses and supporting evi-
dence texts, which facilitate the development
and assessment of interpretable ICD coding
methods.

2. We describe the Medical Coding us-
ing Extraction, Retrieval, and re-ranking
(MedCodER) framework, an accurate and in-
terpretable emerging approach to ICD coding
that leverages LLMs along with retrieval and
re-ranking techniques. MedCodER first ex-
tracts disease diagnoses, supporting evidence,
and an initial list of ICD-10 codes from medi-
cal records. It then retrieves candidate ICD-10
codes using semantic search and re-ranks the
combined codes from previous steps to pro-
duce the final ICD-10 code predictions.

3. We evaluate the performance of the Med-
CodER framework compared to state-of-the-
art (SOTA) methods using our dataset.

2 Related Research

2.1 Automatic ICD Coding
Automated ICD coding is a challenging NLP prob-
lem, approached through rule-based (Kang et al.,
2013; Farkas and Szarvas, 2008), traditional ma-
chine learning (Scheurwegs et al., 2016, 2017), and
deep learning methods (Ji et al., 2024). Recent
methods often treat it as a multi-label classification
task, utilizing architectures like convolutional (Mul-
lenbach et al., 2018; Cao et al., 2020), recurrent
(Yu et al., 2019; Guo et al., 2020), graph neural
networks (Wang et al., 2020), and transformers
(Huang et al., 2022). Although generative AI and
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LLMs have been explored for ICD coding (Boyle
et al., 2023; Soroush et al., 2024), results have been
mixed.

An analysis by Edin et al. 2023 compared SOTA
ICD coding models on MIMIC datasets and found
that PLM-ICD (Huang et al., 2022) excelled on
MIMIC IV, but common ICD coding challenges
persisted, with more than half of ICD-10 codes
misclassified. This suggests the potential of zero-
shot models like LLMs for more reliable solutions.

LLM-based ICD coding research has yielded
mixed outcomes. One study achieved only a
34% match rate using a dataset from Mount Sinai
(Soroush et al., 2024), while an LLM-guided tree
search method achieved competitive results (Boyle
et al., 2023), though it lacked transparency in code
selection and was resource-intensive.

2.2 Disease Extraction
Disease extraction, a key component of both tradi-
tional medical coding and the MedCodER frame-
work, involves identifying disease entities from
medical records and is a form of Named Entity
Recognition (NER) in biomedical NLP (Durango
et al., 2023). While often overlooked in ICD cod-
ing methods, disease NER is crucial for accurate
retrieval and re-ranking of ICD codes.

Domain-specific models like BioBERT (Lee
et al., 2019), pre-trained on biomedical literature,
achieve high F1 scores (86-89%) on benchmark
datasets but are more effective with data similar to
their training sets. Recent advancements such as
Universal Named Entity Recognition (UniNER),
Generalist Model for Named Entity Recognition
(GLiNER), and NuExtract all have shown com-
petitve zero-shot performance on traditional NER
by training or fine-tuning Large Language models.

Unlike general NER, which may identify a broad
range of disease mentions, ICD-10 extraction fo-
cuses on diagnosing diseases relevant for coding,
reducing noise and minimizing errors in billing
and documentation. Our approach targets precise
disease extraction aligned with ICD-10 codes.

2.3 Retrieval and Re-ranking
While traditional NLP methods often frame auto-
matic ICD coding as a multi-label classification
task, it can also be approached as a retrieval and
re-ranking problem. In this perspective, the goal is
to retrieve the most relevant ICD codes for a given
medical record and then re-rank them into a prior-
itized list. This approach addresses the challenge

of dealing with large label spaces by filtering out
irrelevant codes, resulting in a more manageable
set of candidates.

Prior work has explored the retrieval and re-
ranking paradigm using pre-trained ICD coding
models (Tsai et al., 2021). In this approach, the
top k most probable codes are selected from the
pre-trained model and re-ranked based on label
correlation. However, its effectiveness is limited
by the retriever’s ability to produce relevant codes
within the top k. Embedding models have also been
utilized to retrieve relevant codes for a given medi-
cal record (Niu et al., 2023). While promising, this
approach is limited by the challenges of long input
texts and lacks a clear rationale for ICD-10 code
selections. In contrast, the MedCodER framework
addresses these limitations by extracting disease-
related text segments to enhance the retrieval of
relevant ICD-10 codes.

3 MedCodER Framework

Here we introduce the MedCodER framework,
which is illustrated in Fig. 1. MedCodER is an
interpretable and explainable ICD coding frame-
work comprised three components: (1) extraction,
(2) retrieval, and (3) re-ranking. In this section,
we describe each component and its relevance to
ICD-10 coding.

3.1 Step 1: Disease Diagnoses, Supporting
Evidence & ICD-10 Code Extraction

MedCodER begins by employing an LLM to ex-
tract disease diagnoses, supporting evidence, and
ICD-10 codes from medical records. Disease di-
agnoses refer to clinical terms for a patient’s con-
dition, while supporting evidence includes related
details such as test results and medications. We
prompt the LLM to output these entities in JSON
format (see Appendix A).

Drawing inspiration from Chain-of-Thought
(CoT) prompting (Wei et al., 2022), we asked the
LLM to first reason about relevant text from the
medical record before generating ICD-10 codes,
mimicking the workflow of medical coders (Ap-
pendix A). The extracted diagnoses are used in the
retrieval step, while the supporting text and gen-
erated ICD-10 codes are used in the re-ranking
step. To mitigate against hallucinations in the LLM
output, we match the extracted text to the medi-
cal record text using fuzzy matching and BM25
similarity scores.
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3.2 Step 2: ICD-10 Retrieval Augmentation
Following the LLM text extraction, we generate
a candidate set of ICD-10 codes through seman-
tic search between extracted diagnoses and the de-
scriptions of valid ICD-10 codes. This approach
mitigates the large label space issue by reducing the
number of potential codes to a more manageable
set.

For the semantic search, we compiled textual de-
scriptions of valid codes from the ICD-10 ontology
and equivalent descriptions from the Unified Med-
ical Language System (UMLS) Metathesaurus4,
providing accurate handling of medical synonyms.
We then embedded these descriptions and tagged
each code with metadata related to the ontology,
such as chapter, block, and category (Boyle et al.,
2023). During inference, disease diagnoses are em-
bedded, and the top k most similar ICD-10 codes
based on cosine distance are retrieved for each diag-
nosis. This results in a ranked list of ICD-10 codes
directly mapped to specific diagnoses, enhancing
interpretability.

3.3 Step 3: Code-to-Record Re-ranking
In the final step, the retrieved codes from the Step
2 and those generated by the LLM are re-ranked
to produce the final list of predicted ICD-10 codes.
This re-ranking is performed using an LLM, but
only the extracted diagnoses and supporting evi-
dence are considered, allowing the LLM to pri-
oritize based on relevant information. We follow
the RankGPT framework (Sun et al., 2023), with
modifications specific to ICD-10 coding.

4 Experimental Methodology

4.1 Dataset
Because current ICD coding benchmark datasets,
like MIMIC III and IV, have restrictions on use
with off-the-shelf, externally-hosted LLMs, and
because they lack annotations of supporting evi-
dence text, they cannot be used in typical Gener-
ative AI solutions. To address this, we created a
new dataset that extends the Ambient Clinical In-
telligence Benchmark (ACI-BENCH) dataset (Yim
et al., 2023). ACI-BENCH is a synthetic dataset
containing 207 transcribed conversations that sim-
ulate doctor-patient interactions. These notes were
reviewed and revised, as necessary, by medical do-
main experts to ensure their accuracy and realism,
closely mimicking real-world clinical notes.

4https://www.nlm.nih.gov/research/umls/index.html

We extended the ACI-BENCH dataset by man-
ually annotating each clinical note with ICD-10
codes, disease diagnoses, and supporting evidence
texts. This task was performed with the assistance
of an expert medical coder, who has over 20 years
of experience and holds certifications such as the
American Health Information Management Associ-
ation (AHIMA) Certified Coding Specialist (CCS)
and the American Academy of Professional Coders
(AAPC) Certified Professional Coder (CPC). Of
the 207 clinical notes, three were deemed unworthy
of coding. The remaining notes were coded in two
batches: the first batch included 184 notes, 360
ICD-10 codes with diagnoses, and 737 supporting
evidence texts, and is used to evaluate the results
of various MedCodER components. The second
batch, consisting of 20 notes, is intended for use as
a hold out set.

4.2 Methodology

We evaluate the performance of MedCodER’s com-
ponents using the extended ACI-BENCH dataset
and comparing them with SOTA approaches. Be-
cause most automatic ICD coding baselines pro-
duce a single ICD-10 code per diagnosis, we com-
pare our k@1 results against these. We also demon-
strate performance trade-offs with increasing val-
ues of k. For non-LLM baselines, we use publicly
available pre-trained weights, and for LLM-based
experiments, we use top-performing models5, such
as GPT-4o, Claude 3.5 Sonnet and Llama 405B
(MedCodER with GPT-4o is simply referred to as
MedCodER henceforth; results of ICD-10 coding
with Claude and Llama models are shown in the
Appendix B).

4.3 Metrics

We report results with micro precision and micro
recall for each sub-task. Consistent with current
evaluation approaches for NER and ICD coding,
we focus on micro metrics because, in extremely
large label spaces, it is crucial to treat each instance
equally rather than each class. This approach em-
phasizes the performance of our framework per
document rather than per ICD-10 code.

To evaluate disease diagnoses extraction, we use
set-based, exact-match metrics. Our metric choice
is motivated by the retrieval subtask. Because vec-
tor search is location-independent, we disregard

5As per the HELM Lite leaderboard
https://crfm.stanford.edu/helm/lite/latest/#/leaderboard
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Model Recall Precision F1

BioBERT 0.44 0.07 0.12
UniNER 0.67 0.11 0.19
GLiNER 0.78 0.15 0.25
NuExtract v1.5 0.85 0.79 0.82
MedCodER 0.85 0.81 0.83

Table 1: Disease diagnoses extraction results.

Model Recall Precision F1

PLM-ICD 0.57 0.31 0.40
Simple Prompt 0.52 0.32 0.40
LLM Tree-Search 0.38 0.10 0.16
MedCodER@1 0.68 0.57 0.62

Table 2: ICD-10 coding results for MedCodER com-
pared to SOTA baselines.

text positions when computing extraction perfor-
mance. Additionally, we treat exact matches case
insensitively, differing from traditional NER evalu-
ations.

5 Results

In this section, we present the results of both the
baselines and the MedCodER framework.

5.1 Disease Diagnoses and Supporting
Evidence Extraction

The results of disease diagnoses extraction are
shown in Table 1. We find that MedCodER’s
disease diagnoses extraction for ICD-10 coding
outperforms most other NER specialized models,
validating our hypothesis that prompting for spe-
cific ICD-10 diagnoses is better for this task. Al-
though NuExtract was able to approximate the per-
formance of GPT-4o in disease extraction, its per-
formance significantly declined when prompted for
both disease and supporting evidence. Because
disease extraction directly determines the ICD-10
codes produced, these results also represent an up-
per bound on ICD-10 coding performance.

Because this dataset is the first to include sup-
porting evidence for ICD-10 codes and their as-
sociated diagnoses, we lacked a baseline for com-
parison. In our experiments with various prompt-
ing approaches, partial match recall ranged from
0.75 to 0.82, and precision ranged from 0.24 to
0.30 (detailed results are omitted due to space con-
straints). The low precision indicates that the model

extracts some non-relevant evidence, potentially in-
troducing errors in the re-ranking process where
supporting evidence texts are used. Despite the
low precision, our full framework results in Table 2
suggest that the extracted supporting evidence aids
re-ranking. This task is more nuanced and challeng-
ing than disease extraction, highlighting the need
for performance improvements in future work.

5.2 ICD-10 Coding

Table 2 presents MedCodER results when filter-
ing for only the top ranked ICD-10 code per di-
agnosis. For baselines, we used the pre-trained
weights of PLM-ICD on MIMIC IV from Edin
et al. (2023) and a 50-call limit for the LLM
Tree-Search. These methods represent the SOTA
deep learning (Edin et al., 2023) and generative AI
based solutions (Boyle et al., 2023) for automatic
ICD-10 coding. MedCodER outperforms these
baselines, significantly enhancing ICD-10 coding
performance while remaining interpretable. The
LLM Tree-Search method performed lower than
expected, which we attribute to the call limit and
error propagation mentioned in their work.

We observe that GPT-4o outperforms both
Claude 3.5 Sonnet and Llama 405B (Appendix B),
which can be attributed to its enhanced extraction
and re-ranking capabilities.

5.3 Ablation Results

To evaluate the efficacy of retrieval and re-ranking
on ICD coding performance, we conducted an ab-
lation study. The results are shown in Fig. 2. The
variations of MedCodER used in the study are:

• MedCodER-Prompt: Uses only the ICD-10
codes from MedCodER prompt. This value
does not change with the number of retrieved
documents k.

• MedCodER-Retrieve: Uses only the re-
trieved ICD-10 codes, without re-ranking.

• MedCodER-Prompt+Retrieve: Uses both
prompted and retrieved ICD-10 codes, with-
out re-ranking.

• MedCodER: The entire framework with each
constituent component, i.e., prompted and re-
trieved ICD-10 codes after re-ranking.

We observe that re-ranking the combined set of
prompted and retrieved ICD-10 codes outperforms
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Figure 2: Recall and Precision @k for variations of
MedCodER framework

using either method alone. Recall increases mono-
tonically with addition of retrieval, meaning our
search produces semantically relevant hits. As ex-
pected, the precision decays as we produce more
output codes. Contrary to prior work (Soroush
et al., 2024), our results with MedCodER-Prompt
show that LLMs can perform well on ICD-10 pre-
diction with careful prompt engineering. We at-
tribute this to prompt design, where the LLM is
prompted to first generate the diagnoses and sup-
porting evidence texts before it is prompted to gen-
erate the ICD-10 codes, akin to CoT prompting
(Wei et al., 2022).

5.4 Error Analysis

We conducted an error analysis to highlight Med-
CodER’s limitations and suggest future research
directions.

Table 3 presents failure cases for each compo-
nent of our framework (k=1). We show cases
where the extracted disease diagnosis matched the
ground truth to highlight errors in prompting and re-
trieval approaches for ICD-10 coding. We observed
that that even when the codes are incorrect, they
are often very close semantically. Additionally,
MedCodER can overcome prompting and retrieval
shortcomings due to its re-ranking capability.

Medical Record Snippet
and Ground Truth
Diagnosis

Ground Truth
ICD-10 and De-
scription

Regarding her depression,
the patient feels that it is
well managed on Effexor

F32.A: Depression,
unspecified

Model Prediction ?
MedCodER-

Prompt
F32.9 ✗

MedCodER-
Retrieve

F33.9 ✗

MedCodER F32.A ✓

Edema and ecchymosis
surrounding the knee.
Positive pain to palpation.
Assessment: Right Knee
Contusion

S80.01XA: Contu-
sion of right knee,
initial encounter

Model Prediction ?
MedCodER-

Prompt
S80.01XA ✓

MedCodER-
Retrieve

S80.01 ✗

MedCodER S80.01XA ✓

Today I discussed
conservative options for
left shoulder impingement
with the patient

M75.42: Impinge-
ment syndrome of
left shoulder

Model Prediction ?
MedCodER-

Prompt
M75.40 ✗

MedCodER-
Retrieve

M75.42 ✓

MedCodER M75.42 ✓

His examination is
consistent with rather
severe post-traumatic
stenosing tenosynovitis of
the right index finger.

M65.321: Trigger
finger, right index
finger

Model Prediction ?
MedCodER-

Prompt
M22.40 ✗

MedCodER-
Retrieve

M17.2 ✗

MedCodER M22.2X1 ✗

Table 3: Error analysis of each variation of the Med-
CodER framework with associated disease diagnosis
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Figure 3: A representation of MedCodER in action. On the left, the medical record is annotated with the disease
diagnosis for shortness of breath and its supporting evidence texts. On the right, the corresponding top 5 ICD-10
code suggestions are shown. Other diagnoses and supporting evidence texts can be toggled to show or hide using
the ‘Show’ buttons next to them.

6 Discussion

Unlike fully automated ICD coding solutions, Med-
CodER is an AI-assisted coding tool to enhance
medical coding workflows. To illustrate this, we
designed a preliminary but functional user interface
(Figure 3) which is current being beta-tested by our
coders prior to production integration with an enter-
prise medical coding tool. For each predicted diag-
nosis, a button in the UI is available to highlight the
corresponding text spans containing disease men-
tions and supporting evidence texts. Additionally,
a dropdown menu displays MedCodER’s top five
most relevant ICD-10 codes per diagnosis. Coders
can review and select a code from the dropdown or
input a different code.

In future work, we intend to investigate biomedi-
cal domain-specific LLMs, as MedCodER depends
on the LLM’s understanding of diseases, support-
ing evidence, and ICD-10 codes. Our framework’s
flexibility in replacing individual components al-
lows us to integrate the latest SOTA models as the
generative AI landscape evolves. For example, Ap-
pendix C demonstrates the results of MedCodER
utilizing MedCPT (Jin et al., 2023), a domain-
specific embedding model trained on PubMed arti-
cles, as the backend embedder for retrieval, instead
of the OpenAI text-embedding-ada-002 model used
in our current work.

Although the dataset discussed in this paper is
in text format, real-world medical records often
come in other formats, such as scanned or digi-
tal PDFs. These formats require additional pre-
processing to handle any handwritten sections, ta-
bles, and other poorly-formatted data. Furthermore,
the fixed context length of LLMs may require ex-

tra pre-processing steps for longer records. We
hypothesize that performance should remain rela-
tively consistent for larger records, provided they
are divided into smaller consecutive chunks and
processed sequentially.

7 Conclusions

In conclusion, we present MedCodER–an innova-
tive, interpretable framework that surpasses current
SOTA methods in automated ICD coding. By in-
tegrating extraction, retrieval, and re-ranking tech-
niques with LLMs, MedCodER achieves a synergy
that no single component can match alone. Our
analyses confirm that this holistic approach not
only boosts coding accuracy but also maintains
transparency in code selection. Additionally, our
error analysis has pinpointed key areas for future
improvement, paving the way for more robust and
efficient solutions. Finally, our preliminary inte-
gration of MedCodER as an AI-based assistant
for medical coders demonstrates its potential to
enhance both efficiency and accuracy in clinical
settings, promising significant practical benefits.
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Appendix A Prompts

Simple Prompt
You are an expert clinical coder. Given a medical record, your task is to output all relevant ICD-10
codes that are relevant to the text. Output the ICD10 codes as a comma separated list.

Medical Record:
{medical_note}

ICD10 codes:
MedCodER Prompt
You are an expert clinical coder. Your task is to identify all the disease diagnoses present in the given
Medical Note.
Medical Note:
{medical_note}

The output must be a valid JSON list, where each element of the list must contain the following:
1. Disease: The disease mentioned in the Medical Note.
2. Supporting Evidence: The list of sentences from the Medical Note which contain information related
to diagnosis, assessment, medical reasoning, treatment plans, medications, referrals for the Disease.
Do not include sentences about the medical history of the patient.
3. ICD-10-CM Code: The ICD-10 code for the Disease.

Here is an example output:
[
{
"Disease": "<disease diagnosis 1>",
"Supporting Evidence": [<list of sentences which which contain any kind of information related to
diagnosis, assessment, medical reasoning, treatment plans, medications, referrals for disease diagnosis
1>],
"ICD-10-CM Code": <ICD-10-CM Code for diagnosis 1>
},
{
"Disease": "<disease diagnosis 2>",
"Supporting Evidence": [<list of sentences which which contain any kind of information related to

diagnosis, assessment, medical reasoning, treatment plans, medications, referrals for disease diagnosis
2>],
"ICD-10-CM Code": <ICD-10-CM Code for diagnosis 2>
},
]

Output only the JSON and nothing else.
Output:

Table 4: Baseline simple prompt and the MedCodER prompt
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Appendix B MedCodER with various SOTA LLMs

Model Recall Precision F1

Llama 405B 0.56 0.37 0.45
Claude 3.5 Sonnet 0.68 0.24 0.35
GPT-4o 0.68 0.57 0.62

Table 5: ICD-10 coding results @1 for MedCodER with various SOTA LLMs

Appendix C MedCodER with MedCPT embeddings

Model Recall Precision F1

Llama 405B 0.54 0.36 0.43
Claude 3.5 Sonnet 0.52 0.36 0.42
GPT-4o 0.68 0.39 0.49

Table 6: ICD-10 coding results @1 for MedCodER with various LLMs using MedCPT embeddings for retrieval
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