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Abstract

Diffusion-based image generation models such
as DALL-E 3 and Stable Diffusion-XL demon-
strate remarkable capabilities in generating
images with realistic and unique composi-
tions. Yet, these models are not robust in
precisely reasoning about physical and spa-
tial configurations of objects, especially when
instructed with unconventional, thereby out-
of-distribution descriptions, such as “a chair
with five legs”. In this paper, we propose
a language agent with chain-of-3D-thoughts
(L3GO), an inference-time approach that can
reason about part-based 3D construction of un-
conventional objects that current data-driven
diffusion models struggle with. More con-
cretely, we use large language models as agents
to compose a desired object via trial-and-error
within the 3D simulation environment. To fa-
cilitate our investigation, we develop a new
benchmark, Unconventionally Feasible Objects
(UFO), as well as SimpleBlenv, a wrapper en-
vironment built on top of Blender1 where lan-
guage agents can build and compose atomic
building blocks via API calls. Human and
automatic GPT-4V evaluations show that our
approach surpasses the standard GPT-4 and
other language agents (e.g., ReAct and Re-
flexion) for 3D mesh generation on ShapeNet.
Moreover, when tested on our UFO bench-
mark, our approach outperforms other state-of-
the-art text-to-2D image and text-to-3D mod-
els based on human evaluation. Demo video:
https://youtu.be/Yu5XMs00nh8

1 Introduction

AI applications that generate 2D images (Betker
et al.; Saharia et al., 2022; Podell et al., 2023) and
3D models (Jun and Nichol, 2023; Lin et al., 2023)

*Work conducted while at Yale University. Correspon-
dence: yutaroyamada@sakana.ai

†Work conducted while at Allen Institute for AI
1https://www.blender.org/

L3GODALL-E 3

Prompt: "a chair with five legs"

Figure 1: We compare one of the state-of-the-art text-
to-image models (DALL-E 3) with our LLM-based ap-
proach (L3GO). We perform five iterations of DALL-E
3 generation with human feedback but DALL-E 3 does
not strictly follow the prompt. L3GO creates a chair
with the correct number of legs.

from text instructions have opened up significant
possibilities for creators. However, these tools lack
precise output controls as they often produce un-
expected or “hallucinatory” results (Saharia et al.,
2022) not loyal to the input prompts. Addition-
ally, early versions of Stable Diffusion (Rombach
et al., 2022) had difficulty in combining multiple
concepts in one image or would mix up different
attributes. Previous efforts have improved perfor-
mance on object-attribute attachment, missing ob-
jects, etc. by steering attention layers (Feng et al.,
2022; Chefer et al., 2023; Rassin et al., 2023), or,
by training larger models with detailed captions on
a vast scale (StableDiffusion-XL (SDXL) (Podell
et al., 2023) and DALL-E-3 (Betker et al.).) How-
ever, even the most performant diffusion model,
DALL-E 3, still fails to generate objects that re-
quire precise 3D spatial understanding like “a chair
with five legs” (Figure 1). This difficulty persists
even after repeated attempts to adjust DALL-E-3’s
outputs with human feedback directly, e.g., “The
chair you generated has seven legs. Please make a
chair with exactly five legs.”

We posit that the sophisticated text-based rea-
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(b) Tables (c) Airplanes(a) Lamps

Figure 2: GPT-4 tries to construct three types of objects from ShapeNet by writing Python scripts in Blender. It
can successfully create simple items like lamps, but faces challenges with more complex objects such as tables and
airplanes.

soning abilities inherent in LLMs can compensate
for shortcomings in the 3D spatial comprehension
of text-to-2D image and text-to-3D models. We
present L3GO, an inference agent capable of itera-
tively soliciting feedback from LLMs to integrate
corrections and enhance the precision of rendering
a 3D mesh used as a skeleton to generate 2D image.

We conduct our experiments within Blender —a
widely used 3D modeling software. We create and
release an environment called SimpleBlenv, based
on Blender, to systematically evaluate text-to-3D
mesh generation performance of LLM agents. State
of the art LLMs such as GPT-4 (Bubeck et al.,
2023), despite being trained on only text has de-
cent spatial reasoning capabilities. Figure 2 shows
mixed results when GPT-4 is prompted to write a
Python script that can run in Blender to create 3D
meshes of basic objects solely based on the object
name. On the one hand, text-only GPT-4 demon-
strates surprising proficiency in creating simple 3D
objects like lamps (2a) comprising of three basic
shapes. However, as object complexity increases
to more than four parts (ex: four legs of a table)
or complex objects like airplane (2b, 2c), GPT4’s
success in perfectly assembling them is limited.

Our L3GO agent bridges these gaps by breaking
down the constructing complex objects by employ-
ing a more structured, part-by-part approach into:
(1) identifying relevant parts specifications and cri-
tiquing them, (2) identifying spatial specifications
and placement, (3) running the current action to
critique the spatial placement and completion. This
setup iteratively seeks feedback from SimpleBlenv
and the specifications and critiques are generated
from LLM. Finally, we render the mesh into an
image, and feed it into ControlNet (Zhang et al.,
2023) with Canny edge detection (Canny, 1986) to
generate a textured and more natural looking im-
age. We conduct human evaluations to compare the
performance of LLM-based mesh creation using 13
popular object categories from ShapeNet. L3GO
outperforms basic GPT-4, ReAct-B, and Reflexion-
B according to both human and auto evaluation.
We also show that mesh quality evaluation using

GPT-4V (OpenAI, 2023) yields a metric with high
correlation to human judgement. Finally, we in-
troduce Unconventionally Feasible Objects, named
UFO with unconventional yet feasible objects. We
show that L3GO surpasses current state-of-the-art
text-to-2D image and text-to-3D mesh models on
UFO. Collectively, our findings indicate the promis-
ing role of integrating language agents in diffusion
model pipelines, particularly for constructing ob-
jects with specific attribute requirements in the fu-
ture applications of generative AI.

2 Related Work

Spatial Understanding of Language Models
Numerous studies have investigated the spatial
comprehension capabilities of language models.
Janner et al. (2018) explored the spatial reasoning
of LSTM (Hochreiter and Schmidhuber, 1997) in
a simulated environment with agent actions and
rewards, though their 2D grid world environment
is notably simpler than the 3D modeling context
considered in our work. Abdou et al. (2021) and
Patel and Pavlick (2022) demonstrated that lan-
guage models develop internal representations for
directional information. Additionally, Mirzaee et al.
(2021) introduced a question-answering benchmark
for spatial reasoning based on language descrip-
tion. These studies provide evidence that LLMs
demonstrate some forms of spatial reasoning under
specific conditions.

Large Language Models as Agents LLM agents
(Ge et al., 2023; Park et al., 2023; Shen et al., 2023;
Gupta and Kembhavi, 2023; Wu et al., 2023) rep-
resent a new category of artificial intelligence sys-
tems built upon large models. These agents are
capable of acting, reasoning, and interacting with
external environments. Although LLMs have lim-
ited executable skills on their own, when integrated
with external APIs and knowledge sources, they
can tackle a wide range of tasks (Schick et al.,
2023). An iterative approach has shown to be bene-
ficial to solve natural language processing tasks, as
evidenced by ReAct (Yao et al., 2022b) and embod-
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ied tasks applied to games (Wang et al., 2023), web
navigation (Yao et al., 2022a), and robot navigation
(Huang et al., 2022). Our approach, which utilizes
LLMs for creating 3D meshes, contributes to the
expanding research in this developing field.

2.1 L3GO: LLM-based 3D Generation of
Objects

In this section, we introduce L3GO, an LLM agent
specifically designed for 3D mesh creation from
text. L3GO is comprised of six components, each
powered by a language model that either functions
as a generator or a critic. The schematic diagram
in Figure 3 is shown for a visual overview.

Part Specifications Generator: L3GO first
prompts the LLM to identify the most pivotal part
of the object. This pivotal part makes it easier to
attach subsequent components. For instance, start-
ing with the seat of a chair is practical because it is
straightforward to add legs and a backrest to it, sim-
plifying the coordinate calculations for the other
parts. After naming the part, the agent uses a size
generator to determine its reasonable dimensions
in terms of width, depth, and height, corresponding
to the x, y, and z axes.

Part Specifications Critic: Once a part name is
proposed, it undergoes a review by the Part Specifi-
cations Critic. This step is crucial to avoid ambigu-
ity, which can confuse the agent later. For example,
if “leg” is proposed while creating a chair, the agent
cannot know its exact placement without a spatial
descriptor like “front right leg”. The Part Specifi-
cations Critic’s role is to identify and correct such
vague descriptions, allowing the Part Specifications
Generator to revise its suggestion accordingly. The
process moves forward only after the Part Specifi-
cations Critic’s approval.

Spatial Specifications Generator: After estab-
lishing the part name and size, the model considers
the spatial requirements of the part, given what
has already been constructed. (For the first part,
we simply position it at the center.) The agent be-
gins by selecting the most appropriate base part to
attach the new component to, then determine the
spatial relationship between them. For instance, if
constructing an airplane with the fuselage as the
base and the left wing as the new part, a typical
spatial requirement would be to attach the wing to
the middle of the fuselage’s left side.

Coordinate Calculator: Based on the spatial re-
quirements and the base part’s position, this com-
ponent calculates the new part’s center coordinate.
Accuracy here is crucial, as even minor misalign-
ments can impact the overall correctness. To ensure
precision, the agent is given access to a python ex-
ecution environment: while using the LLM only to
generate Python code for calculating the position of
the new part. This approach is similar to the one de-
scribed in Gao et al. (2023). To increase reliability,
the process is repeated three times and determine
the x, y, and z coordinates based on a majority vote
from these repetitions (with ties broken arbitrarily)

Run action: After determining the size and spa-
tial position, the agent asks an LLM to decide on
the part’s shape, choosing from cubes, cylinders,
cones, spheres, and toruses. Then, the agent writes
a valid Python script for Blender, specifying the
size, position, and shape type. Finally, the agent
runs a command to generate the part’s mesh in
Blender. This code is executed in Blender in a
headless mode, and the environment provides im-
portant feedback, such as the bounding boxes of
each generated part, which is used in the next mod-
ule.

Spatial Critic: After running the Blender code,
two final spatial correctness checks are conducted:
a continuity check, which tells the agent if the newly
created part is disconnected from the existing parts,
and a total overlap check with existing parts, which
tells the agent if a newly created part is entirely
contained within an existing part. If either issue
arises, the process returns to the spatial requirement
generation stage and the agent adjusts accordingly.
See examples of spatial errors in Figure 4.

Completion Critic: The final step is to determine
whether the construction of a 3D mesh for an object
is completed. To do this, this critic is provided with
the name of the object being built and the list of its
parts that have already been constructed to an LLM
to make a binary decision of completion. If the
critic predicts that it is incomplete, we start the next
iteration with the Part Specifications Generator. If
the task is completed, we proceed to generating a
more natural-looking image using ControlNet.

ControlNet for 3D Meshes → 2D Images After
the L3GO agent finishes the creation of a 3D mesh,
we render the object into gray-scaled image. We
then feed this image to ControlNet with Canny
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Figure 3: (Top): SimpleBlenv, a wrapper environment on top of Blender, where LLM can construct a 3D mesh by
using atomic building blocks. See Appendix for details. (Bottom): Schematic diagram of L3GO.

(a) Fully inside (b) Spatial gap

Figure 4: Two types of error feedback we provide in
SimpleBlenv: (a) The newly added cuboid (in orange)
is completely inside the base cylinder. (b) There is un-
necessary spatial gap between the newly added cuboid
and the base cylinder.

edge detection to produce a more realistic looking
image.

Note that as L3GO is text-based, it does not use
visual information. Therefore, all communication
must be text-based, including defining spatial ori-
entations like which direction is the front or back
when asking the model to create an object. We set
these spatial assumptions in the prompts in advance
to guide the construction process. Unless specified
otherwise, we use GPT-4 as our base LLM in L3GO
in our experiments.

3 Experiments on ShapeNet

In this section, we detail the baseline methods
(§3.1) to compare text-to-2D image and text-to-
3D mesh generation to compare with our L3GO.
We demonstrate the effectiveness of LLM-based
methods in the generation of simple 3D objects,
specifically focused on 13 well-known categories
sourced from ShapeNet. For automatic evaluation,
we use GPT-4V as an evaluator for recognizing 3D
meshes (§3.2) of simple objects. We also show
that human assessments and GPT-4V’s automated

Human L3GO ReAct-B Reflexion-B GPT-4

GPT-4V 0.877 0.6 0.423 0.4 0.346
Human 0.894 0.584 0.385 0.403 0.445

Table 1: Mean accuracy of different LLM-based agents
on ShapeNet-13, evaluated by GPT-4V (top row) and
humans (bottom row); each cell is an average over 130
trials. ‘Human’ in the column names refers to the origi-
nal ShapeNet meshes, designed by humans, which can
be considered as the upper bound. We see that L3GO
outperforms other GPT-4-based agents (e.g. ReAct-B,
Reflexion-B, and unmodified GPT-4).

evaluations (§3.2) are well correlated.

3.1 Baselines

Given the absence of pre-existing LLM agents de-
signed to work in Blender, we chose a range of
algorithms that serve as baseline references. Specif-
ically, we use ReAct (Yao et al., 2022b), Reflexion
(Shinn et al., 2023), and GPT-4. Originally in-
tended for natural language processing tasks, we
have adapted these baselines to function within the
Blender environment, ensuring they align with our
experimental framework, which we denote ReAct-
B and Reflexion-B. See Appendix for more details
on these baselines.

Dataset: ShapeNet-13 To assess the basic
mesh generation ability, we use 13 categories of
ShapeNet: [‘airplane’, ‘bench’, ‘cabinet’, ‘car’,
‘chair’, ‘display’, ‘lamp’, ‘loudspeaker’, ‘rifle’,
‘sofa’, ‘table’, ‘telephone’, ‘watercraft’], as intro-
duced by Choy et al. (2016).

3.2 Automatic Evaluation via GPT-4V

To streamline our evaluation process, we propose
using GPT-4V to assess the performance of mesh
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construction. For each object category, we generate
10 meshes from GPT-4, ReAct-B, Reflexion-B, and
L3GO. After the agent finishes mesh construction,
we render the object from 10 different views by
rotating the camera around the object at the same
height. This results in 10 images per mesh. we
then feed 10 images to GPT-4V all at once, and
use the following prompt: ‘‘What object do you
see in these images? Answer with a single object
name. Your answer must be one of the following
options: [airplane, bench, cabinet, car, chair, dis-
play, lamp, loudspeaker, rifle, sofa, table, telephone,
watercraft]”.

Table 1 presents the average accuracy across
different object categories. It is evident that struc-
tured methods, including ReAct-B, Reflexion-B,
and L3GO, surpass GPT-4 in performance. No-
tably, among these structured approaches, L3GO
proves to be the most effective.

Correlation with human evaluations We recruit
human participants to assess whether the evalua-
tion of GPT-4V aligns with human judgment. For
each mesh, we use 10 images from 10 different an-
gles (the same images as above for GPT-4V evalua-
tion), and ask a human participant to classify these
images into one of the 13 object categories. We
collect 130 human responses by showing meshes
generated by GPT-4, and L3GO, as well as the
original ShapeNet meshes, totaling in 390 human
responses.

We also gather 390 responses from GPT-4V us-
ing the same set of images. To benchmark GPT-
4V against other top vision-language models, we
also obtain 390 responses each from BLIP-2 and
InstructBLIP. Regarding human-to-human corre-
lation evaluation, four participants were asked to
classify all 390 images. However, we exclude the
data from the participant whose responses most of-
ten differed from the other three. We then calculate
the Cohen’s Kappa score to measure the correlation
between these models and three human evaluators,
averaging these correlations, as shown in Table
3. Our findings indicate that GPT-4V’s responses
align most closely with human judgments, though
it is important to note that even among humans,
agreement was not perfect.

4 Experiments on UFO: Constructing
Unconventionally Feasible Objects

Our previous experiments show that L3GO can ac-
curately construct a simple object from ShapeNet

GPT-4V InstructBLIP BLIP-2 Human

Human 0.512(0.028) 0.344(0.016) 0.341(0.012) 0.569(0.020)

Table 2: The Cohen’s Kappa correlation between evalua-
tions based on models and human judgement. We report
the average and standard deviation calculated from three
independent human evaluators.

around 60% of the time. However, modern diffu-
sion based models can nearly always generate an
image of a given ShapeNet object. This is in part
because there are many possible valid instantiations
of, e.g., “car" or “bench". So: is there any potential
practical advantage to using a method like L3GO?

To illustrate the potential advantages of LLMs
in spatial construction, we introduce a benchmark
that requires more precise spatial understanding.
Inspired by DrawBench (Saharia et al., 2022) and
PartiPrompts (Yu et al., 2022) which are collec-
tions of prompts that systematically evaluate text-
to-image models, we introduce UFO: a set of 50
difficult prompts that 1) require precise spatial un-
derstanding to construct; and 2) are unusual, in the
sense that they are less likely to occur during text-
only pre-training, e.g., “a chair with one armrest”.

The prompts in UFO span 9 object categories,
and each prompt is a combination of a common
object with varied characteristics such as “a chair
with five legs”, “a mug with two handles” and so
on. The full prompt list is shown in the Appendix.
We focus on everyday 3D objects to help us isolate
the model’s performance in accurately interpreting
prompts from its inherent ability to create uncon-
ventional objects. By using simple-to-assemble
items such as sofas, chairs, lamps, and tables, we
can better discern whether any shortcomings are
due to the model’s prompt following from its object
creation skills.

Baselines We compare our LLM-based approach
with latest text-to-2D and text-to-3D methods such
as DALL-E 3 (Betker et al.), Stable Diffusion XL
(SDXL) (Podell et al., 2023), and Shap-E (Jun and
Nichol, 2023). DALL-E 3 uses descriptive syn-
thetic captions to improve prompt following of
DALL-E 2 (Ramesh et al., 2022), the previous ver-
sion of OpenAI’s text-to-image diffusion model.
Stable Diffusion XL is an open-sourced text-to-
image diffusion model. Shap-E (Jun and Nichol,
2023) is a text-to-3D model that generates the pa-
rameters of implicit function for 3D models which
then can be rendered. Since DALL-E 3 automati-
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cally re-writes the prompt for safety reasons and
adds more detail, (and it is not possible to disable
this feature at the moment) we add “I NEED to test
how the tool works with extremely simple prompts.
DO NOT add any detail, just use it AS-IS:” to our
prompt as recommended by OpenAI 2.

Experiment procedures We again utilize the
judgements of human participants to evaluate the
output of our models on UFO. For each given
prompt, we generate 10 random objects from one
model and another 10 from a different model. A
participant is then asked to judge which set of im-
ages better matches the provided text caption. If
they believe that neither set accurately represents
the caption or if they think it’s a tie, they can choose
“no preference.” For each experiment, we recruit
10 human evaluators. Additionally, we include 4
attention check questions on top of the 50 total
questions. Any evaluator who does not correctly
answer all the attention check questions is excluded
from our analysis. For models that create 3D ob-
jects, we render 10 images from various angles by
rotating the camera at a constant height. These 10
images are then compiled into a rotating GIF.

Results The results are shown in Figure 6. L3GO
outperforms the other LLM agents (e.g. ReAct, Re-
flexion) and the state-of-the-art text-to-image mod-
els (DALL-E-3 and SDXL) and text-to-3D model
(Shap-E) in terms of human preference. Example
generated images are shown in Figure 5. DALL-E-
3, SDXL and Shap-E produce images that do not
perfectly follow the specific prompt instructions.
While SDXL is able to generate a desk with three
legs, an additional chair that is not asked in the
prompt is generated. DALL-E-3 seems to com-
pletely ignore the specific requirements of prompts.
In contrast, while their designs are not perfect, lan-
guage model-based agents are capable of construct-
ing chairs with the right number of legs. These
results suggest that structured reasoning may serve
as a viable strategy to mitigate the challenges posed
by insufficient training data.

5 Conclusion

We introduced L3GO, a language agent designed to
generate 3D objects from text instructions through
an API we developed for Blender, a 3D modeling
software. Our evaluation using 13 largest object cat-
egories from ShapeNet shows that L3GO’s superior

2https://platform.openai.com/docs/guides/images

capabilities in comparison to other models such as
GPT-4, ReAct, and Reflexion. Additionally, we de-
vised UFO, a set of challenges aimed at testing the
ability of generative AI models in creating common
objects with unconventional characteristics. The
performance of L3GO marks a significant advance-
ment in the application range of language models.
For instance, diffusion models could be further
improved with unconventional data generated by
structured prompting. Moreover, analyzing how
language models process spatial information with
internal model representations may yield valuable
insights into understanding and improving their 3D
modeling abilities.

Limitations

The quality of 3D mesh objects generated using
LLM-based methods lag behind those produced by
diffusion-based text-to-3D methods and far from
being on par with human standards. Moreover,
although creating simple objects takes a few min-
utes, more complex ones can take roughly 10 min-
utes, depending on the speed of LLM response and
the number of retry operations needed after the
feedback. We believe that the future work should
explore more efficient LLM-based approaches to
create 3D mesh as this is a promising direction to
better control the eventual 3D object generation.

Impact Statement The positive societal impacts
of our work could be substantial, particularly in
design, engineering, and the arts, by making it eas-
ier for beginners to visualize and prototype ideas
that were previously hard to create with design
tools. Furthermore, our approach could enhance
educational tools, making complex concepts more
accessible through interactive and visually intuitive
representations. However, we must also consider
the ethical risks of advancing this technology, in-
cluding the potential for creating misleading or
harmful content or producing dangerous designs.
It underscores the necessity for ongoing research
into mechanisms that ensure these powerful tools
are used responsibly and ethically. We advocate for
a balanced approach that emphasizes innovation
alongside responsibility and ethical considerations.

The entire system is distributed as a Blender add-
on, and is open-sourced under MIT license. The
system demonstration video is available at https:
//youtu.be/Yu5XMs00nh8.
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L3GOReAct-B Reflexion-BShap-EStable Diffusion XLDALL-E-3

"a chair with one armrest"

"a desk with three legs"

Figure 5: Example generated images based on UFO. The LLM-based approaches (ReAct-B, Reflexion-B, and
L3GO) successfully create the desired objects, while some of the most advanced text-to-image and text-to-3D
models (DALL-E 3, Stable Diffusion XL, and Shap-E) still struggle to follow the prompt perfectly.
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Appendix

A Details of Baselines

ReAct-B ReAct (Yao et al., 2022b) is a frame-
work designed for implementing a language model
based agent. In this framework, the agent outputs
its thought process before taking any action. The
observations gathered from the external environ-
ment following this action inform the subsequent
steps. We implement ReAct in the SimpleBlenv
setting, utilizing the environment feedback, obser-
vations, and action space outlined in Section 2.1.
To differentiate it from the text version of ReAct,
we refer to our implementation as ReAct-Blender,
or ReAct-B for short.

Reflexion-B Reflexion (Shinn et al., 2023) builds
upon the ReAct framework by adding an extra step
of reflection. In ReAct, the agent outlines its rea-
soning, takes an action, and then receives feed-
back from the environment. Reflexion goes a step
further—after receiving environment feedback, the
agent engages in reflection on the action taken and
its results, to inform its next move. In our setup, at
the end of every iteration, we consider the current
object part, previously built parts, and the current
environment feedback. We then ask the agent to
reflect on the size and placement of the object part
it has just built. After the agent shares its thoughts,
we prompt it to decide whether to redo the current
part or move on. If the agent chooses to redo, its
reflective insights are used in the next step.

GPT-4 For a less structured approach, we use
GPT-4 to generate the entire Python code needed to
create an object in one single attempt. The prompt
we used for GPT-4 was adapted from a Github
repository (gd3kr, 2023), which, to our knowledge,
was the first to present the open-source project that
uses GPT-4 to control Blender. For the full prompt,
refer to the Appendix.

B L3GO framework

The main challenge with generating entire 3D ob-
jects in one go is that it often leads to compound-
ing spatial inaccuracies. We propose decompos-
ing the creation of a 3D mesh into distinct parts
and placing each component step by step. We
name this approach L3GO, an agent that can col-
lect the feedback and execute the action from a
chain of 3D thoughts in a simple 3D environment.
This approach transforms a singular attempt at ob-

ject construction into iterative feedback collection
and correction processes, enabling the integration
of feedback from the Blender environment. Our
framework borrows ideas from previous work of
LLM-based reasoning and acting (Yao et al., 2022a;
Wang et al., 2023), but has been adopted for 3D
mesh construction in a practical 3D modeling soft-
ware.

B.1 SimpleBlenv
We introduce SimpleBlenv, an environment built
on top of Blender, where agents can easily sub-
mit action commands and receive environmental
feedback, such as bounding box information and
placement errors. We plan to release the code for
the environment.

Action space: In Blender, professional 3D
designers have the ability to create complex 3D
models, with a nearly limitless range of actions at
their disposal. Although nearly every action a user
can perform in Blender’s UI has a corresponding
Python API, we choose to focus on five basic
shape primitive APIs for the sake of simplic-
ity. These APIs are: primitive_cube_add,
primitive_cylinder_add,
primitive_cone_add,
primitive_uv_sphere_add, and
primitive_torus_add. As their names im-
ply, these are used for adding cubes, cylinders,
cones, spheres, and toruses, respectively.

These API functions come with a complex set of
arguments. To make it easier for LLMs to use these
functions, we wrap each function with a wrapper
that only requires a few key parameters, such as
scale, location, and radius. Consequently, the range
of actions available to our L3GO agent includes
different settings for size, position, radius, and so
on, for each shape-creating command.

For a detailed list of all the action wrapper APIs
we created, refer to the Appendix. Despite using
only five basic shape APIs, agents can create ob-
jects in many ways thanks to the flexibility in scal-
ing, positioning, and adjusting the radius, among
other controls.

Observations and Environment Feedback We
maintain a state space representation as a list of
object parts that have been created so far, includ-
ing their size in terms of x, y, z-axis and location
in the global coordinate. Regarding environment
feedback, after the agent selects an action, we exe-
cute the action in Blender thereby creating a mesh
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Figure 7: GPT-4V evaluation of L3GO, ReAct-B,
Reflexion-B, and GPT-4 on ShapeNet-13. ‘Human’
refers to original ShapeNet meshes that were designed
by humans. For complex objects such as airplanes and
rifles, L3GO performs better than others.

in the virtual space. From this, we can (a) extract
information such as the bounding box dimensions
of the object parts, and (b) check if the part built by
the agent is intersecting with any other parts or if
there is an unnecessary gap between the parts (e.g.
see Figure 4.) We have built a set of functions to
directly gather this information from Blender. This
feedback is then relayed to the L3GO agent as text
messages before it takes its next action.

C Category-by-category results on
ShapeNet

Delving into the results for each object, as detailed
in Figure 7, it becomes clear that L3GO particu-
larly excels in constructing complex objects like
airplanes and rifles.

The category-by-category results for human eval-
uation are shown in Figure 8. We can see an overall
pattern, where the original ShapeNet has high accu-
racy, L3GO outperforms GPT-4, except for a few
cases like “lamp”, “bench”, and “loudspeaker”.

D Ablation studies

We ablate three 3 system design choices to see
which component most impacts the overall perfor-
mance for 3D mesh generation. We use our auto-
matic evaluation via GPT-4V to compare the per-
formance in 3 ablations: 1) without spatial critic, 2)
without program-based coordinate calculator, and
3) choice of LLMs. For each setting, we generate
10 objects per category, and render 10 images from
different angles. For 1) and 2), the mean accuracy
across the 13 categories of ShapeNet (evaluated
by GPT-4V) are 0.515 and 0.585, respectively. In
comparison, L3GO achieves a higher score of 0.6.
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Figure 8: Human evaluation of L3GO, ReAct-B,
Reflexion-B, and GPT-4 on ShapeNet-13. ‘Human’
refers to the original human-designed ShapeNet meshes.
We observed a pattern similar to that in GPT-4V’s eval-
uation.

Mixtral-8x7B w/o spatial critic w/o program-based L3GO

0.138 0.515 0.585 0.6

Table 3: Ablation studies. We evaluate the performance
based on ShapeNet’s 13 categories using GPT-4V as an
evaluator; each cell is an average over 130 trials. ‘w/o
spatial critic/program-based’ refers to L3GO based on
GPT-4 without spatial critic and without program-based
coordinate calculation module. ‘Mixtral-8x7B’ refers
to ReAct-B based on Mixtral-8X7B instead of GPT-4.

While the average scores for L3GO and without
coordinate calculator achieve similar scores, the lat-
ter scores 0 in both the cabinet and car categories.
In contrast, when L3GO employs program-based
coordinate calculation, it achieves scores of 0.5 and
0.4 for these categories, respectively.

Open-sourced LLMs We explore the use of
open-source LLMs in place of GPT-4. For this
purpose, we use Mixtral-8x7B, a sparse mixture-
of-experts model (Jiang et al., 2024), that is known
to either match or surpass the performance of
Llama-2 70B and GPT-3.5 in most benchmark
tests. We carry out experiments using ReAct-B
and ShapeNet-13, with GPT-4V serving as our
evaluation tool. While the accuracy for the ReAct-
B(Mixtral-8x7B) for most shape categories ranged
between 0 and 0.1, the categories of sofas, lamps,
and tables achieved higher scores of 0.3, 0.3, and
0.7, respectively. This is likely due to their simpler
shapes and easier recognizability. The average ac-
curacy score is 0.138. This result is significantly
lower than the 0.423 accuracy achieved by ReAct-
B(GPT-4), as indicated in Table 1. This indicates
that the task of constructing mesh objects, which
demands a precise understanding of 3D space, still
needs the reasoning abilities found at the level of
GPT-4.
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Figure 9: Human preference of L3GO vs. DALL-E-3
and SDXL on UFO, where we attempt to make the back-
ground of generated images to be simple gray shading.
We also vary guidance scales for SDXL to see if better
prompt following improves the performance, denoted
as ‘guide=15, 30’. For DALL-E-3, we use ‘quality=hd’
option for enhanced detail.

E Effect of background and texture on
evaluation for UFO

We look into how the background and texture dif-
ferences in images created by text-to-image models
and LLM-based methods might affect human eval-
uations. To test this, we change prompt styles with
these text-to-image models. For DALL-E-3, we use
“[object name] Make sure the background is black,
and the object is a gray-colored 3D shape.” For
Stable Diffusion XL, we use “[object name], black
background, gray-colored 3D shape.” Additionally,
we alter the guidance scale for Stable Diffusion
XL, which determines how closely the diffusion
model follows the text prompts. In both scenarios,
we observe that L3GO outperforms text-to-image
models in terms of human preference, as illustrated
in Figure 9. We also conducted an initial test to
determine if GPT-4V could serve as an evaluator
for UFO. However, we observed that in over 20%
of the cases, GPT-4V refuses to provide an answer,
which might be related to the characteristics of the
images generated. We refer to Table 4 in Appendix
for more details.

F Algorithm

The pseudo algorithm of L3GO is given in Figure
10.

G GPT-4V as an evaluator for UFO

We also conducted an initial test where we
used GPT-4V to evaluate generated images us-
ing prompts from UFO. This experiment involved
showing GPT-4V two sets of 10 images from two
models, similar to our human study, and asking

Figure 10: Pseudo algorithm of L3GO.

L3GO DALL-E-3 No pref Refuse No images

1st trial 12 8 9 18 3
2nd trial 14 12 11 13 0

Table 4: GPT-4V’s evaluation of UFO, where GPT-4V
compares the image generation by L3GO and DALL-E-
3. “Refuse” indicates instances where GPT-4V declined
to respond, for example by saying “I cannot assist with
this request.” “No images” refers to cases where GPT-
4V incorrectly perceived the images as being invisible.

GPT-4V which set of images more accurately rep-
resent the corresponding text caption. We ask it
choose either the ’top row’, ’bottom row’, or ’no
preference’, along with providing a reason for its
choice. The images were generated using L3GO
and DALL-E-3. We carried out this experiment
twice. In both cases, for more than 20% of the
prompts (13 and 18 out of 50), the response we re-
ceived was “I cannot assist with this request”. Due
to this, we decided to rely on human evaluators
instead of GPT-4V for our main experiments.

H Details for human evaluation

We recruit participants through Prolific.com, an
online platform used by researchers to conduct be-
havioral studies and gather participants. The re-
quirement for participants was English fluency, as
the study’s materials were all in English. The study
was made accessible to all qualified participants on
the platform. We ensure $15 hourly wage.

At the beginning of the experiment, we give par-
ticipants an online form detailing the experiment’s
aims, a summary, the methodology, confidential-
ity assurances, and the voluntary nature of their
involvement. The participants are assured of the
confidentiality of their responses and their right to
withdraw at any time. Participants are asked to ac-
knowledge their understanding of the provided in-
formation and their consent to participate by click-
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Figure 11: Full list of action wrapper APIs for Simple-
Blenv.

Figure 12: An example environment feedback from
SimpleBlenv.

ing the “start” button. The experiment commences
only after this button was clicked.

Despite efforts to minimize bias by keeping par-
ticipant criteria to a minimum, there remains an
inherent bias towards English-speaking individuals
with access to computers and the internet. We note
that this bias also tends to reflect characteristics of
the WEIRD (Western, Educated, Industrial, Rich,
Democracies) demographic.

I Additional details for experiments

Wrapper APIs for action commands in Simple-
Blenv are shown in Figure 11.

Example environment feedback from Simple-
Blenv is shown in Figure 12.

Full prompt for the baseline GPT-4 is shown
in Figure 13. This prompt is taken from Blender-

Figure 13: The full prompt for the baseline GPT-4 used
in our experiments.

GPT3, which is the first open-source code that uses
GPT-4 inside Blender to our knowledge.

The list of prompts in UFO a chair with two
legs, a chair with three legs, a chair with five legs, a
chair with six legs, a chair with seven legs, a chair
with one armrest, a chair with three armrests, a
chair with two backrests, a chair with three back-
rests, a stool with two legs, a stool with three legs,
a stool with five legs, a stool with six legs, a stool
with seven legs, a stool with one armrest, a stool
with three armrests, a stool with two backrests, a
stool with three backrests, a desk with two legs, a
desk with three legs, a desk with five legs, a desk
with six legs, a desk with seven legs, a table with
two legs, a table with three legs, a table with five
legs, a table with six legs, a table with seven legs,
a pair of eyeglasses with one round lens and one
square lens, a pair of eyeglasses with one round
lens and one triangle lens, a pair of eyeglasses with
one square lens and one triangle lens, a pair of eye-
glasses with three lenses, a pair of eyeglasses with
four lenses, a pair of eyeglasses with five lenses,
a sofa with one leg, a sofa with two legs, a sofa
with three legs, a sofa with five legs, a sofa with
legs that are longer than its backrest, a sofa with
armrests that are longer than its backrest, a lamp
with two legs, a lamp with four legs, a lamp with
five legs, a bottle whose lid is twice as wide as its
mouth, a bottle with a lid that is three times wider
than its mouth, a bottle with a lid that is four times
wider than its mouth, a mug with two handles, a
mug with three handles, a mug with four handles,
a mug with five handles

I.1 Additional generated examples
are shown in Figure 14 and 15.

3https://github.com/gd3kr/BlenderGPT
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Figure 14: Additional generated examples on UFO.
From left to right, we show DALL-E-3, Stable Diffusion
XL, Shap-E, ReAct-B, Reflexion-B, and L3GO.

Figure 15: Additional generated examples of L3GO on
ShapeNet.
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