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Abstract

In this study, we propose a novel paradigm
for multi-modal low resource language dataset
generation without relying on existing paral-
lel multi-modal datasets. Leveraging advances
in image-generation models, we introduce a
systematic pipeline that transforms text-only
parallel corpora into rich multimodal transla-
tion datasets. We then validate the generated
content through human evaluation. We design
and implement a new MMT model framework
suitable for our new generated dataset. The
model contains a verification mechanism with
a large language model to ensure consistency
between visual content and textual translations.
Experimental results across four African low-
resource languages with less than 10k training
corpus demonstrate significant improvements
over NLLB baselines, with average gains of up
to 9.8% in BLEU score and 4.3% in METEOR
score. Our method shows particular effective-
ness in correctly translating concrete objects
and contextual elements, suggesting its poten-
tial for improving low-resource machine trans-
lation through visual grounding.

1 Introduction

Large-scale pre-trained language models lead neu-
ral machine translation research into a new stage
(Han et al., 2023), researchers are applying these
powerful models to enhance translation for main-
stream languages. However, these new models
have not yet been widely adopted for translation
tasks between low-resource and mainstream lan-
guages, especially some low-resource African lan-
guages. The few studies about machine translation
for Hausa (Akinfaderin, 2020), Tigrigna (Hailu,
2024) and Kanuri (Tukur et al., 2024) mainly
used LSTM or HMM-based models, not power-
ful transformer-based models. Although there are
relatively more studies on machine translation for
Yorùbá, there is still a huge gap in the application of
multimodal machine translation models for Yorùbá,

which deserves further exploration (Adebara et al.,
2022; Isaac; Timothy et al., 2024).

Currently, multimodal models have also been
widely used in research works on machine trans-
lation. But in the research of multimodal low-
resource language machine translation, several is-
sues still warrant further discussion. For exam-
ple, existing multimodal low-resource language
parallel translation corpora are scarce, and some
of them include only a limited number of low-
resource languages. Most low-resource languages
haven’t been included in widely used multimodal
low-resource parallel translation corpora. Some
low-resource multimodal parallel translation cor-
pora, such as Multi30K (Elliott et al., 2016), are
created by researchers through manual annotation,
which involves significant time and financial costs.
While these datasets are of very high value, most
researchers cannot adopt the same approach when
creating more low-resource multimodal parallel
translation corpora. It’s hard to deny that the
scarcity of corpora and the high costs of creat-
ing them pose significant obstacles to research in
multimodal translation for low-resource languages.
Additionally, the difficulty of adapting pre-trained
multimodal models to low-resource languages also
hinders the application of works such as CLIPTrans
(Gupta et al., 2023) to translation tasks involving
low-resource languages.

Furthermore, in the existing low-resource mul-
timodal parallel translation datasets, the seman-
tic consistency between text and images is still
an issue worth considering. For instance, in
the low-resource multimodal parallel translation
dataset WIT (Srinivasan et al., 2021) created us-
ing Wikipedia, many texts consist of proper nouns,
such as the names of some special buildings. If
multimodal models cannot perfectly distinguish
each building’s unique name from a large number
of similar building images, the translation results
will easily be erroneous.
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Our contributions

• Visual Data Generation1: We employ state-
of-the-art text-to-image generation models to
create corresponding visual content for source-
target text pairs, incorporating rigorous qual-
ity control mechanisms to ensure semantic
consistency. This makes it possible to cre-
ate corresponding multimodal low-resource
translation corpora at a low cost based on ex-
isting text corpora for low-resource language
translation.

• Model Architecture Development: We present
an enhanced architecture which adopts a
transformer-based encoder-decoder structure
with cross-attention mechanisms, while intro-
ducing innovative LLM prompt engineering
techniques as cross-modal alignment strate-
gies.

This approach not only addresses the scarcity of
multi-modal low-resource translation resources but
also establishes a scalable framework for expand-
ing multi-modal translation capabilities to low-
resource languages. Consequently, our work can
effectively can avoid several major issues currently
faced in multimodal low-resource language transla-
tion research, and facilitate the application of mul-
timodal machine translation research to a greater
number of low-resource languages.

2 Background

2.1 Multi-modal Translation
Researchers are currently using multimodal frame-
works to build multimodal low-resource machine
translation models that integrate both text and im-
ages. Kwon et al. (2020) built a modulation net-
work based on text information from the encoder
and visual information from the pre-trained ResNet,
but it is still worth considering whether the im-
age features watched by ResNet can align with
the corresponding text. Visual content was used
to extend the mask language model and generate
a visual mask language model for unsupervised
machine translation (Tayir and Li, 2024). During
this study, researchers spent three months manually
creating the dataset and it’s difficult to scale for ap-
plying to a larger number of languages. As a power-
ful multi-modal pre-trained model, CLIP (Radford
et al., 2021) has also been applied to multi-modal

1Multimodal Dataset

translation research. For example, the multi-modal
machine translation model CLIPTrans is based on
multi-modal M-CLIP and multilingual mBART
(Gupta et al., 2023), and a new language-driven
zero-shot multi-label recognition framework by us-
ing the aligned CLIP multi-modal embedding space
(Liu et al., 2024). However, CLIPTrans was not
trained using low-resource language datasets, mak-
ing it difficult to extend its application to translation
tasks involving more low-resource languages.

2.2 LLM-assisted Machine Translation

As one of the most popular research areas in recent
years, researchers have begun to use LLMs to assist
machine translation tasks. Zeng et al. (2023) pro-
posed Collaborative Decoding (CoDec), which con-
siders the NMT system as a pre-translation model
and the MT-oriented LLMs as a complementary
solution to handle complex scenarios beyond the
capabilities of NMT. The research findings of Ki
and Carpuat (2024) claimed that prompting LLMs
to perform post-editing on MT can effectively im-
prove the accuracy of translation results. Qian
(2023) demonstrated that human-machine collabo-
ration (HMT) using GPT-4 LLMs instructions en-
hances the effectiveness of translations. In addition
to assisting with the translation tasks themselves,
LLMs have also been utilized to assist machine
translation from other different angles, such as su-
pervised machine translation quality assessment
models (Huang et al., 2023; Wang, 2023) and data
management tasks in neural machine translation
(Yin et al., 2024).

2.3 LLM in Low Resource Language
Translation

LLMs such as Claude 3 Opus in low-resource
machine translation to English show stronger ma-
chine translation capabilities than other LLMs, sur-
passing strong baselines such as NLLB-54B and
Google Translate on specific tasks (Merx et al.,
2024; Enis and Hopkins, 2024). Numerous re-
search findings indicate that LLMs can effectively
help improve the performance of machine trans-
lation models for low-resource languages such as
Amharic (Andersland, 2024), Faroese (Simonsen,
2024), Ge’ez (Wassie, 2023), Indic languages (Ra-
jpoot et al., 2024), Nepali (Rimal and Abbas, 2024)
and Owens Valley Paiute (Coleman et al., 2024).
As mentioned above, most applications of LLMs
in low-resource language translation are limited
to text-to-text translation tasks. In the few studies
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Figure 1: Comparison of dataset construction approaches: Our novel method for generating low-resource language
multi-modal translation datasets versus traditional construction methods.

on multi-modal machine translation tasks, the se-
mantic consistency between text data and images
remains an unresolved issue.

3 Datasets

3.1 Text-only Datasets

The dataset we used includes parallel translation
datasets for four low-resource languages from East
and West Africa: Hausa, Kanuri, Tigrinya, and
Yorùbá, along with English. The parallel trans-
lation datasets for Hausa, Kanuri, and Tigrinya
with English are sourced from the Tatoeba corpus2,
while the parallel translation dataset for Yorùbá
and English comes from the AI4D Yorùbá Ma-
chine Translation Challenge on the online data sci-
ence platform Zindi3. In these datasets, the parallel
translation datasets for Kanuri and Tigrinya to En-
glish contain 5,000 samples each, while the parallel
translation datasets for Hausa and Yorùbá to En-
glish contain approximately 10,000 samples each.
For each parallel translation dataset from language
to English, we uniformly and randomly selected
25% of the samples to construct the test dataset,
with the remaining data being used as the training
dataset.

2Hausa - English, Kanuri - English, Tigrinya - English
3Yorùbá - English

3.2 Multimodal Dataset Generation

To construct a multimodal parallel translation
dataset of low-resource African languages into En-
glish, we used the text-to-image model Stable Dif-
fusion 3.5 Large Turbo to generate images aligned
with the English text in the dataset. However, upon
preliminary examination of the text in our parallel
translation datasets, we found that a significant por-
tion of the text such as "Is that your new friend?"
doesn’t contain sufficient visual information for the
text-to-image model to generate images that can be
aligned with the text.

As illustrated in Figure 1, we implemented a
novel generative pipeline that differs significantly
from traditional approaches to multimodal dataset
construction. The traditional pipeline (top) typi-
cally combines existing images with caption sen-
tences and processes them through a translator to
create multimodal low-resource language datasets.
This approach is limited by the availability of ap-
propriate images and the quality of captions, often
resulting in misalignments.

In contrast, our generative pipeline (bottom)
starts with existing sentence pairs (English and
the target low-resource language like Yoruba) and
employs an LLM to generate detailed visual de-
scriptions from these sentences. These descrip-
tions serve as prompts for generating contextually
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appropriate images using Stable Diffusion. This
approach allows us to create highly aligned multi-
modal content even for abstract concepts or cultur-
ally specific scenarios.

To implement this approach, we optimized the
English text in the parallel translation dataset using
Llama 3. We employed a few-shot learning ap-
proach, training Llama 3 with three sets of original
English texts and their corresponding descriptions
of images. We then used Llama 3 to transform
the English texts into descriptions of images that
maintain alignment with the original meaning. Fi-
nally, we used Stable Diffusion 3.5 Large Turbo to
generate images based on these enhanced descrip-
tions, creating a multimodal dataset with stronger
text-image semantic alignment.

3.3 Multi-modal Dataset Evaluation
To evaluate the semantic consistency between the
images generated according to the descriptions and
the corresponding original texts, we randomly se-
lected 200 original texts and their corresponding
images. Then we performed a manual evaluation
to determine whether the original texts contained
visual information and whether the generated im-
ages were aligned with the corresponding original
texts.

Figure 2 shows examples of aligned and mis-
aligned text-image pairs in our dataset. In the
aligned example (left), the English text "Can your
brother drive?" corresponds appropriately with the
image showing people with documents near a car,
suggesting a context related to driving. In contrast,
the misaligned example (right) shows a significant
semantic gap between the English text "Life is
hard" and an image of people looking at a large
tree, where the visual content fails to represent the
abstract concept expressed in the text.

The evaluation statistics in Table 1 indicate that
the overall proportion of generated images consis-
tent with the corresponding original texts reaches
80%. For original texts that contain visual infor-
mation, the consistency rate with the correspond-
ing images is 86.27%; for original texts that do
not contain visual information, the consistency
rate is lower, at 73.47%. Considering that only
51% of the original texts contain visual informa-
tion, we believe that using Llama 3 to generate
descriptions can effectively enhance the alignment
between texts and corresponding images in the pro-
cess of constructing parallel multimodal translation
datasets.

Figure 2: Examples of aligned (left) and misaligned
(right) text-image pairs in our dataset, showing how
semantic consistency is evaluated across different lan-
guages.

Feature Percentage
Overall Consistency1 80
Consistency with Visual Info2 86.27
Consistency without Visual Info3 73.47
Text with Visual Info4 51
Text without Visual Info5 49

Table 1: Multi-modal Dataset Evaluation Results.
1 The ratio of the generated image to the corresponding

original text.
2 When the corresponding original text contains visual

information, the proportion of generated images is con-
sistent with the text.

3 When the corresponding original text doesn’t contain
visual information, the proportion of generated images
is consistent with the text.

4 The proportion of original text containing visual infor-
mation.

5 The proportion of original text that doesn‘t contain vi-
sual information.

4 Methodology

We propose a multimodal translation framework
built upon NLLB (Costa-jussà et al., 2022) that
enhances traditional text-based translation with vi-
sual context awareness. Our approach integrates
three specialized components: NLLB’s powerful
transformer-based translation capabilities, vision
model BLIP(Li et al., 2022) for image image cap-
tion generation, and open-source large language
model Llama3(Grattafiori et al., 2024) for cross-
modal alignment supervision. This architecture
is specifically designed to address the challenges
of low-resource language translation by leverag-
ing visual cues while maintaining NLLB’s broad
multilingual support.
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Figure 3: Architecture of our proposed translation model: A dual-path approach combining visual understanding
(via BLIP) and text translation (via NLLB) with LLM-based quality supervision for low-resource language to
English translation. Here, Language A represents a low-resource language sentence (Yoruba), and Language B
represents English.

4.1 Baseline
The No Language Left Behind (NLLB) model is
developed by Costa-jussà et al. (2022). It repre-
sents a significant breakthrough in addressing these
challenges, particularly for traditionally understud-
ied languages. By implementing a sophisticated
Mixture-of-Experts (MoE) architecture within the
Transformer framework, NLLB effectively man-
ages the computational complexity while maintain-
ing high translation quality across diverse language
pairs. The model’s innovative approach to low-
resource languages includes targeted data mining
strategies and rigorous filtering mechanisms, en-
suring robust performance despite limited training
data. The model achieved a remarkable 44% im-
provement in BLEU scores for low-resource lan-
guages compared to previous state-of-the-art multi-
lingual models.

4.2 New MMT Model
Figure 3 illustrates our flexible multimodal trans-
lation architecture that specifically addresses the
challenges in low-resource language scenarios. The
system employs a dual-path approach where visual
and textual information are processed separately
before integration.

At the core of our implementation, we utilize
three key components: a pre-trained BLIP (Li
et al., 2022) model for visual feature extraction,
a fine-tuned NLLB4 model to handle low-resource

4NLLB-3.3B and NLLB-600M model in our experiments.

language translation, and a few shot Llama3-70b-
Instruct (Grattafiori et al., 2024) serving as a quality
supervisor. The NLLB component processes the
low-resource language input (Language A), while
BLIP generates English captions from the image.
When the translation quality falls below our thresh-
old, the system leverages these image-derived cap-
tions to supplement or replace the direct translation.
Our quality control mechanism works as follows:
the Llama evaluates the semantic alignment be-
tween the NLLB translation and the image context
(represented by BLIP captions). Each translation
receives a score on a scale of 1-105. When score
belows 6, the system push back the existing transla-
tion to llama3 and let it considers BLIP-generated
caption to regenerate the final output6. This deci-
sion process ensures that the final output preserves
semantic accuracy.

4.3 Evaluation Metrics

In neural machine translation evaluation, BLEU
(Papineni et al., 2002) and METEOR (Banerjee and
Lavie, 2005) serve as fundamental automatic evalu-
ation metrics. While BLEU score primarily focuses
on n-gram overlap between candidate and reference
translations, METEOR enhances evaluation by in-
corporating stemming, synonymy, and paraphrase

Both models were further fine-tuned in pairs of languages X
to English for our task.

5Detailed scoring criteria shown in Table 3 in Appendix
D.

6See Appendix E.

28



matching, making it particularly valuable for low-
resource scenarios where exact matches might be
scarce (Denkowski and Lavie, 2014).

BLEU score is calculated as:

BLEU = BP · exp
(

N∑

n=1

wn log pn

)

where:

BP = min(1, exp(1− r

c
))

r is the length of the reference translation

c is the length of the candidate translation

pn is the modified n-gram precision

wn is the weight for each n-gram level

METEOR score is calculated as:

METEOR = Fmean · (1− Penalty)

where:

Fmean =
10PR

R+ 9P

Penalty = 0.5 · (ch
m

)3

P is precision

R is recall

ch is the number of chunks

m is the number of matched unigrams

5 Results

We evaluated our proposed multimodal machine
translation framework with our newly constructed
dataset. The experimental results demonstrate both
quantitative and qualitative performance metrics.
For quantitative evaluation, we measure translation
quality using standard metrics including BLEU and
METEOR scores. We also conduct a qualitative
analysis on semantic preservation and contextual
alignment between source texts, generated transla-
tions, and corresponding images. The results are
compared with the baseline approaches to demon-
strate the benefits of adding visual context in low-
resource language translation.

5.1 Quantitative Evaluation
As shown in Table 2, while the NLLB 3.3B model
generally outperforms its 600M counterpart due
to its larger parameter size. Our proposed MMT

model has improvements over the 3.3B baseline
across most language pairs. For Yoruba-English
translation, our model achieves a BLEU score of
23.96 and a METEOR score of 50.26, significantly
outperforming the NLLB 3.3B model (19.57/44.93)
with relative improvements of 22. 4% and 11. 9%,
respectively. The improvements are also evident
in Hausa-English translation, where our model
reaches a BLEU score of 37.21, and METEOR
score of 71.84. Most notably in Kanuri-English
translation, our model achieves substantial im-
provements with a BLEU score of 16.08, and ME-
TEOR score of 49.32, representing relative gains
of 16.4% and 5.6% over the NLLB 3.3B baseline.
These results demonstrate that our model archi-
tecture can effectively leverage its design advan-
tages to outperform larger models in low-resource
African language translation.

Language Metrics
BLEU METEOR

Fine-tuned NLLB 600M
Yoruba - English 21.24 48.03
Hausa - English 34.24 68.22
Kanuri - English 12.46 45.77
Tigrinya - English 18.76 55.24
Fine-tuned NLLB 3.3B
Yoruba - English 19.57 44.93
Hausa - English 36.75 70.35
Kanuri - English 13.81 46.69
Tigrinya - English 27.32 63.12
New MMT Model
Yoruba - English 23.96 50.26
Hausa - English 37.21 71.84
Kanuri - English 16.08 49.32
Tigrinya - English 27.13 61.48

Table 2: Translation performance comparison between
NLLB baseline model and our proposed model across
four African low-resource languages.

The performance of our proposed model can be
attributed to several key advantages of the multi-
modal dataset. First, by integrating visual infor-
mation through the pre-trained BLIP model, our
approach is particularly effective in correcting noun
and subject errors in translation. This is due to the
visual context providing a direct basis for these
entities. Second, for extremely low-resource lan-
guages with less than 10k training sentences, the
additional visual information can serve as an impor-
tant supplementary for word recognition and disam-
biguation. Visual cues help to establish stronger se-

29



Figure 4: Examples demonstrating how our model progressively improves translations by leveraging visual
information and LLM verification, comparing the initial translation result (Translation 1) with our model’s final
output and the ground truth.

mantic connections between source language terms
and English terms, leading to more accurate lexical
choices. The improvement in vocabulary accuracy
is better reflected in the BLEU metric, which is
particularly sensitive to exact vocabulary matches.
Furthermore, our LLM verification mechanism acts
as a quality control gate to help filter out transla-
tions that are semantically inconsistent with the
visual and textual context. But at the same time,
it reduces making changes on passed sentences,
this can avoid decreasing BLEU&METEOR scores
since LLMs can also make mistakes.

5.2 Qualitative Evaluation

Figure 4 shows three examples across different low-
resource language datasets, revealing that the multi-
modal architecture significantly improves semantic
accuracy, particularly in noun phrase translation.
For instance, as shown in Figure X, when trans-
lating from Yoruba, our model correctly identifies
"kite" from the visual context, while the baseline
NLLB model incorrectly translates it as "caterpil-
lar". Similarly, in the Kanuri example, the visual
information helps specify the correct location as
"balcony" rather than the more generic "roof". This
pattern of improvement in entity and object recog-
nition is consistent across our test set, where the
visual context effectively grounds abstract linguis-

tic tokens to concrete visual representations.
Moreover, the LLM assistance step maintains

semantic consistency between the visual scene and
the generated translation. As demonstrated in the
Tigrinya example, the model correctly identifies
the seasonal context as "summer" based on visual
cues.

However, there are also many error cases in the
final outputs. For example, in the Yoruba test set,
the correct translation of a sentence ’No descrip-
tion’ is predicted as ’There is no image’, while
the visual information can be understood as both
the former sentence and the latter sentence. The
limitation of LLM’s verification method in context
makes it not possible to recognize that an error has
occurred here, thus making this sentence pass.

These limitations stem partly from the inherent
challenge of aligning abstract sentences with visual
content. Many sentences in everyday communica-
tion are conceptual or abstract in nature and cannot
be perfectly represented visually. In such cases,
the visual information offers limited assistance in
correcting translation errors, preventing our system
from achieving higher performance scores.

Our approach represents a fundamental shift
from traditional multimodal translation research.
While existing systems typically rely on datasets
with perfectly aligned images and captions, this sce-
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nario rarely occurs in real-world communication
where daily language is conversational, abstract,
or conceptual with only partial visual correspon-
dence. This limitation has created a problematic cy-
cle where computational resources remain dispro-
portionately allocated to high-resource languages,
perpetuating linguistic inequalities in NLP develop-
ment. Our model addresses this inequity by work-
ing with realistic, imperfectly aligned multimodal
content rather than artificially constrained datasets,
though this approach introduces additional evalua-
tion challenges and unique error patterns.

6 Conclusion

Low-resource languages have been particularly ne-
glected in multimodal translation research precisely
because they lack perfectly aligned multimodal
datasets. We presented a comprehensive approach
to advance low-resource machine translation. Our
method transforms text-only parallel corpora into
visually enriched datasets using LLM-guided im-
age generation, ensuring semantic alignment be-
tween the generated visual content and original
sentences. Building on this multimodal data set,
we propose a novel translation architecture that
takes advantage of visual context and LLM assis-
tance to improve translation quality. Experimen-
tal results in four low-resource African languages
demonstrate significant improvements over NLLB
baselines in BLEU Scores and METEOR Scores.
Beyond these immediate results, our approach of-
fers broader implications for language preserva-
tion and accessibility. The framework’s adaptabil-
ity makes it promising for any other low-resource
languages, potentially aiding in the digital preser-
vation of endangered languages and facilitating
cross-cultural communication. This flexible so-
lution could contribute significantly to reducing
language barriers in digital spaces while helping
preserve linguistic diversity for future generations.

7 Limitations

LLM as a Black Box

Although the LLM component enhances translation
supervision, it lacks the ability to truly understand
low-resource language semantics or learn their in-
trinsic grammatical structures. This suggests that
while multimodal integration can improve evalua-
tion metrics, truly capturing the underlying linguis-
tic structures remains an open challenge.

Misalignment
The absence of a generalized assessment method
for image-text alignment presents a significant chal-
lenge in our approach. This issue is particularly
acute for low-resource languages where our used
parallel corpora originate from diverse, often incon-
sistent sources. While data filtering could poten-
tially improve alignment quality, it would further
reduce the already limited training sets, exacerbat-
ing the data scarcity problem. A potential solution
could be implementing back translation techniques
to augment the dataset while maintaining semantic
consistency, but this approach would need careful
validation to ensure it doesn’t propagate or amplify
existing misalignment.

Baseline Comparison
Our baseline comparison is constrained as there are
no multimodal translation models for low-resource
languages that would serve as more appropriate
benchmarks. Existing multimodal models like
LLaVA (Liu et al., 2023) primarily support En-
glish, while CLIP’s capabilities are also limited
to widely-spoken languages such as English and
Germany (Gupta et al., 2023) on translation tasks.
So we used the text-only NLLB as our baseline,
despite its inability to leverage visual information.
This limitation makes it difficult to fairly evaluate
whether our specific architecture is optimal or if
similar results could be achieved through more effi-
cient approaches that incorporate visual modalities.
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Appendix A

Examples of transforming abstract sentences into
concrete visual scenes.

Prompt Structure:

Input: [input sentence]
Scene Description: [detailed scene
description]

Training Examples:

1. Example 1
Input: “He was only allowed to play for an
hour a day.”
Scene Description: “A boy was sitting at the
table with a disappointed look on his face.
Next to him stood his parents, lecturing him.
Toys were scattered on the floor.”

2. Example 2
Input: “There is some hope.”
Scene Description: “A group of people stand
on the parched earth, surrounding a flower
that sprouts from the earth.”

Appendix B

When evaluating whether the original English text
in our dataset contains visual information, we
looked for words that describe tangible objects.
For example, the sentence "I was suspicious" only
conveys an abstract attitude, so we consider this
sample to not include visual information. Con-
versely, a sentence like "The bridge is open to traf-
fic" includes at least two elements, a bridge, and
vehicles, thus we consider this sample to contain
visual information. Similarly, we manually eval-
uated whether the generated images matched the
original English by checking if the key elements in
these original English texts aligned with the scenes
in the corresponding images.

Appendix C

We ran Stable Diffusion 3.5 Large Turbo on an
NVIDIA A100 GPU for image generation, with
each image taking approximately one second to
generate. Since the English texts in the parallel
translation datasets from Kanuri and Tigrinya to
English are identical, we effectively generated im-
ages corresponding to around 25,000 English orig-
inals. In total, this process took approximately
seven hours on the NVIDIA A100 GPU.

We used three NVIDIA A100 GPUs for the mul-
timodal translation task. The image recognition
and caption generation steps took about eight hours
in total. Fine-tuning the 3.3B NLLB took three
hours, and fine-tuning the 600M NLLB took about
one hour. LLM validation task takes about two sec-
onds per sentence, for a total of about three hours
on all test sets.
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Appendix D

We designed a comprehensive scoring framework
for evaluating translation quality using LLMs as
shown in Table 3. To assess how well translations
align with their visual contexts, we created a 0-10
scale with specific criteria for each range.

We provided these scoring criteria along with
example pairs to Llama in a few-shot learning ap-
proach, teaching the model how to evaluate se-
mantic alignment between images and translations.
The examples demonstrate various degrees of align-
ment - from perfect matches (graduation ceremony
with "They graduated today") to completely contra-
dictory pairings (birthday party with "Funeral was
yesterday").

Recognizing that low-resource language datasets
often have imperfect alignment with images, we in-
tentionally designed our scoring criteria to be some-
what flexible. For instance, translations scoring in
the 5-6 range may have only indirect connections
to the visual scene, like "The course starts from 9
o’clock" paired with a classroom teaching scene.
This flexibility acknowledges the real-world chal-
lenges of multimodal translation while still main-
taining meaningful quality standards.

Appendix E

Below is the prompt template used to guide the
LLM in generating alternative translations when
the initial translation fails to align with the image
content:

You are an expert in multimodal translation who
specializes in ensuring semantic alignment between
images and text in multiple languages. I’ll provide
you with:

1. An English translation of a sentence from a
low-resource language 2. A caption describing an
image that was paired with the original sentence

The current translation does not align well with
the image content. Your task is to generate a new
English translation that

- Maintains the core meaning of the original
translation when possible

- Better aligns with the visual content described
in the image caption

- Reads naturally in English
Original Sentence:{original_sentence}
Original Translation:{original_translation}
Image Caption:{image_caption}
Instructions: Generate a new translation that bet-

ter preserves the meaning while aligning with the

visual content. Provide only the new translation
without explanation

New Translation:{llama_output}
This prompt is used when the LLM evaluation

score falls below our threshold of 6, indicating
insufficient semantic alignment between the trans-
lated text and the corresponding image.
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Score Description Example Match
9-10 Perfect semantic align-

ment
Scene: Graduation ceremony.

Most key elements present Sentence: "They graduated today."
7-8 Strong correlation Scene: A group of doctors and nurses surround a man in a

hospital bed.
Core meaning preserved Sentence: "He had to undergo surgery."

5-6 Partial alignment Scene: There is a teacher teaching student in the classroom.
Indirect connection Sentence: "The course starts from 9 o’clock."

3-4 Limited connection Scene: A girl is playing skateboard in the park.
Major elements missing Sentence: "Summer starts soon."

1-2 Minimal alignment Scene: A boy sat on bed with his toys.
Very loose connection Sentence: "Communicating with Others."

0 No connection Scene: Children at birthday party.
Contradictory elements Sentence: "Funeral was yesterday"

Table 3: Scene-Sentence Scoring Criteria
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