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Abstract

Arabic dialects present major challenges for
natural language processing (NLP) due to their
diglossic nature, phonetic variability, and the
scarcity of resources. To address this, we in-
troduce a phoneme-like transcription approach
that enables the training of robust language
models for North African Dialects (NADs) us-
ing only formal language data, without the need
for dialect-specific corpora. Our key insight is
that Arabic dialects are highly phonetic, with
NADs particularly influenced by European lan-
guages. This motivated us to develop a novel
approach in which we convert Arabic script
into a Latin-based representation, allowing our
language model, ABDUL, to benefit from ex-
isting Latin-script corpora. Our method demon-
strates strong performance in multi-label emo-
tion classification and named entity recognition
(NER) across various Arabic dialects. ABDUL
achieves results comparable to or better than
specialized and multilingual models such as
DarijaBERT, DziriBERT, and mBERT. Notably,
in the NER task, ABDUL outperforms mBERT
by 5% in F1-score for Modern Standard Ara-
bic (MSA), Moroccan, and Algerian Arabic,
despite using a vocabulary four times smaller
than mBERT.

1 Introduction

NADs, including Moroccan, Algerian, and
Tunisian, introduce additional complexities. Influ-
enced by Berber languages and colonial languages
such as French and Spanish, these dialects display
notable phonetic variability, including vowel incon-
sistency and the adoption of phonemes absent in
MSA, such as /p/ and /v/ (Barkat-Defradas et al.,
2003). In addition, their lexicons are enriched by
extensive borrowing from French and Spanish and
often incorporating them with phonetic modifica-
tions (Owens, 2013).

In this article, we introduce a phoneme-like tran-
scription approach that bridges formal Arabic with

dialectal varieties through linguistic normalization.
Inspired by the Buckwalter (Buckwalter, 2002)
transliteration system, our method simplifies and
adapts transliteration by clustering phonetically
similar sounds, improving alignment with dialec-
tal phonetic patterns. To highlight consonants and
long vowels (e.g., the "ā" in the word kitāb for
"book" which is pronounced with an extended du-
ration of the vowel /a/), this approach deliberately
omits diacritization and even removes preexisting
diacritics from the text, reducing phonetic variabil-
ity (Al-Mozainy, 1981).

By transforming Arabic script into a standard-
ized phoneme-like Latin representation, this prepro-
cessing pipeline promotes cross-script and cross-
dialect generalization, allowing for the develop-
ment of robust NLP models trained solely on for-
mal language data. In this article, we will focus ex-
clusively on transliterating MSA to handle Arabic
dialects, with the future goal of including French
and code-switched text, given their significance in
NADs.

2 Linguistic Justification

NADs are low-resource languages with no formal
or standardized grammatical rules, relying mainly
on direct phonetic transcription. Alongside MSA
vocabulary, they feature extensive lexical borrow-
ings from French, Spanish, Turkish, and Italian,
reflecting the historical and colonial influence of
these languages in the region. The lexical resem-
blance between Algerian Arabic (ALG) and MSA
has been quantitatively analyzed using computa-
tional methods. Abukwaik et al. (Abu Kwaik et al.,
2018) employed Latent Semantic Indexing (LSI)
to assess lexical overlap between MSA and various
Arabic dialects, reporting an LSI similarity score
of 0.68 for Algerian Arabic. This score indicates a
moderate lexical divergence, suggesting that while
some vocabulary is shared, directly applying MSA-
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trained models to Algerian Arabic could result in
significant tokenization mismatches. Harrat et al.
(Harrat et al., 2014) found that approximately 20%
of Algerian dialectal words originate from Arabic,
while 34% are derived from MSA. Studies estimate
that loanwords make up around 30–40% of the vo-
cabulary in these dialects, particularly in technical,
educational, and governmental contexts (Owens,
2013; Barkat-Defradas et al., 2003). In (Harrat
et al., 2016), the authors argue that significant vari-
ations between and MSA occur in vocalization,
along with the omission or modification of certain
letters, particularly the Hamza1. Despite the in-
fluence of foreign lexicons, NADs preserve core
linguistic structures from MSA. However, in terms
of pronunciation, Menacer et al. (Menacer et al.,
2017) found that 46% of MSA-derived words in
NADs exhibit phonetic variations compared to their
standard MSA counterparts. Another key charac-
teristic of NADs is their strong dependence on con-
sonantal structures for lexical and semantic distinc-
tions, as vowel patterns vary significantly across
regions (Barkat-Defradas et al., 2003). Given these
linguistic properties, ABDUL leverages stable con-
sonantal structures, which serve as robust subword
units for training NLP models, reducing variability
caused by inconsistent usage of vowels.

3 Related Work

NADs are low-resource languages that lack for-
malized grammatical rules and primarily rely on
phonetic transcription. In this work, we propose a
novel paradigm for training language models for
NADs using only formal language corpora, elim-
inating the need for dialect-specific datasets. To
evaluate the effectiveness of our approach, we com-
pare it against several key baselines in Arabic NLP,
particularly those designed for Arabic dialects:

• AraBERT 2: A pretrained BERT model for
MSA (Antoun et al., 2020), serving as a foun-
dational model for Arabic NLP. It is trained on
a mix of MSA corpora and Arabic Wikipedia,
capturing linguistic nuances in formal Arabic.

• mBERT 3: A multilingual BERT model pre-
trained on 100+ languages (Devlin et al.,
2019). While not specifically optimized for

1The Hamza is a letter in the Arabic alphabet representing
the glottal stop

2https://huggingface.co/aubmindlab/bert-base-arabertv2
3https://huggingface.co/google-bert/bert-base-

multilingual-uncased

Arabic, it provides a multilingual perspective
on cross-lingual transfer.

• DarijaBERT 4: A BERT model fine-tuned
for Moroccan Arabic (Darija) (Gaanoun et al.,
2023), leveraging localized datasets to capture
dialect-specific nuances.

• TunBERT 5: A Tunisian Arabic BERT model
(Messaoudi et al., 2021), highlighting the lex-
ical and phonological idiosyncrasies of this
dialect.

• DziriBERT 6: A pretrained model for Alge-
rian Arabic (Dziri) (Abdaoui et al., 2022), pro-
viding a benchmark for North African dialec-
tal NLP.

Beyond these baselines, our approach is further
inspired by the study "Consonant is All You Need"
(Al-shaibani and Ahmad, 2023), which highlights
the benefits of reducing reliance on vowels for more
efficient NLP models. This work demonstrates
how selectively omitting certain lexical features
can lead to smaller vocabularies, lower computa-
tional complexity, and improved training efficiency.
These insights align with our dediacritization and
consonant-centric transcription strategy, reinforc-
ing the scalability and effectiveness of our method.

Through a rigorous comparative analysis, we
aim to underscore the advantages of our approach.
By pretraining a language model from scratch on
data processed via our pipeline, we establish a fair
and consistent benchmark to demonstrate the ben-
efits of phoneme-like transcription for Arabic di-
alectal NLP. Our work contributes to the broader
goal of improving low-resource language modeling
through linguistically informed methodologies.

4 Methodology

To effectively adapt formal Arabic resources for
dialectal NLP, we develop a preprocessing pipeline
that normalizes phonetic variability while preserv-
ing linguistically significant features. In the follow-
ing, we outline the key steps in our phoneme-like
transcription process.

4.1 Phoneme-like Transcription Pipeline
Our preprocessing pipeline transforms Arabic text
into a phoneme-like Latin representation by:

4https://huggingface.co/SI2M-Lab/DarijaBERT
5https://huggingface.co/tunis-ai/TunBERT
6https://huggingface.co/alger-ia/DziriBERT
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1. Dediacritization: We remove short vowels
and diacritics, treating them as having a mini-
mal impact to normalize phonetic variations
and highlight consonant structures. This ap-
proach aligns with the principle that conso-
nants encode the fundamental semantic mean-
ing of words in Arabic (Watson, 2002).

2. Retention of Long Vowels: long vowels
are preserved to capture essential phonetic
cues while reducing ambiguity, reflecting their
phonemic stability in Arabic dialects (Al-
Mozainy, 1981).

3. Simplified Transliteration: Inspired by the
Buckwalter transliteration system, our sim-
plified Latin-script transcription ensures pho-
netic consistency across dialects. This im-
proves tokenization efficiency and allows
models trained with formal Arabic corpora
to generalize better to dialects, particularly by
unifying phonetically similar sounds under a
shared representation.

4.2 Model Training

We pretrain a BERT model from scratch using the
Arabic split of the OSCAR corpus (Ortiz Suárez
et al., 2019), applying our preprocessing pipeline.
We utilize a WordPiece tokenizer with a vocabulary
size of 30,522 tokens. The model undergoes train-
ing for 9 epochs using the Adam optimizer, with
a learning rate of 5e-5, a batch size of 64, and a
maximum sequence length of 512. Training is con-
ducted on a single NVIDIA A100, with a masked
language modeling (MLM) probability of 0.15.

The choice of vocabulary size plays a crucial
role in language model training, especially for
morphologically rich languages like Arabic. To
ensure fair comparison, we adopt the BERT ar-
chitecture, aligning with benchmark models such
as DarijaBERT, DziriBERT, TunBERT, AraBERT,
and mBERT. The 30,522-token vocabulary was se-
lected to match the lowest vocabulary size among
these benchmarks (Table 1), allowing for an equi-
table evaluation of efficiency across different pre-
training settings.

5 Datasets

In this section, we describe the datasets used for
pretraining and benchmarking ABDUL, covering
MSA and NADs. Our selection includes a large-
scale corpus in MSA for pretraining and multiple

Table 1: Vocabulary size comparison between the AB-
DUL trained BERT model and the models it will be
benchmarked against

Language Model Vocab Size
Moroccan DarijaBERT 80,000
Algerian DziriBERT 50,000
Tunisian TunBERT 30,522
MSA arabert 64,000
Multilingual mBERT 119,547
MSA ABDUL 30,522

dialect-specific datasets for downstream tasks, en-
suring a comprehensive evaluation across emotion
classification and named entity recognition (NER).

5.1 Pretraining Dataset

We use the Arabic subset of the OSCAR corpus (Or-
tiz Suárez et al., 2019) for pretraining our model.
This dataset contains approximately 8.7 million
documents and 6.1 billion words, totaling around
84.2 GB of text. Derived from web sources such
as news articles, blogs, and forums, OSCAR pro-
vides a diverse representation of MSA. Its scale
and domain diversity make it well-suited for train-
ing transformer-based language models, ensuring
broad linguistic coverage.

5.2 Emotion Classification Datasets

For text classification, we employ the SemEval
2025 7 Task 11-A dataset, which focuses on emo-
tion detection in Moroccan and Algerian Arabic.
The dataset consists of approximately 900 labeled
instances per dialect, annotated with four emotion
categories: joy, anger, sadness, and fear. This
dataset serves as a benchmark for evaluating emo-
tion classification in different research works con-
cerning NADs, which pose unique linguistic chal-
lenges due to their phonetic variations and lexical
borrowings.

5.3 Named Entity Recognition (NER)
Datasets

For NER evaluation, we utilize three datasets: Wik-
iFANE(Alotaibi and Lee, 2014), DzNER (Dahou
and Cheragui, 2023), and DarNER (Moussa and
Mourhir, 2023), which cover different dialects and
entity types, providing a comprehensive benchmark
for dialectal Arabic NER.

7https://semeval.github.io/SemEval2025/
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• WikiFANE: Covers MSA and NADs, provid-
ing a general-purpose dataset.

• DzNER: Focuses on Algerian Arabic, with a
broader range of entity types.

• DarNER: Specializes in Moroccan Arabic
and includes date entities in addition to stan-
dard entity categories.

Table 2 summarizes the dataset attributes.

6 Results

The performance of ABDUL is evaluated on two
tasks: emotion classification and named entity
recognition (NER), across multiple Arabic variants.
The results demonstrate ABDUL’s ability to gener-
alize effectively across dialects while maintaining
competitive performance against specialized mod-
els.

6.1 Emotion Classification Performance

Table 3 presents the emotion classification results
for Algerian Arabic. ABDUL achieves a macro-F1
score of 0.5315, ranking second behind DziriBERT
(0.5573). It outperforms DarijaBERT (0.5107), the
specialized Moroccan Arabic model, and signifi-
cantly surpasses TunBERT (0.2473), which strug-
gles in this dialect.

Table 3: Emotion classification results for Algerian Ara-
bic.

Model Precision Recall Macro-F1 Accuracy
DarijaBERT 0.6454 0.4289 0.5107 0.2747
DziriBERT 0.6560 0.4928 0.5573 0.3186
TunBERT 0.4220 0.2210 0.2473 0.2087
arabert 0.6369 0.4159 0.4964 0.2417
mBERT 0.5295 0.3434 0.4071 0.2197
ABDUL 0.6000 0.5014 0.5315 0.2088

Table 4 presents the emotion classification re-
sults for Moroccan Arabic. ABDUL achieves
a macro-F1 score of 0.4519, closely matching
AraBERT (0.4518), a model trained on MSA. It out-
performs DarijaBERT (0.4648) and significantly
surpasses TunBERT (0.1020).

Table 4: Emotion classification results for Moroccan
Arabic.

Model Precision Recall Macro-F1 Accuracy
DarijaBERT 0.5399 0.4122 0.4648 0.5280
DziriBERT 0.5057 0.3589 0.4157 0.4410
TunBERT 0.1538 0.0797 0.1020 0.2981
arabert 0.7039 0.3775 0.4518 0.4907
mBERT 0.4109 0.2777 0.3254 0.3727
ABDUL 0.5266 0.4035 0.4519 0.4596

Table 5 presents the averaged classification re-
sults across dialects. ABDUL achieves an over-
all macro-F1 score of 0.4915, outperforming Dar-
ijaBERT (0.4878) and DziriBERT (0.4865). This
highlights ABDUL’s ability to generalize across
NADs despite being trained exclusively on MSA.

Table 5: Average emotion classification results across
dialects.

Model Precision Recall Macro-F1 Accuracy
DarijaBERT 0.5926 0.4205 0.4878 0.4013
DziriBERT 0.5808 0.4258 0.4865 0.3798
TunBERT 0.2879 0.1503 0.1746 0.2535
arabert 0.6704 0.3967 0.4741 0.3662
mBERT 0.4702 0.3106 0.3662 0.2962
ABDUL 0.5633 0.4524 0.4915 0.3342

These results suggest that ABDUL’s phoneme-
like transcription preprocessing effectively cap-
tures dialectal features while avoiding reliance
on extensive dialect-specific data. Its particularly
strong performance in Algerian Arabic underscores
its suitability for handling underrepresented di-
alects in emotion classification.

6.2 Named Entity Recognition (NER)
Performance

Table 6 presents the results for NER in MSA. AB-
DUL achieves an F1 score of 0.4646, performing
on par with mBERT (0.4647), the top-performing
model. It surpasses arabert (0.4427), demonstrat-
ing its effectiveness in formal Arabic settings. The
results assess ABDUL’s ability to generalize across
different Arabic variants and effectively capture
named entities despite phonetic and lexical vari-
ability.
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Table 2: NER datasets for Arabic and North African dialects.

Dataset Language/Dialect Entities Size in tokens
WikiFANE MSA and North African Dialects 102 different entities 490k
DzNER Algerian Arabic (Darija) PER, LOC, ORG, MISC 220k
DarNER Moroccan Arabic (Darija) PER, LOC, ORG, DATE 65,905

Table 6: NER performance on MSA.

Model Precision Recall F1 Accuracy
DarijaBERT 0.4922 0.4112 0.4481 0.8927
DziriBERT 0.4825 0.3854 0.4285 0.8911
TunBERT 0.4416 0.0068 0.0134 0.8633
arabert 0.5016 0.3962 0.4427 0.8954
mBERT 0.5152 0.4233 0.4647 0.8977
ABDUL 0.5180 0.4212 0.4646 0.8979

For NER in Algerian Arabic (Table 7), ABDUL
achieves the highest F1 score of 0.6828, signifi-
cantly outperforming DziriBERT (0.5461), which
is specifically trained for this dialect.

Table 7: NER performance on Algerian Arabic.

Model Precision Recall F1 Accuracy
DarijaBERT 0.5556 0.5615 0.5585 0.9384
DziriBERT 0.5361 0.5565 0.5461 0.9382
TunBERT 0.4286 0.0071 0.0140 0.9104
arabert 0.5104 0.5841 0.5448 0.9389
mBERT 0.4975 0.5727 0.5325 0.9343
ABDUL 0.6601 0.7071 0.6828 0.9553

For NER in Moroccan Arabic (Table 8), ABDUL
attains an F1 score of 0.6557, ranking just behind
mBERT (0.7192), the best-performing model over-
all. However, it surpasses DarijaBERT (0.6246),
that was designed especially for Morrocan. A qual-
itative analysis of the DarNER corpus revealed that
many words were transcribed in a way that closely
aligns with their Arabic root rather than reflect-
ing phonetic pronunciation. This likely explains
mBERT’s and arabert’s superior performance, as
these models benefit from their extensive pretrain-
ing on MSA.

Table 8: NER performance on Moroccan Arabic.

Model Precision Recall F1 Accuracy
DarijaBERT 0.6077 0.6424 0.6246 0.9272
DziriBERT 0.5875 0.5516 0.5690 0.9193
TunBERT 0.1928 0.0548 0.0853 0.8436
arabert 0.6491 0.6761 0.6623 0.9290
mBERT 0.7140 0.7246 0.7192 0.9403
ABDUL 0.6415 0.6706 0.6557 0.9346

Table 9 presents the averaged NER performance

across MSA, Algerian, and Moroccan Arabic. AB-
DUL achieves an overall F1 score of 0.6010, out-
performing both DarijaBERT (0.5437) and DziriB-
ERT (0.5145). This demonstrates ABDUL’s abil-
ity to generalize effectively across dialects while
maintaining strong performance in both formal and
informal Arabic varieties.

Table 9: Average NER performance across Arabic vari-
ants.

Model Precision Recall F1 Accuracy
DarijaBERT 0.5518 0.5384 0.5437 0.9194
DziriBERT 0.5354 0.4978 0.5145 0.9162
TunBERT 0.3543 0.0229 0.0376 0.8724
arabert 0.5564 0.5521 0.5500 0.9211
mBERT 0.5756 0.5735 0.5721 0.9241
ABDUL 0.6065 0.5996 0.6010 0.9293

7 Conclusion

ABDUL consistently matches or exceeds the per-
formance of specialized models for certain dialects
in tasks such as emotion classification and named
entity recognition (NER), despite being trained ex-
clusively on MSA. It notably outperforms Dari-
jaBERT and DziriBERT in several scenarios, show-
casing its strong adaptability to NADs. By utilizing
a phoneme-like transcription approach, ABDUL
effectively bridges the gap between formal and di-
alectal Arabic, improving tokenization efficiency
and enhancing generalization across dialects with
shared linguistic features. Its ability to compete
with dialect-specific models while relying solely
on widely available, high-quality MSA data under-
scores its scalability and potential for low-resource
Arabic NLP.

8 Limitations and Future Work

While ABDUL demonstrates strong performance
in dialectal NLP tasks, several limitations remain.
Currently, our approach does not support Latin-
script Arabizi dialects, which are widely used in
informal settings. Expanding ABDUL to handle
Arabizi is a key part of our future work. Addition-
ally, we plan to investigate how vocabulary size

20



impacts performance, as well as how different for-
mal languages used in pretraining (e.g., French,
Spanish, and English) influence the model’s ability
to generalize across dialects.

Overall, the results are low for state-of-the-art
models, including ABDUL. The task will be to test
other architectures to improve the results and not
settle for the current ones.

Finally, we aim to expand ABDUL’s applicabil-
ity to a broader set of NLP tasks, including machine
translation and text generation, to further assess its
scalability and effectiveness in diverse linguistic
contexts. As a long-term objective, we seek to
build the first large language model (LLM) for Ara-
bic dialects, leveraging the high availability and
quality of formal languages data to address the low-
resource status of Arabic dialects and advance the
field of dialectal Arabic NLP.
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