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Abstract

Large Language Models (LLMs) have demon-
strated strong capabilities in code generation,
such as translating natural language questions
into SQL queries. However, state-of-the-art
solutions often involve a costly fine-tuning
step. In this study, we extensively evaluate
In-Context Learning (ICL) solutions for text-
to-SPARQL generation with different archi-
tectures and configurations, based on meth-
ods for retrieving relevant demonstrations for
few-shot prompting and working with multi-
ple generated hypotheses. In this way, we
demonstrate that LLMs can formulate SPARQL
queries achieving state-of-the-art results on
several Knowledge Graph Question Answer-
ing (KGQA) benchmark datasets without fine-
tuning.

1 Introduction

The advent of Large Language Models (LLMs)
has significantly advanced the field of Natural Lan-
guage Processing (NLP), with particular success in
the domain of code generation (Chen et al., 2021;
Rozière et al., 2024).

At the same time, the growing complexity and
scale of Knowledge Graphs (Pellissier Tanon et al.,
2016; Lehmann et al., 2014; Bollacker et al., 2008)
highlighted the need for robust and accurate mecha-
nisms to query such data stores, for instance, within
Knowledge Graph Question Answering (KGQA)
pipelines (Li et al., 2023; Nie et al., 2024).

In this paper, we carry out an extensive eval-
uation of LLM-based In-Context Learning (ICL)
for text-to-SPARQL generation. Text-to-SPARQL
is a crucial component of many KGQA systems,
that typically make use of different modules to
assembly the query, such as Entity and Relation
Linking. To this end, we define a simple and mod-
ular approach to address the text-to-SPARQL task
without fine-tuning. The evaluation is focussed on
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the following key aspects: (1) the influence of vari-
ous In-Context Learning strategies on the quality
of the generated queries; (2) the impact of differ-
ent state-of-the-art model backbones, varying in
architecture, size, and training data; (3) the po-
tential of beam search to generate multiple query
candidates, thereby enhancing the results;(4) a com-
parison between ICL and specialized models fine-
tuned for the task. The code is publicly available at
https://github.com/jacopodabramo/DFSL.

In the interest of reproducibility, as backbones,
we use three state-of-the-art open-weight LLMs:
Mixtral 8x7B, Llama-3 70B, and CodeLlama 70B.
We run experiments on two widely-used Knowl-
edge Bases, DBpedia and Wikidata, using four pub-
licly available datasets: QALD-9, based on DBpe-
dia, and QALD-9 plus, QALD-10 and LC-QuAD
2.0, based on Wikidata.

Our experimental results demonstrate that LLMs
In-Context Learning solutions achieve state-of-the-
art results, without the need of any fine-tuning. The
injection of demonstrations similar to the input
question into the prompt combined with the gen-
eration of multiple query candidates directly from
beam search hypotheses, yield the best results, ex-
ceeding in most of the benchmarks state-of-the-art
models fine-tuned for the task. Finally, we also
run ablation studies to gauge the effectiveness of
the approach without gold information from the EL
and RL modules.

2 Related work

We first provide an overview of most related In-
Context-Learning approaches. Then, we discuss
text-to-SPARQL methods, including KGQA sys-
tems that typically make use of text-to-SPARQL
techniques to tackle the problem.
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In-Context Prompt
The task involves translating questions from English into
SPARQL queries for the Wikidata knowledge graph. The
queries must follow specific guidelines to ensure
accuracy and correct execution:
1. Enclose SPARQL queries within <SPARQL></SPARQL> tags.
2. Utilize all provided golden entities and relations
exclusively to construct the query accurately. Do not use
any other entities or relations. 
3. Examples are provided below for guidance.

Examples:

###

Question: Where was Bach born?

Golden entities:
http://www.wikidata.org/entity/Q1339 (Johann 
Sebastian Bach)
Golden relations:
http://www.wikidata.org/prop/direct/P19 (place of birth)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> 
PREFIX wd: <http://www.wikidata.org/entity/> SELECT
DISTINCT ?uri WHERE { wd:Q1339 wdt:P19 ?uri . }</SPARQL>
###

...
###

Question: Which country was Bill Gates born in?

Gold Entities:
http://www.wikidata.org/entity/Q5284 (Bill Gates)

Gold Relations:
http://www.wikidata.org/prop/direct/P19 (place of birth),
http://www.wikidata.org/prop/direct/P17 (country)

Query:

Question: Which country was Bill Gates born in?
Entities: http://www.wikidata.org/entity/Q5284
Relations: http://www.wikidata.org/prop/direct/P19,
http://www.wikidata.org/prop/direct/P17

Encode

Multi-Query Generation

LLM

PREFIX wdt: <http://www.wikidata.org/prop/direct/>  PREFIX wd:
<http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { wd:Q5284
wdt:P19 ?uri . ?uri wdt:P17 ?uri . }

Answer
Selection

PREFIX wdt: <http://www.wikidata.org/prop/direct/>  PREFIX wd:
<http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { wd:Q5284
wdt:P19 ?uri . ?uri wdt:P17 ?uri2 .

Encode

SPARQL
Engine

http://www.wikidata.org/entity/Q30(United States of America)

... b

Exemplars Retrieval

Figure 1: Sketch of the ICL approach. Given a question, its entities and its relations, k-most similar examples are
retrieved from a text-to-SPARQL collection S and injected into the in-context prompt. Then, the LLM generates one
or more queries that are all executed by a SPARQL engine. An answer selection strategy identifies which response
to pick.

2.1 In-Context Learning

ICL is a paradigm that leverages reasoning through
analogies. A task description, question, and demon-
stration context are usually concatenated to cre-
ate a prompt, which is then input into an LLM
for prediction. Unlike fine-tuning, ICL performs
predictions without gradient updates (Dong et al.,
2023). Few-Shot Learning is a type of ICL where
the demonstration context includes a few exam-
ples. Owing to the effectiveness of ICL and the
obvious advantage of building systems that don’t
need domain-specific training, a great deal of re-
search and engineering efforts have been devoted
to designing suitable prompts. ICL has been suc-
cessfully applied to many NLP problems, including
QA (Chada and Natarajan, 2021; Chen et al., 2023).

Some studies have also focused on the selection
of in-context examples. In particular, Liu et al.
(2022) developed KATE, an unsupervised retriever
that utilizes k-nearest neighbors and distance met-
rics (e.g., L2 distance and cosine similarity) to se-
lect in-context examples for tasks such as sentiment
analysis, table-to-text generation, and question an-
swering. Levy et al. (2023) explored the incor-

poration of diverse demonstrations into prompts
for compositional semantic parsing task, demon-
strating that such diversity leads to better structural
coverage in target utterances. Kim et al. (2022)
leveraged the generative capabilities of pre-trained
language models to generate demonstrations for
each class in downstream tasks, conditioned on test
inputs and class information. Gonen et al. (2022)
found that selecting examples based on perplex-
ity, in particular lower perplexity, is an effective
strategy.

Similar principles have been adopted in code
generation tasks (Cheng et al., 2022), including
text-to-SQL (Cheng et al., 2022; Nan et al., 2023;
Zhang et al., 2023; Wei et al., 2023) and KGQA (Li
et al., 2023). In the same vein, our study investi-
gates ICL strategies to address text-to-SPARQL.
However, while all these approaches are based on
proprietary LLMs, such as GPT-3, GPT-4 (Brown
et al., 2020) and Codex (Chen et al., 2021), we
focus on open-weight LLMs.

2.2 Text-to-SPARQL

With the recent wave of decoder-based LLMs
such as GPT (Brown et al., 2020), Mixtral (Jiang
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et al., 2024), and Llama (Touvron et al., 2023),
generative AI was also used to translate ques-
tions into SPARQL queries. Notably, Zou et al.
(2021) introduced a text-to-SPARQL model that
leverages a relation-aware attention decoder and a
pointer network encoder, incorporating three sep-
arate scaled dot-product attention mechanisms to
generate SPARQL queries that capture entity, rela-
tion, and keyword representations. Banerjee et al.
(2022) experimented with various models, includ-
ing T5 (Raffel et al., 2020), BART (Lewis et al.,
2019), and Pointer Generation Networks (See et al.,
2017), to explore their efficacy in KGQA tasks.
Rony et al. (2022)’s SGPT employs a stack of trans-
former encoders to extract linguistic features from
the natural question and GPT-2 as a decoder. How-
ever, this architecture is limited by its inability to
capture connections among entities and relations in
the underlying knowledge graph, leading to errors
in generating triple sequences in the final SPARQL
queries. Pliukhin et al. (2023) presented a one-
shot generative approach, where the prompt is aug-
mented with a KG fragment required to construct
the query and a question-subgraph query example.

Despite promising results, these architectures
are prone to systematic errors. One such error, the
so-called “triple-flip", refers to the reversal of sub-
ject and object positions in the generated SPARQL
triples, yielding wrong, often empty answers. Qi
et al. (2024) addressed this issue by developing
TSET, a fine-tuned T5 model with a pre-training
stage called Triplet Structure Correction.

All these works propose dedicated architectures
or training objectives designed for the task at hand.
This requires fine-tuning, that may be expensive in
terms of resources, thus limiting the choice of back-
bones to specialize. We take a different approach
and investigate ICL solutions that do not require
any fine-tuning.

Text-to-SPARQL methods are typically evalu-
ated in KGQA tasks, and they all share a similar
pipeline, where entities and relations are given or
extracted from other modules and the goal of the
model is to translate a natural language question,
associated with its entities and relations, into the
SPARQL query.

KGQA. Being text-to-SPARQL an important in-
gredient in KGQA, many KGQA approaches are
inherently related with our work. Early research
in KG query generation was rule-based (Guo et al.,
2005; Owens et al., 2008), template-based (Zenz

et al., 2009; Unger et al., 2012; Görlitz et al., 2012)
or search-based. However, manual or semi-manual
approaches hit scalability issues with KGs like
WikiData and DBpedia. Nowadays, research fol-
lows two main streams: information-retrieval based
methods and Text-to-SPARQL approaches. The
former generally require identifying sub-graphs rel-
evant to the natural question. They include divide-
and-conquer (Kim et al., 2023), fact retrieval based
on linked entities (Baek et al., 2023), more complex
methods involving hops, relation predictions, and
triple sampling (Wu et al., 2023), or Evidence Pat-
tern Retrieval (EPR) through structural dependency
modeling (Ding et al., 2024). Conversely, solutions
based on text-to-SPARQL typically use ICL ap-
proaches to build a query draft in a logical form
that is then refined and converted into a formal
SPARQL query by means of different strategies.
KB-BINDER (Li et al., 2023) leverages LLMs
for generating preliminary logical forms and re-
fines them using a lexicon-based similarity search,
achieving notable performance on several KBQA
datasets without customized heuristics for specific
knowledge bases. In (Nie et al., 2024) authors
propose converting logical form generation into
Python function call sequences, reducing format
errors and enhancing performance in zero-shot and
few-shot settings, establishing new state-of-the-art
results on multiple datasets. In the same spirit,
other methods generate natural language questions
starting from SPARQL queries instead (Li et al.,
2024; Liang et al., 2023).

Our study departs from the KGQA works listed
above in several ways. First, it focuses on the text-
to-SPARQL task starting from a natural question
and gold entities/relations, whereas KB-BINDER
and other methods address a different task: the
production of a logical form starting from a natu-
ral question, without gold entities/relations. The
SPARQL query can be constructed afterward, and
entities/relations can be predicted based on the
logical form, which is what KB-BINDER does;
nevertheless, the task is a different one. For this
reason, we only consider text-to-SPARQL bench-
marks with gold entities/relations, as in (Banerjee
et al., 2022; Rony et al., 2022; Qi et al., 2024). An-
other difference is the choice of the KG: instead of
freebase, a project closed in 2016, we adopt Wiki-
data, an ongoing project with 1.57 billion semantic
triples to date.1

1https://grafana.wikimedia.org/d/000000175/
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3 Method

Given a collection of natural language questions Q
and a knowledge graph G := (E ,R,F), where E
are entities, R are relations, and F ⊆ E ×R× E
are facts, KGQA is the problem of answering ques-
tions in Q based on G. KGQA can be framed
as a text-to-SPARQL task, where a question q
must be translated into a SPARQL query sq to be
executed on G by a SPARQL engine, to return a
(possibly empty) answer a. The entities and re-
lations in q, denoted as Eq and Rq, may be, and
usually are, extracted from q before generating sq.
Hence, query generation can be tackled as a con-
ditional text generation problem given q, Eq and
Rq. Within the scope of ICL, Pθ is a pre-trained
LLM and the conditional input Eq,Rq, q is com-
bined with other contextual information C, such as
additional instructions, guidelines, constraints and
demonstrations, all expressed via natural language
text. Accordingly, the generated query is:

sq = argmax
s

Pθ(s|C, Eq,Rq, q). (1)

3.1 Exemplary Demonstrations Retrieval

In few-shot ICL, the choice of demonstrations to
inject in the prompt can significantly affect perfor-
mance. Usually, few-shot examples are predeter-
mined representative instances of the task, hand-
picked during prompt design. Conversely, we aim
to retrieve good examples dynamically, based on
their relevance to the input question. Inspired by
Liu et al. (2022) and Li et al. (2023), we adopt a
retrieval approach based on the similarity between
a question q and a set of previously answered text-
to-SPARQL examples collected in a storage S (see
Figure 1), where each example is a tuple including
a question x, its entities Ex and relations Rx, and
the associated SPARQL query sx. Differently from
(Li et al., 2023), we encode examples with dense
representations instead of BM25. Moreover, beside
the question itself, we also encode its entities and
relations, i.e. ⟨q, Eq,Rq⟩ are mapped onto a vector
representation eq ∈ Rd using a sentence encoder.
To properly feed such information to an encoder-
only LM, we concatenate question, entities and re-
lations in a single input sequence q := [q, Eq,Rq].
Likewise, we encode each example x ∈ S into a
vector ex ∈ Rd and then compute the similarity

wikidata-datamodel-statements?orgId=1&refresh=
30m

between the target question and the storage:

score(q,x) = sim(eq, ex),∀x ∈ S, (2)

where sim is a similarity function. Based on such
a scoring, we retrieve the k-most similar examples
S and include them as demonstrations in the in-
context prompt. From now on, we refer to this ex-
emplary demonstration retrieval strategy as DFSL,
standing for Dynamic Few-Shot Learning.

3.2 In-Context Prompt

The in-context prompt has three parts. The first is
the task description, instructing the LLM with a
numbered list of guidelines on the output format
and on the available information. The second, high-
lighted in Figure 1 with a green block, contains the
k retrieved demonstrations. Each demonstration
consists of a question, its entities and relations, de-
noted as gold entities/relations, all paired with their
SPARQL query delimited by <SPARQL></SPARQL>
tags. The ### symbol delimits each example. The
last part is the question, associated with its gold
entities and relations. The answer returned by the
LLM prompted as such is then parsed to extract
the generated text enclosed in <SPARQL></SPARQL>
tags. The resulting query sq is executed by a
SPARQL engine on G to yield the answer to q.

3.3 Multi-Query Generation

A typical challenge faced by LLMs in SPARQL
query generation is the understanding of what is
the subject and what is the object of a relation, an
information the model does not have. LLMs often
end up in swapping the subject with the object in
the query, almost choosing one way or the other ran-
domly. This problem is called triple-flip error (Qi
et al., 2024). Thanks to ICL, this issue may be alle-
viated whenever there are similar demonstrations
in the in-context prompt that clarify the subject-
object roles. To further reduce triple-flip errors,
we propose the generation of multiple SPARQL
queries by retaining all the final hypotheses gener-
ated during beam search. The model uncertainty in
placing subject and object is likely to be reflected
in the beam search exploration. Intuitively, both
triple-ordering hypotheses are considered plausi-
ble by the model. Thus, instead of just returning
the most probable sequence s according to Equa-
tion 1, we keep the whole b queries {sq,1, . . . , sq,b}
formulated by beam search.
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Approach Backbone QALD-9 Plus QALD-10 LC-QUAD 2.0 QALD-9 DB

Zero-shot Learning 49.90 33.76 40.66 65.73
Few-shot Learning Mixtral 7x8 54.80 (+4.90) 50.26 (+16.50) 61.04 (+20.38) 63.86 (-1.87)
DFSL 71.75 (+21.85) 49.90 (+16.14) 81.81 (+41.15) 72.74 (+7.01)

Zero-shot Learning 63.01 58.31 54.21 70.49
Few-shot Learning Llama-3 70B 67.69 (+4.68) 51.28 (-7.03) 68.52 (+14.31) 68.84 (-1.65)
DFSL 73.60 (+10.59) 56.59 (-1.72) 81.93 (+27.72) 72.66 (+2.17)

Zero-shot Learning 45.94 33.36 38.40 66.43
Few-shot Learning CodeLlama 70B 64.49 (+18.55) 57.38 (+24.02) 64.46 (+26.06) 72.67 (+6.24)
DFSL 76.59 (+30.65) 57.69 (+24.33) 85.45 (+47.05) 75.14 (+8.71)

Table 1: ICL techniques comparison on different backbones. Absolute F1 gains with respect to zero-shot are
reported between parenthesis.

Approach QALD-9 Plus QALD-10 LC-QUAD 2.0 QALD-9 DB

DFSL 76.59 57.69 85.45 75.14

DFSL-MQPLS 73.67 58.85 85.06 73.25
DFSL + Multi-Query PromptFS 74.40 58.34 85.38 73.92

DFSL-MQLS 83.21 60.48 85.54 72.06
DFSL-MQFS 84.45 (+7.86) 62.20 (+4.51) 89.10 (+3.65) 77.89 (+2.75)

Table 2: Multi-query Generation: comparing DFSL-MQ with DFSL and Multi-Query Prompting baselines. Absolute
F1 gains with respect to DFSL are reported for the best performing configuration.

Answer Selection. Executing multiple queries in-
evitably leads to multiple possible answers. There-
fore, we must define an answer selection criterion.
We designed two heuristics: Largest Set (LS) and
First Set (FS). LS executes all the b queries, obtain-
ing with each query sq,j a (possibly empty) answer
set Aj . LS then selects, among {A1, . . . ,Ab}, the
largest one2, i.e:

A = argmax
Ai

(|A1|, . . . , |Ab|),

the rationale being that incorrect candidates will
likely have empty results. However, LS can be mis-
led into selecting answers from under-constrained
queries that return many irrelevant instances. FS
adheres to the natural beams ordering by selecting
the first query that yields a non-empty answer set.

4 Experiments

In this section, we conduct the investigation of
LLMs capabilities in text-to-SPARQL query gener-
ation. KGQA serves as a benchmark task to mea-
sure the quality of the generated queries.

4.1 Datasets
To make our analysis more robust, we evaluate
models and methods on four heterogeneous KGQA

2In case of ties, we take the first largest set.

benchmarks based on two different Knowledge
Graphs (Wikidata, DBpedia).

QALD-9 DB. QALD-9 (Ngomo, 2018) is a
dataset from the Question Answering over Linked
Data (QALD) challenge series. It comprises 408
training questions and 150 test questions. Unlike
the other KGQA benchmarks, the SPARQL queries
are meant for a DBpedia Knowledge Graph. We
refer to it as QALD-9 DB to emphasize that.

QALD-9 plus. QALD-9 plus extends QALD-9
on new languages and transfers SPARQL queries
from DBpedia to Wikidata. Although some queries
were not portable to Wikidata due to the absence of
corresponding information, it still comprises 371
training questions and 136 test questions. In our
experiments, we only consider English questions.

QALD-10. QALD-10 (Usbeck et al., 2023) is
the latest dataset in the QALD series, designed to
increase the complexity of gold SPARQL queries.
It consists of 412 training questions extracted from
QALD-9 plus Wikidata. The test set was created
from scratch, comprising 394 test questions that ex-
press real-world information needs. Test questions
significantly differ from those in training.
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Figure 2: Comparison of Embeddings: DFSL (in orange) encoding that incorporates question, entities and relations
versus an embedding solely based on the question q (in blue).

LC-QuAD 2.0. LC-QuAD 2.0 (Dubey et al.,
2019) is a large-scale dataset grounded on Wiki-
data. It consists of 30,226 simple and complex
questions: 24,180 in training, and 6,046 in test.
Questions are diverse. They include single- and
multi-fact, boolean, count, and other query types.
With such a large and diverse text-to-SPARQL stor-
age, LC-QuAD 2.0 allows us to gauge the benefits
of retrieving similar exemplary demonstrations.

4.2 Backbones

Mixtral 8x7B. Based on the Sparse Mixture of
Experts (SMoE) architecture (Fedus et al., 2022),
Mixtral 8x7B (Jiang et al., 2024) is a 46.7B param-
eters model. Among the backbones adopted in this
paper, Mixtral is the smallest. Moreover, thanks
to the characteristics of its SMoE architecture, less
than 13B are active at each inference step, making
Mixtral particularly efficient.

Llama-3 70B. Built upon the Llama architec-
ture (Touvron et al., 2023), Llama-3 70B has been
trained on 15T tokens, a 650% increase from its pre-
decessor, Llama 2. At the time of writing, Llama-3
70B is one of the best-performing open-weights
LLMs available.

CodeLlama 70B. Initialized from Llama2 70B,
CodeLlama (Rozière et al., 2024) is a specialized
version fine-tuned on 1T tokens of code-heavy data.
Therefore, we expect CodeLlama to be particularly
suitable for SPARQL query generation.

4.3 Baselines

Plain Question. This is a naive baseline where
we feed an LLM only with the task description and
the question q. Without in-context examples nor
any entity or relation associated with q, the LLM
can only rely on its parameter memory.

Zero-Shot Learning. Here we do not provide
any demonstrative example in the prompt. How-
ever, unlike the plain question baseline, we do in-
ject golden entities and relations into the prompt.
With reference to Figure 1, the In-Context prompt
remains the same but without the green-like block
containing the demonstrations.

Few-Shot Learning. The prompt is filled with a
single set of k manually selected examples, used for
all the questions in the test set. The examples were
chosen to maximize diversity and cover different
kinds of queries3.

Multi Query Prompting (DFSL-MQP). As an
alternative to our proposed multi-query generation
(DFSL-MQ), this baseline consists in a naive multi-
query prompting strategy. Essentially, we ask the
model to generate more queries to answer the ques-
tion. To ease the creation of inverted subject-object
queries that can solve triple-flip errors, we extend
the prompt to explicitly ask the model to produce
this kind of SPARQL queries. Answer selection
uses LS and FS heuristics, like with DFSL-MQ.

4.4 Experimental Setup

Implementation. In our experiments, the training
set of each dataset serves as storage for the re-
trieval of the k most similar examples (see the next
paragraph for details on k tuning) with DFSL. Ex-
amples are encoded with a sentence transformer4,
all-mpnet-base-v25, and sim is defined as the co-
sine similarity. Inference is performed via beam
search in all ICL approaches, where b is set to 3,

3The chosen examples and more details are provided in
Appendix B.

4https://www.sbert.net/index.html
5huggingface.co/sentence-transformers/

all-mpnet-base-v2
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and DFSL-MQ, where b is set to 10. All the exper-
iments were run on a cluster of 4 NVIDIA A100
GPUs.

1 3 5 7
k

40

50

60

70

80

F1

QALD-9 Plus WD
QALD-9 DB
QALD-10
LC-QUAD 2.0

Figure 3: Impact of the number of in-context examples
on the four benchmarks.

Number of Few-shot Examples. We first an-
alyzed how the number of few-shot examples k
retrieved by DFSL affects the performance. We
chose among k = {1, 3, 5, 7} and evaluated DFSL
with Llama 3 70B backbone on the four datasets.
The results shown in Figure 3 suggest that values
of k greater than one perform comparably well
on smaller benchmarks, while on LC-QUAD 2.0,
where there are about 25 thousands examples as
storage, increasing k seems to be beneficial. This
may be due to the increased likelihood of finding
similar examples in larger datasets as k grows. We
set k = 5 for all the forthcoming experiments,
which is a good trade-off across all the datasets.

Prompt. The prompt illustrated in Figure 1 con-
stitutes the default template in our experimenta-
tions. However, slight variations are required in
certain cases. For example, when running experi-
ments on DBpedia knowledge graph, we replace
the Wikidata reference with DBpedia in the first
text segment. When we study the absence of gold
information instead, we remove all the references
to gold entities/relations (according to the ablation)
from the entire prompt. There are no differences in
the prompts layout when running few-shot-learning
baseline experiments. In zero-shot learning, only
the in-context examples any reference to them are
removed, all else being equal.

Evaluation metric. We follow a standard F1
score evaluation in KGQA benchmarks. The F1 is
computed between the answer set returned by the
target SPARQL query and the predicted one. When
both the queries return an empty set, we assign an

F1 score of 1. The F1 scores of all the examples
are then averaged.

4.5 Results
In-Context Learning. To measure how ICL tech-
niques affect the generation of SPARQL queries,
we compare Zero-Shot, Few-Shot Learning and
DFSL on three different LLMs. Results are out-
lined in Table 1. Both few-shot learning and
DFSL generally yield substantial gains with re-
spect to zero-shot baseline on all the backbones
and datasets. An exception occurs in QALD-10
with Llama-3. Notably, when comparing DFSL
and Few-shot Learning baseline, we can see how
examples selection approach improves F1 scores by
a large margin in LC-QUAD 2.0, QALD-9 Plus and
QALD-9 DB, with F1 increasing up to 21 absolute
points6. In QALD-10 instead, where the test set
has a different distribution from its training, there
are no significant differences between DFSL and
the standard few-shot learning approach. Indeed,
an approach like DFSL brings little benefits when
the storage only contains unrelated examples.

Backbones Comparison. In terms of backbones,
Llama-3 consistently outperforms both Mixtral and
CodeLlama in zero-shot learning scenario, whereas
in few-shot, results are generally comparable be-
tween Llama-3 and CodeLlama. Such a strong
Llama-3 zero-shot performance may be caused by
some sort of data contamination, however we leave
such an investigation for future works. Overall,
DFSL with CodeLlama achieved the greatest per-
formance with respect to all the other configura-
tions. Therefore, we adopt CodeLlama as our back-
bone in the following experiments.

Impact of Multi-Query Generation. Here we
investigate DFSL-MQ, the multi-query approach
extending DFSL. We evaluate both answer selec-
tion strategies, LS and FS, and compare them
against the plain DFSL and the multi-query prompt-
ing baseline described in Section 4.3. All the
results are outlined in Table 2. Having multiple
queries is not necessarily beneficial. Indeed, the
multi-query prompting baseline under-performs
in three datasets out of four with respect to (sin-
gle query) DFSL, regardless of the answer selec-
tion method adopted. On the contrary, DFSL-MQ
proves to positively increase results. Both Largest
Set and First Set heuristics are effective when the

6Some qualitative examples illustrate the benefits of DFSL
over few-shot learning in Appendix A (see Table 6).
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Approach QALD-9 Plus QALD-10 LC-QUAD 2.0 QALD-9 DB

Plain Question 0.08 0.02 12.00 16.42
BART (Banerjee et al., 2022) - - 64.00 -
PGN-BERT-BERT (Banerjee et al., 2022) - - 86.00 -
SGPT (Rony et al., 2022) - - 89.04 67.82
TSET-small (Qi et al., 2024) 72.86 47.15 94.00 -
TSET-base (Qi et al., 2024) 75.85 51.37 95.00 -

Zero-shot Learning 45.94 33.36 38.40 66.43
Few-shot Learning 64.49 57.38 64.46 72.67
DFSL 76.59 57.69 85.45 75.14
DFSL-MQ beam FS 84.45 (+8.60) 62.20 (+10.83) 89.10 (-5.90) 77.89 (+10.07)

Table 3: DFSL and ICL approaches vs state-of-the-art fine-tuned models.

hypotheses come from the beams. Furthermore, FS
consistently outperforms LS, even by substantial
margins in QALD-9 DB. This shows that exploiting
the information coming from beam search hypothe-
ses is a promising strategy to obtain more query
candidates.

In-context Learning vs Fine-tuning. Up to this
point, we have assessed In-Context Learning ap-
proaches. In Table 3 instead, we compare them
against state-of-the-art models trained and/or fine-
tuned for specific downstream KGQA datasets.
Without any training, DFSL-MQ outperforms cur-
rent state-of-the-art approaches in three out of four
benchmarks, namely QALD-9 Plus, QALD-10 and
QALD-9 DB, even with the single query DFSL
setup. DFSL-MQ does not obtain state-of-the-art
results in LC-QUAD 2.0, the dataset mostly af-
fected by triple-flip errors. This means that multi-
query generation only alleviates the issue, but does
not solve it entirely.

4.6 Ablation studies

Different Example Encoding. As described in
Section 3.1, to compute the embeddings we con-
catenated the textual input made of the question
and its list of entities and relations. Here, we gauge
the impact of this additional information on DFSL
performance. In Figure 2 we compare it, with a
variant where only the natural language question
q is embedded, without any additional data con-
catenated. The evaluation carried out in all the
benchmarks and with all the backbones, demon-
strates that such information improves the quality
of the generated queries.

Absence of gold information. In KGQA, text-
to-SPARQL generation usually relies not only on
the question itself, but also on entities and relations
associated to it. Here we assess DFSL when ei-

QALD 9 DB QALD 9 Plus

DFSL 75.14 76.59
w/o Rq 56.62 49.47
w/o Eq 60.92 31.83
w/o Eq, Rq 49.59 26.16

Table 4: DFSL in the absence of entities and/or rela-
tions.

ther the entities Eq or the relations Rq, or both are
missing. The information is removed throughout
the entire process. For example, when removing
entities, we discard them from both the storage and
the prompt. Even the embeddings for the retrieval
are computed by encoding an input without any en-
tity concatenated in q, i.e. becoming q = [q,Rq].
We report this on both Wikidata and DBpedia KGs.
Results outlined in Table 4, clearly show how the
knowledge about entities and the relations is es-
sential for generating the query, indeed without
performance drop significantly. Nonetheless, even
in the case where no information is given (DFSL
w/o Eq,Rq), the presence of dynamic demonstra-
tions drastically help, yielding respectively a 33+
and 25+ absolute F1 increase compared to plain
question baseline in Table 3.

5 Conclusion

In this paper, we investigated the use of out-of-the-
box Large Language Models for text-to-SPARQL
generation. We carried out an extensive evalua-
tion of several backbones and configurations on
four KGQA benchmarks. By leveraging differ-
ent In-Context Learning (ICL) approaches, we
have shown that LLMs can effectively generate
SPARQL queries. When demonstrations similar
to the input question are injected into the prompt,
LLMs achieve performance exceeding state-of-the-
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art models fine-tuned on the downstream task. The
generation of multiple SPARQL query hypotheses
from beam search candidates enhances the perfor-
mance further, even with a simple query selection
criterion.

Future work will focus on extending the investi-
gation to multiple languages and (possibly private)
KGs.

Limitations

We recognize some limitations in our work. Our ex-
periments are all on English-based datasets, where
notoriously LLMs are better performing. More-
over, the massive pre-training of those LLMs on a
vast portion of the Web, may expose those models
to unintended data contamination, a phenomenon
already observed in similar domains (Ranaldi et al.,
2024). Experiments only focused on LLMs with
large number of parameters, without investigating
the behaviour of smaller models. To encode exam-
ples, we limited the investigation to what kind of
text to encode (just the question, or the question
and its entities and relations), without exploring
different embedding models, similarity criteria or
other input concatenation strategies. We leave these
investigations to future work.
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A Qualitative Analysis

In this appendix we provide some qualitative analy-
ses of DFSL and DFSL-MQ. First of all, we report
some examples in Table 6 that highlight the bene-
fits from introducing similar examples with DFSL
with respect to standard few-shot learning approach.
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Then, we show some examples in Table 7 where the
multi-query approach solves triple-flip errors. In
Table 5 instead, we showcase errors caused by em-
ploying LS answer selection heuristic. Notably, by
choosing larger sets, LS sometimes selects queries
that are often relegated to latter positions in the
beam hypotheses, which tend to be more general,
thus more prone to returning a greater number of
results.

B Few-shot Learning Examples

We report in Figure 4 the examples selected for the
Few-shot learning baseline prompt. The five exam-
ples were chosen to be the most representative of
the training set, including queries of different kind
and structure, such as ASK, COUNT and SELECT.
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Question Target Query Answer
Selection

Predicted Query Beam

What is manufactured
NEC PC-9800 series
whose sector is electron-
ics?

SELECT ?answer WHERE
{ wd:Q183505 wdt:P176
?answer . ?answer
wdt:P452 wd:Q11650 }

LS SELECT ?answer WHERE {
wd:Q183505 wdt:P176 ?X . ?X
wdt:P452 wd:Q11650 . ?X
wdt:P31 ?answer}

7

FS select distinct ?obj where
{ wd:Q183505 wdt:P176 ?obj .
?obj wdt:P452 wd:Q11650 }

4

What is the enthalpy of
vaporization for potas-
sium hydroxide?

select distinct
?answer where {
wd:Q132298 wdt:P2116
?answer}

LS ASK WHERE { wd:Q14982
wdt:P2116 ?obj filter(?obj =
37400) }

3

FS select distinct ?answer
where { wd:Q132298 wdt:P2116
?answer}

1

Which is the rural city
of Fukushim?

SELECT ?answer WHERE
{ wd:Q161176 wdt:P131
?answer . ?answer
wdt:P150 wd:Q1347240}

LS SELECT ?answer WHERE {
wd:Q161176 wdt:P131 ?X . ?X
wdt:P150 ?answer}

3

FS SELECT ?answer WHERE {
wd:Q161176 wdt:P131 ?answer .
?answer wdt:P150 wd:Q1347240}

1

Table 5: Qualitative comparison between different answer selection strategies in DFSL-MQ.
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Question Target Query Approach Predicted Query Similar In-context Ex-
ample

Who is the daughter of
Robert Kennedy mar-
ried to?

SELECT DISTINCT ?uri
WHERE { wd:Q25310
wdt:P40 ?daughter
. ?daughter
wdt:P21 wd:Q6581072 .
?daughter wdt:P26 ?uri
.}

Few-Shot SELECT DISTINCT ?uri WHERE
{ ?uri wdt:P40 wd:Q25310
; wdt:P21 wd:Q6581072 ;
wdt:P26 ?spouse .

-

DFSL SELECT DISTINCT ?uri
WHERE { wd:Q25310 wdt:P40
?child . ?child wdt:P21
wd:Q6581072 . ?child
wdt:P26 ?uri . }

SELECT DISTINCT
?uri WHERE {
wd:Q43247 wdt:P40
?child . ?child
wdt:P26 ?uri . }

Which countries are
connected by the
Rhine?

SELECT DISTINCT ?uri
WHERE { wd:Q584 wdt:P17
?uri . ?uri wdt:P31
wd:Q6256 . }

Few-Shot SELECT DISTINCT ?uri WHERE
{ ?uri wdt:P31 wd:Q6256 ;
wdt:P17 wd:Q584 .}

-

DFSL SELECT DISTINCT ?uri WHERE
{ wd:Q584 wdt:P17 ?uri .
?uri wdt:P31 wd:Q6256 . }

SELECT DIS-
TINCT ?res
WHERE { wd:Q3392
wdt:P885/wdt:P17 ?res .
}

Give me the capitals of
all countries in Africa.

SELECT DISTINCT ?uri
WHERE { ?country
wdt:P31 wd:Q6256
. ?country wdt:P30
wd:Q15 . ?country
wdt:P36 ?uri . }

Few-Shot SELECT DISTINCT ?uri WHERE
{ ?uri wdt:P31 wd:Q6256 ;
wdt:P30 wd:Q15 ; wdt:P36
?capital . }

-

DFSL SELECT DISTINCT ?uri
WHERE { ?country wdt:P31
wd:Q6256 . ?country
wdt:P30 wd:Q15 . ?country
wdt:P36 ?uri . }

SELECT DISTINCT
?uri WHERE {
wd:Q5451 wdt:P17
?country . ?country
wdt:P36 ?uri . }

Table 6: A qualitative comparison between DFSL and Few-shot Learning. Thanks to the similar in-context examples
retrieval, the LLMs generates the correct query.

Question Target Query Approach Predicted Query

Who is the enclave within of
Montreal?

select distinct ?sbj where { ?sbj
wdt:P501 wd:Q340 . ?sbj wdt:P31
wd:Q171441 }

DFSL select distinct ?obj where { wd:Q340
wdt:P501 ?obj . ?obj wdt:P31
wd:Q171441 }

DFSL-MQ select distinct ?sbj where { ?sbj
wdt:P501 wd:Q340 . ?sbj wdt:P31
wd:Q171441 }

The trachea is of what anatomi-
cal branch?

select distinct ?answer where {
?answer wdt:P3261 wd:Q175449}

DFSL select distinct ?answer where {
wd:Q175449 wdt:P3261 ?answer}

DFSL-MQ select distinct ?answer where { ?an
swer wdt:P3261 wd:Q175449}

What revolution caused the de-
struction of the Russian Empire?

select distinct ?obj where {
wd:Q34266 wdt:P770 ?obj . ?obj
wdt:P31 wd:Q10931 }

DFSL select distinct ?sbj where { ?sbj
wdt:P770 wd:Q34266 . ?sbj wdt:P31
wd:Q10931 }

DFSL-MQ select distinct ?obj where {
wd:Q34266 wdt:P770 ?obj . ?obj
wdt:P31 wd:Q10931 }

Table 7: Some triple-flip errors that are solved by DFSL-MQ.
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Examples:

Question: Give me all companies in Munich.

Entities:
http://www.wikidata.org/entity/q4830453 (business), http://www.wikidata.org/entity/q1726 (Munich)

Relations:
http://www.wikidata.org/prop/direct/p279 (subclass of), http://www.wikidata.org/prop/direct/p31 (instance of),
http://www.wikidata.org/prop/direct/p159 (headquarters location)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { ?type wdt:P279*
wd:Q4830453 . ?uri wdt:P31 ?type ; wdt:P159 wd:Q1726 . }
</SPARQL>
###

Question: Was Marc Chagall a jew?

Entities:
http://www.wikidata.org/entity/q93284 (Marc Chagall), http://www.wikidata.org/entity/q7325 (Jewish people)

Relations:
http://www.wikidata.org/prop/direct/p172 (ethnic group)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> ASK WHERE { wd:Q93284 wdt:P172 wd:Q7325 . }
</SPARQL>
###

Question: How many films did Leonardo DiCaprio star in?

Entities:
http://www.wikidata.org/entity/q11424 (film), http://www.wikidata.org/entity/q38111 (Leonardo DiCaprio)

Relations:
http://www.wikidata.org/prop/direct/p31 (instance of), http://www.wikidata.org/prop/direct/p161 (cast member)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> SELECT (COUNT(DISTINCT ?uri) AS ?c) WHERE { ?uri
wdt:P31 wd:Q11424 ; wdt:P161 wd:Q38111 . }
</SPARQL>
###

Question: Give me all libraries established earlier than 1400.

Entities:
http://www.wikidata.org/entity/q7075 (library)

Relations:
http://www.wikidata.org/prop/direct/p31 (instance of), http://www.wikidata.org/prop/direct/p571 (inception)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { ?uri wdt:P31 wd:Q7075
; wdt:P571 ?date . FILTER (YEAR(?date) < 1400 ) }
</SPARQL>
###

Question: Is Christian Bale starring in Batman Begins?

Entities:
http://www.wikidata.org/entity/q166262 (Batman Begins), http://www.wikidata.org/entity/q45772 (Christian Bale)

Relations:
http://www.wikidata.org/prop/direct/p161 (cast member)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> ASK WHERE { wd:Q166262 wdt:P161 wd:Q45772 }
</SPARQL>

Figure 4: Examples injected in the Few-shot-learning prompt.
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