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Abstract
Allocational harms occur when resources or op-
portunities are unfairly withheld from specific
groups. Many proposed bias measures ignore
the discrepancy between predictions, which are
what the proposed methods consider, and de-
cisions that are made as a result of those pre-
dictions. Our work examines the reliability of
current bias metrics in assessing allocational
harms arising from predictions of large lan-
guage models (LLMs). We evaluate their pre-
dictive validity and utility for model selection
across ten LLMs and two allocation tasks. Our
results reveal that commonly-used bias metrics
based on average performance gap and distri-
bution distance fail to reliably capture group
disparities in allocation outcomes. Our work
highlights the need to account for how model
predictions are used in decisions, in particular
in contexts where they are influenced by how
limited resources are allocated.

1 Introduction

The rise of large language models (LLMs) has
raised concerns about potential harms in high-
stakes decisions, such as lending (Fu et al., 2021),
hiring (Bogen and Rieke, 2018), and healthcare
triage (Rajkomar et al., 2018). Recent orders
in Europe (European Parliament, 2024) and the
U.S. (Biden, 2023) have mandated audits to ad-
dress AI risks including bias but left it unclear how
to conduct effective audits.

Several works have conducted bias audits for LLMs
in critical decision-making (Tamkin et al., 2023;
Veldanda et al., 2023; Haim et al., 2024; Armstrong
et al., 2024). Yet, they focus on the predictions
models make, without considering how those pre-
dictions would be used to make decisions. Even
when predictions appear to be unbiased, actual
harms can arise from how they are used to make de-
cisions (Corbett-Davies et al., 2017; Mitchell et al.,
2018; Kleinberg et al., 2018). As shown by Dwork

and Ilvento (2018), evaluating models in isolation
is insufficient to assert fairness without considering
the context in which they will be deployed.

Allocational harms arise if certain groups of people
are deprived of access to resources or opportuni-
ties (Crawford, 2017). In settings where resources
are limited and a model is used to prioritize options,
there is a gap between predictions and decisions. It
is unclear whether prevailing metrics, which mea-
sure bias in prediction outcomes, are sufficient to
measure bias risks in applications where predic-
tions are used for resource allocation.

Contributions. To assess the potential harms of
using LLMs for decision-making, we evaluate how
well commmon bias metrics predict actual dispari-
ties in allocation outcomes. These metrics typically
rely on average performance and distribution dif-
ferences. We conduct this evaluation across ten
LLMs on two allocation tasks (Section 3). Our
findings demonstrate that bias metrics based on pre-
dictions may not reliably reflect true disparities in
outcomes (Section 4.1). In addition, these metrics
may sometimes identify models with greater dispar-
ities as less biased and exhibit inconsistent predic-
tive abilities across different groups (Section 4.2).
As a more reliable alternative, we propose the rank-
biserial correlation, which demonstrates a strong
correlation with actual allocation disparities.

2 Background

Algorithmic bias is commonly described as “skew
that produces a type of harm” towards certain
groups of people (Crawford, 2017). This can be fur-
ther categorized into (i) harms of allocation, which
arise when models perpetuate an unfair distribu-
tion of resources (e.g., healthcare) or opportunities
(e.g., jobs), and (ii) harms of representation, which
include stereotyping and misrepresentation.
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2.1 Measuring Bias

Proposed bias metrics are often formulated
as the average group disparities in prediction
outcomes based on established fairness defini-
tions (Czarnowska et al., 2021). The demographic
parity gap measures the difference in positive pre-
diction rates between groups (Agarwal et al., 2018).
Equal opportunity (EO), a relaxed notion of equal-
ized odds, requires equal positive outcomes for
qualified individuals (Hardt et al., 2016). The EO
gap is thus the true positive rate differences be-
tween groups. For continuous predictions, group
bias can be measured by the average score gap (Si-
cilia and Alikhani, 2023). Several works consider
the group distribution difference in prediction out-
comes using distribution-based metrics such as
Jensen–Shannon divergence (Guo et al., 2022),
Earth Mover’s distance (Huang et al., 2020), and
total variance distance (Liang et al., 2022).

2.2 Allocational Harms

Blodgett et al. (2020) noted that NLP bias studies
often lack clear and consistent motivations of what
system behaviors are considered harmful and who
is harmed and why. Out of thirty papers referencing
allocational harms as motivation, they found only
four actually propose measures or mitigations to
address the harms (De-Arteaga et al., 2019; Zhao
et al., 2020; Romanov et al., 2019; Prost et al.,
2019). Yet, these four papers study gender bias in
occupation classification in a task setup separated
from actual allocational issues in employment.

We find similar cases in subsequent works where
the evaluation setups differ from allocation deci-
sion tasks in practice (Kirk et al., 2021; Lalor et al.,
2022; Shen et al., 2022; Borchers et al., 2022;
Van Aken et al., 2022). Recent work has studied
bias in LLMs used for hiring (Veldanda et al., 2023;
Armstrong et al., 2024; Gaebler et al., 2024) and
other high-stakes decision scenarios (Tamkin et al.,
2023; Haim et al., 2024). The evaluation methods
adopted in these works only consider the average
performance gap, measured from binary outputs or
graded ratings. However, we show that this type of
approach does not reliably reflect disparities in de-
cision outcomes. We only find two closely related
works that attempt to assess bias in resume rank-
ing (Yin et al., 2024; Glazko et al., 2024). Glazko
et al. (2024) evaluate disability bias in GPT-4 by
the model’s average preference difference between
paired resumes. Yin et al. (2024) inquires GPT-

3.5 and 4 to rank a list of candidates and analyze
the frequency of each group being ranked as top-1.
We extend their work with more variations in re-
sumes and conduct experiments on a wide range of
open-weight LLMs.

3 Method

We consider the allocation task as a top-k ranking
problem (Cossock and Zhang, 2006; Clémençon
and Vayatis, 2007), where a fixed quota of k ∈ N
candidates are selected among a pool of n ≫ k
candidates. The goal is to determine a set of “best”
candidates, with no particular emphasis on the rel-
ative order. We follow the LLM ranking method
of Zhuang et al. (2024) and rank the candidates in
descending order of their prediction scores.

3.1 Measuring Allocation Gaps

Bias scores can be viewed as predictions of the
allocation gaps in the following decision outcomes
made with a model. An effective bias metric should
yield a higher score for a group or a model when the
outcome shows greater disparities. Given the de-
cision outcomes of model M and allocation quota
k, we measure allocation gaps using two common
fairness criteria: demographic parity (DP) (Agar-
wal et al., 2018) and equal opportunity (EO) (Hardt
et al., 2016).

The demographic parity gap between group A and
B is defined as:

∆DPM(A,B) = ϕM(A, k)− ϕM(B, k)

where ϕM(X , k) is the proportion of group X ’s
candidates selected.

We compute the equal opportunity gap between
group A and B as follows:

∆EOM(A,B) = ψM(A, k)− ψM(B, k)

where ψM(X , k) is the rate of qualified candidates
in group X being selected.

3.2 Bias Metrics

Proposed bias metrics are often formulated as the
average score or distribution difference between
groups in prediction outcomes (Czarnowska et al.,
2021; Gallegos et al., 2024).

Average Performance Gap computes the average
score difference between group A and B as fol-
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lows (Sicilia and Alikhani, 2023):

δM(A,B) = 1

|A|
∑

a∈A
sa −

1

|B|
∑

b∈B
sb

where sa is the prediction of candidate a ∈ A.

Distribution-Based Metrics measures score dif-
ferences between groups using Jensen–Shannon
Divergence (JSD) (Lin, 1991) and Earth Mover’s
Distance (EMD) (Rubner et al., 1998).

Rank-Biserial Correlation. We consider an alter-
native metric, rank-biserial correlation (RB) (Cure-
ton, 1956), which measures the correlation between
group membership and ranking. It can be computed
as the difference between the ratio of favorable
pairs f and unfavorable pairs u (Kerby, 2014):

RBM(A,B) = f − u (1)

where f is the proportion of candidate pairs that
model M prefers candidates from A over B.

3.3 Tasks

We evaluate settings where a model predicts the
likelihood of a candidate match based on a de-
scription of an ideal candidate’s qualifications. Ap-
pendix A provide further task details.

Resume Screening. Given a resume, the model
evaluates a candidate’s fit for a job position and
outputs {No,Yes}. We use four job positions
from real job listings (Yin et al., 2024). We
use GPT-3.5 (OpenAI, 2024) to generate six re-
sumes per position with varied hiring chances
(high, medium, low), where high indicates qual-
ified. Each candidate is represented by a first
and last name on the resume. Each candi-
date pool includes one candidate sampled from
each of the eight groups: {Female,Male} ×
{White,Black,Asian,Hispanic}.

Essay Grading. The model is asked to rate each
essay on a scale of [1, 5]. We use the International
Corpus Network of Asian Learners of English (IC-
NALE) (Ishikawa, 2013), which includes English
essays written by second-language learners (L2)
and first-language speakers (L1) on two topics. We
consider qualified essays with a rating above aver-
age (≥ the 50th percentile) (Ishikawa, 2024). Each
candidate pool includes ten essays sampled from
eleven groups: L1 and ten L2 countries.

Resume screening Essay grading
Metric ∆DP ∆EO ∆DP ∆EO

JSD -0.19 0.48 0.79 −0.19*

EMD -0.09* −0.06* 0.86 0.48
δ 0.13* −0.02* 0.89 0.70

RB 0.86 0.88 0.94 0.89

Table 1: Pearson correlation of bias metrics and allo-
cation gaps. * indicates p-value > 0.01 with a 95%
confidence level.

3.4 Experimental Setup
We compute a bias score for each group A ∈ G \B
in comparison to a reference group B (white males
for resume screening and L1 speakers for essay
grading). For each job position or essay topic, a
total of |G| − 1 scores are produced for a model
M. We evaluate the predictive validity by compar-
ing the resulting measurements to allocation gaps
measured from candidate selection outcomes, sim-
ulated over multiple rounds. As JSD and EMD are
non-directional, we compare them to the absolute
value of ∆DP and ∆EO.

Models. We use ten LLMs with varied sizes and
architectures: LLAMA2 CHAT (7B, 13B) (Touvron
et al., 2023), LLAMA3 INSTRUCT (8B, 70B) (Meta,
2024), GEMMA IT (2B, 7B) (Gemma Team et al.,
2024), STARLINGLM 7B (Zhu et al., 2023), STA-
BLELM ZEPHYR 3B (Stability AI), STABLELM2
ZEPHYR 1.6B (Bellagente et al., 2024), and
TINYLLAMA CHAT 1.1B (Zhang et al., 2024).

4 Results

This section shows results comparing bias metrics
and allocation gaps in candidate selection outcomes
based on LLM predictions. We first present the
overall predictive validity, then the utility for model
selection and informing bias risks.

4.1 Predictive Validity
Table 1 reports the Pearson correlation of bias met-
ric scores and allocation gaps for each task. It
shows that δ, JSD, and EMD do not predict al-
locational harms well. However, RB exhibits a
strong correlation for both tasks, with a correla-
tion ≥ 0.86. EMD and δ show no correlation with
∆DP and ∆EO for the resume screening task. We
find most metrics show a reasonable correlation
for essay grading, likely due to a more balanced
prediction score distribution. (see Section 4.3).

36



−0.05 0 0.05
−0.2

−0.1

0

0.1

0.2

−0.2 0 0.2
−0.2

−0.1

0

0.1

0.2

δ RB

Δ
D
P

[Gemma-2B]
White F, retail

[Gemma-7B]
Black F, 

financial_analyst

0 0.01 0.02 0.03 0.04

0

0.05

0.1

0.15

0 0.02 0.04

0

0.05

0.1

0.15

JSD EMD

|Δ
D
P|

Figure 1: Measurement comparison between bias metrics and DP gap for resume screening, with k = 1. Each point
indicates a score measured for a group A ∈ G \ B, based on a model’s predictions for a job position.

Figure 1 shows the data points for computing the
correlations with ∆DP for resume screening (sec-
ond column in Table 1). Each point is computed by
a model’s predictions for a non-reference group and
a job position. Many scores of δ exhibit close to
zero bias with respect to white males, indicated by
points along the y-axis where δ = 0. E.g., GEMMA

IT 2B for white females and the retail position.
Yet, some of them show a larger allocation gap
than ones with a higher δ.

4.2 Metric Utility for Model Selection
When a metric is used in a model audit, it could be
used to determine if a model meets some required
threshold scores or decide between a set of candi-
date models. We assume a simplified setting where
a metric is used to compare candidate models’ per-
formance on some desired fairness properties, rank-
ing them by their metric scores. We evaluate the
metric utility for model selection by comparing the
fairness ranking to an ideal ranking. The models
are ranked in ascending order of their overall bias
scores, aggregated by the root mean square across
groups. Likewise, we construct the ideal rankings
based on the model’s overall allocation gap.

Suppose a bias metric produces a fairness ranking
τ , and the ideal ranking is σ. We compute the
normalized discounted cumulative gain (NDCG)
following Järvelin and Kekäläinen (2002) as:

NDCG@N(τ) =
DCG@N(τ)

DCG@N(σ)

where N is the rank cutoff. DCG emphasizes the
“best” ideal models and imposes a penalty when
they are low-ranked.

Figure 2 reports the average NDCG based on fair-
ness criteria ∆DP with quota k = 2 for each task.
RB consistently performs better than other bias
metrics with an average NDCG@10 ≥ 0.95 on
both tasks. NDCG@1 indicates how close the top-
1 model is to the top of the ideal ranking.

1 2 3 4 5 6 7 8 9 10

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
0.8

0.85

0.9

0.95

1
δ
JSD
RB

Rank position N Rank position N

A
vg

 N
D

C
G

@
N

Resume Screening (k=2) Essay Grading (k=2)

Figure 2: Average NDCG@N in ranking model fair-
ness, comparing to ideal rankings based on ∆DP. EMD
yields the same results as δ.
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Figure 3: Model fairness ranking for the resume screen-
ing task with selection quota k = 2. The true rank order
is based on ∆DP. Existing bias metrics often rank more
biased models as more “fair”.

In Figure 3, we further compare the fairness rank-
ing of models among bias metrics for the resume
screening task. The ranking of RB aligns more
closely with the ranking based on ∆DP, whereas
other bias metrics tend to rank more biased mod-
els higher. This demonstrates the risk of using the
prevailing metrics for model audits, whereas the
alternative metric RB may help minimize potential
harm. We provide the ranking per job position in
Appendix B.2.

Predicting bias across groups. Figure 4 shows
the correlation of bias metric and allocation gap
measured by group across all models. Distribution-
based metrics and δ show significant variations
in their ability to predict allocation gaps in resume
screening outcomes. In some cases, they even show
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Figure 5: Difference between bias scores and ∆DP,
after normalizing to [0, 1], across groups with k = 2. A
negative difference indicates ∆DP is underestimated.

a positive correlation for some groups while ex-
hibiting a negative correlation for the other groups.
In contrast, RB exhibits consistent performance
for different groups. This suggests that common
bias metrics could be “biased” in informing risks
of allocational harms to varied groups of people.

To illustrate the impacts of using a metric, we mea-
sure the difference between the bias score and al-
location gap for each non-reference group after
normalizing the scores to [0, 1]. In Figure 5, all
metrics except RB underestimate the degree of neg-
ative impact on white females. The negative impact
on Hispanic males is overestimated by δ and EMD
but underestimated by JSD.

4.3 Analysis

Figure 6 depicts the skewness and kurtosis of the
prediction score distributions produced by all ten
models for both tasks. The essay grading score
distributions show a skewness closer to 0, while the
resume screening score distributions are highly left-
skewed. On the other hand, the resume screening
task presents more positive excess kurtosis, mean-
ing that the distributions are heavy-tailed, with
more extreme outliers. (A standard normal dis-
tribution has a kurtosis of 3.) This may explain
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−2 0 5 10 15 20 25 30 36 80 150 200

essay grading resume screening

Skewness

Kurtosis

Figure 6: Skewness and kurtosis of all ten models’ pre-
diction score distribution per task. Each point represents
the score distribution produced by a model for a given
job position or essay topic.

why the traditional bias metrics show a better corre-
lation with the allocation gaps on the essay grading
task than the resume screening task. In addition,
the traditional bias metrics may fail to capture allo-
cational harms when the model’s prediction scores
do not follow a normal distribution.

5 Discussion

Our findings reveal that common bias metrics
for evaluating LLMs do not capture allocational
harm. While final decisions may depend on human
decision-makers or other external factors, a reliable
measurement is crucial for estimating the potential
risks of a model. In fact, in settings of unfamil-
iar domains and objective tasks, humans tend to
rely more on model predictions (Yeomans et al.,
2019; Chiang and Yin, 2021; Passi and Vorvoreanu,
2022). Green and Chen (2019, 2021) have shown
that algorithmic risk assessments not only alter hu-
man decisions but exacerbate racial disparities.

The goal of an audit is to determine if it is ac-
ceptable to deploy a model. Although audits will
always be imperfect since they require making pre-
dictions about how the model will behave on future
data, it is essential that we develop methods for au-
diting models that reliably measure potential harms
in the way models will be used in deployment. Our
results demonstrate that metrics too far removed
from how a model will be used may fail to ade-
quately measure how well the model will perform
as deployed.
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A Experimental Setup

Our code implementation for reproducing the experiments: https://github.com/hannahxchen/
allocational-harm-eval

A.1 Task Setup

Resume Screening. We construct a dataset that includes instructions and resume templates based on
descriptions of four real job positions (software engineer, HR specialist, financial analyst, and retail)
used in Bloomberg’s bias audit study (Yin et al., 2024). We find Bloomberg’s templates are mostly
rephrased versions of an identical profile for the same job position. Thus, we prompted GPT-3.5 (OpenAI,
2024) to generate resume templates for each job description. Each template includes sections for work
experience, education, and skills, with real company and university names manually verified. Each group
is represented by 100 common first and last names based on data from the Social Security Administration
and voter files in US (Rosenman et al., 2023).

Essay Grading. ICNALE consists of 5.6K English essays written by 2.6K second language (L2) college
students from 10 Asian countries and 200 first language (L1) speakers (Ishikawa, 2013). 140 essays
include ratings (0∼100) from L1 English speakers. Each writer was asked to write opinion essays on two
topics:

1. PTJ: It is important for college students to have a part-time job.

2. SMK: Smoking should be completely banned at all the restaurants in the country.

The L2 learner countries include Hong Kong (HKG), Pakistan (PAK), Philippines (PHL), Singapore
(SIN), China (CHN), Indonesia (IDN), Japan (JPN), Korea (KOR), Thailand (THA), and Taiwan (TWN).

Task Prediction
Outcome Groups (G) Ref. group Pool size max k Rounds

Resume Screening Good fit for
job position

{Female,Male}×
{White,Black,Asian,Hispanic} White Male 8 5 1800

Essay Grading Essay’s rating HKG, PAK, PHL, SIN, CHN, IDN,
JPN, KOR, THA, TWN, ENS ENS 10 5 1200

Table 2: Parameters used for simulating candidate selection.

A.2 LLM Ranking
This section explains the method for computing the ranking scores.

Suppose Y is a set of relevance labels, where each y ∈ Y corresponds to a relevance value γy. Given the
instruction q and candidate a, the model M predicts the probability of each label in Y . The ranking score
of candidate a is defined as (Zhuang et al., 2024):

scoreq,M(a) =
∑

y∈Y
Pn(Mq(a), y) · γy

where Pn is the normalized output probability of y over Y . The score is assumed to encode the relevance
or fitness of candidate a. For the resume screening task, we consider Y = {No,Yes} with γy ∈ {0, 1}.
For the essay grading task, the relevance labels and values are on a rating scale of [1, 5].
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B Additional Results

B.1 Predictive Validity
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Figure 7: Bias metrics (x-axis) and allocation gaps (y-axis) for RESUME SCREENING, with quota k = 1.
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Figure 8: Bias metrics (x-axis) and allocation gaps (y-axis) for ESSAY GRADING, with quota k = 1.

B.2 Metric Utility
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Figure 9: Bias metric and allocation gap correlation by group in essay grading with k = 2.
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Figure 11: Fairness ranking of models for each resume screening job position with selection quota k = 2.

B.3 Varying allocation quota

We test how robust the metrics are to higher values of k. Figure 12 shows the Pearson correlation between
bias metrics and ∆DP as k increases from 1 to 5. Most bias metrics show increasing correlation with
∆DP as k increases and plateaus when k ≃ 3. The average performance gap remains poorly correlated
(within the range between 0.13 to 0.19) across all k values for the resume screening task. The shapes of
the curves for the essay grading task are similar—all of the metrics perform better for this task, but RB is
consistently the best predictor.
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Figure 12: Pearson correlation between bias metrics and ∆DP with varying allocation quota k.

C Prompts

System You are an HR assistance bot. You help hiring managers find the right candidate. Based
on the following job description, judge whether the candidate is a good fit for the position. Respond
succinctly with only "Yes" or "No". Job description: <job_description>
User Candidate: <resume>\nQuestion: Is this candidate a good fit for the job position? Assistant
Answer:
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Figure 13: Prompts used in the resume screening task.

System You are an essay grading assistant. Your task is to assess an opinion essay on whether
<statement>. The essay should use reasons and specific details to support the stated opinion.
Evaluate and grade the essay against the following scoring criteria on a scale from 1 to 5: Score
5: reasonably consistent mastery with occasional errors, effectively developing ideas with strong
critical thinking and organization.
Score 4: adequate mastery with lapses in quality, competently developing ideas with sufficient
critical thinking and some organizational coherence.
Score 3: developing mastery with notable weaknesses, inconsistently developing ideas with limited
critical thinking and organizational coherence.
Score 2: little mastery with significant flaws, vaguely developing ideas with weak critical thinking
and poor organization.
Score 1: very little or no mastery, failing to develop viable ideas with severe disorganization and
pervasive errors
User Essay: <essay>\nRespond succinctly with only the number of the score for this essay.
Assistant Score:

Figure 14: Prompts used in the essay grading task.
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