
Proceedings of the Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2025), pages 87–108
May 4, 2025 ©2025 Association for Computational Linguistics

Multi-Agent Based Character Simulation for Story Writing

Tian Yu →, Ken Shi →, Zixin Zhao and Gerald Penn
Department of Computer Science

University of Toronto
CANADA

{tianyu99,kenshi,zzhao1,gpenn}@cs.toronto.edu

Abstract

This work proposes a novel multi-agent story-
generation system that writes stories from a
narrative plan. Traditional approaches tend
to generate a section of text directly from its
outline. Our system, by contrast, divides this
elaboration process into role-play and rewrite
steps, where the former step enacts the story in
chronological order with LLM-backed charac-
ter agents, and the latter step refines the role-
play result to align with a narrative plan. We
show that the stories produced by our system
are preferable to two other LLM-based story-
generation approaches. We attribute this ad-
vancement to the benefits of incorporating a
character-based simulation strategy.

1 Introduction

Recent advancements in Large Language Models
(LLMs) have significantly improved text coherence
and fluency. Researchers are now implementing
automatic story generation and human-AI writing
tasks using LLMs (Lee et al., 2024; Alabdulka-
rim et al., 2021). Traditionally, story generation
involved a planning stage to sequence events, fol-
lowed by a generation stage to elaborate these
events into scenes (Alhussain and Azmi, 2021a).
Approaches like IPOCL (Riedl and Young, 2010)
treat narrative planning as a search problem using
character or author goals as guides (Dehn, 1981;
Meehan, 2013). Recent work proposes using LLMs
as planning engines, such as Agents’ Room (Huot
et al., 2024), which uses multi-agent collaboration
for narrative planning, and Dramatron (Mirowski
et al., 2023), which modularizes the generation pro-
cess in a manner similar to screenplay writing. Re-
search shows that writers prefer modularizing story
generation into smaller components, as it allows
control over which parts of the process are auto-
mated (Lee et al., 2024; Reza et al., 2024; Mirowski
et al., 2023).

→Equal contribution

Despite the advances in automatic story gen-
eration, there remain many problems with LLM-
generated stories. One is a lack of interest due
to their linear nature (Alabdulkarim et al., 2021).
Within narrative theory, stories can be separated
into chronological time (fabula) and story time
(syuzhet), where in many cases, stories can become
more interesting when told in non-linear time (Live-
ley, 2019). There is, however, a lack of work in
automatic story generation that looks at non-linear
story generation, partially due to the risk of intro-
ducing inconsistencies and plot holes. Therefore,
in our work, we propose generating a story through
its fabula before re-organizing it into its syuzhet.

Our system aims to develop tools that integrate
seamlessly into writers’ workflows. We draw
inspiration from hierarchical scriptwriting tech-
niques (Mirowski et al., 2023) and adapt them for
narrative story generation. By modularizing the
writing process, we enhance control and facilitate
human-LLM collaboration. Our method involves
two steps (Figure 1): role play and rewrite. In the
role play step, agents simulate scenes by acting
as characters. In the rewrite step, the generated
content is refined into story text. In the case of
human-ai collaborative writing, during the role play
step, the writers can act as an independent agent
and role-play a character alongside LLM agents to
simulate the scene. In the rewrite step, the writers
can actively edit the intermediate scene content or
use the generated content as inspiration to write
their story.

Our work proposes a novel way to integrate the
concepts of fabula and syuzhet into a cohesive
story-generation process. Additionally, we present
a novel multi-agent role-play approach by intro-
ducing a rewrite step. To evaluate our method,
we compare stories generated by our system with
two baseline methods using LLM-based automated
evaluation, showing improvements in all aspects of
story quality.

87

r---,

Director Agent

Character Agents

Oc
0 0

Next Speaker: Earl

Command: Begin gossiping
the mysterious stranger
near Sizzlin' Charlie's

Earl leaned heavily on his
wooden cane, the worn handle
fitting snugly into his
calloused hand ...
"Y'all hear 'bout that stranger
pokin' around near Sizzlin'
Charlie's?" Earl drawled, ...

0 --
Earl Buddy Joe Don

I
I
I
I
I
I
I
I
I

about I
seen I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L---J

Roleplay Step

►

r-------------------------------------,

Presentation
Outline (Op)

The three old
timers gather at
the small Country
Mart ... gossip
about a mysterious
st ranger ...

Conversation History
Earl: Earl leaned heavily on his wooden cane,
the worn handle fitting snugly into his
calloused hand ...
Buddy: Buddy listened intently "A fella don't
just end up in the hospital for no reason,
especially one that's been sneakin' 'round
like he has ...

V

Scene Content

00

rewrite dialog
O as scene

In the small confines of the Country Mart, ... three old men had
gathered once again ... Earl, seated on one of the rust orange vinyl
chairs ... nv'all hear about that stranger pokin' around near
Sizzlin' Charlie's?"
The other two men, Buddy and Joe Don, were equally settled into
their morning routine ... "A stranger sneakin' 'round like he's got
somethin' to hide ...

L-------------------------------------J

Rewrite Step

Figure 1: Overview of our character-simulation-based story-writing system, with details omitted. We break down
the task of writing a story from a plan into two steps: role-play and rewrite. In the role-play step, the Director Agent
will select and command Character Agents to respond, following the chronological outline of a scene (oc). In the
rewrite step, we prompt LLMs to write the actual content of the scene using the role-play results, along with the
presentation outline (op) of that scene. The example is from train-000 in the Tell Me A Story dataset. Refer to
Section 3.2 for details.

2 Related Work

2.1 Simulating Characters with LLMs

Characters are essential to many narrative stories as
they often drive the plot and bring the narrative to
life (LaPlante, 2007). Creating interesting and be-
lievable characters using LLMs has been explored
by many prior papers (Li et al., 2023; Pichlmair
et al., 2024; Wang et al., 2024b; Shao et al., 2023;
Magee et al., 2024). Some previous work has fo-
cused on simulating believable character behaviour
by introducing different aspects within character
prompts such as “ego/superego” roles to simulate
internal conflict (Magee et al., 2024) or behaviour
trajectories using psychological grounding (Wang
et al., 2024a). Other work has proposed using per-
sonality traits, routines, emotions, and social in-
teractions (Zhao et al., 2024; Wang et al., 2024b;
Yang et al., 2024; Normoyle et al., 2024). Over-
all, this work has found that LLMs can simulate
nuanced and believable characters. Moreover, past
work, such as Park et al. (Park et al., 2023), has also
shown the viability of using LLMs to create gener-
ative agents that can produce believable individual
and emergent social behaviours with memories of
past interactions. Therefore, in our work, we hope
to use LLMs to create believable characters within
narrative stories.

2.2 Automatic Story Generation

Interesting characters alone do not make com-
pelling stories; how they are revealed and evolve

through events turns conversations into narratives.
Early story generation models focused on plot us-
ing structural models from narrative theories like
Propp’s functions (Propp, 1968), or planning-based
models guided by predefined goals, e.g., author
goals (Dehn, 1981) or character goals (Meehan,
2013). These models often used planning agents to
guide narrative generation, combining author and
character goals to inform autonomous agents (Si
et al., 2005). Social interactions among virtual
agents can drive narrative diversity and emergent
storytelling, avoiding rigid plot structures (Teuten-
berg and Porteous, 2013; Figueiredo et al., 2008;
Porteous and Lindsay, 2019). Multi-agent ap-
proaches, as elsewhere, are preferred for their
adaptability and control compared to monolithic
systems.

Recent approaches use Seq2Seq models or
LLMs to generate coherent stories from start to fin-
ish (Alhussain and Azmi, 2021a). Early Seq2Seq
models struggled with coherence and consistency,
but LLMs improved this, though long stories still
lose cohesion due to context-window limits. To
solve this, past work has proposed using multiple
LLMs collaboratively (Venkatraman et al., 2024) or
hierarchical story generation, separating plot plan-
ning from text generation (Fan et al., 2018; Yao
et al., 2019). Dramatron (Mirowski et al., 2023)
exemplifies this by modularizing story generation
for screenplays, defining components like loglines
(i.e. story premise), characters, plot, and locations,
then generating dialogue. Furthermore, Dramatron

88

was evaluated by professional screenplay writers
who found that modularization allowed them to
take over components of the generation and more
control over the results.

Combining agent-based approaches with hierar-
chical story generation allows for user-controllable
goals within LLM-based generation. For exam-
ple, IBSEN (Han et al., 2024) uses a director-actor
framework for script generation, while de Lima
et al. (2022) combine multi-agent planning for inter-
active storytelling. DramaEngine(Pichlmair et al.,
2024) and Agents’ Room (Huot et al., 2024) use
multi-agent workflows for narrative generation. De-
spite the promise of agent-based approaches, much
work has focused on screenplays. Our work adapts
hierarchical scriptwriting techniques (Mirowski
et al., 2023; Han et al., 2024) to narrative story
generation, modularizing the process to enhance
control and facilitate human-LLM collaboration.

2.3 Automatic Story Evaluation

There are several well-established automatic
text evaluation measures, such as perplex-
ity (Brown et al., 1992), ROUGE (Lin, 2004), and
BERTScore (Zhang* et al., 2020). These do not
capture creativity, narrative structure, or coherence
at the story level, however. They either reflect how
’typical’ the text is or are reference-dependent, fail-
ing to measure aspects like creativity or storyline
structure unless reference texts are carefully de-
signed.

Recent work has attempted to evaluate stories
with LLMs, often endorsing pairwise comparison.
For example, Liusie et al. (2024) discussed using
pairwise comparison for LLM evaluation. Sub-
sequently, Liu et al. (2024b) found that pairwise
comparison by LLMs aligns more closely with hu-
man evaluators than other methods. Additionally,
Zheng et al. (2023) assessed the validity of using
LLM evaluators through established benchmarks.
In this work, we will also use LLM evaluators
through pairwise comparison to assess the quality
of generated stories, drawing inspiration from the
LLM evaluator setup proposed by Agents’ Room.
It is worth noting that LLMs can suffer from the
“Lost in the middle” effect (Liu et al., 2024a) when
handling longer prompts. Therefore, we will im-
plement specific measures to minimize this effect
when using LLMs as evaluators.

3 Methodology

This section describes our approach to the outline-
based creative writing task. We first provide an
overview of our breakdown of the problem and
then describe the individual components.

3.1 The Overall Task

In our work, we focus on the writing phase, where
a narrative plan has already been provided for us
to write the story. This approach is also used in
other single and multi-agent frameworks. For ex-
ample, Mirowski et al. (2023) used a hierarchical
approach to generating screenplay dialogues based
on a planned-scene outline, character information,
and location details. Similarly, Huot et al. (2024)
created a plan with multiple agents, each specializ-
ing in areas like character planning, and used the
combined plan to write the story.

Our system draws inspiration from the clas-
sic narrative distinction between fabula and
syuzhet (Alhussain and Azmi, 2021b). The fab-
ula represents the raw, chronological sequence of
events —– the underlying narrative as it unfolds in
the story world. In our framework, the role-play
step serves to develop this fabula, where character
agents simulate the provided narrative plan in its
chronological order.

Following this, the rewrite step takes the interme-
diate result and reshapes it into its final form, anal-
ogous to the syuzhet. This phase reorganizes and
refines the content to align with the original plan.
It optimizes the storytelling experience, much like
how a narrative’s presentation order can heighten
dramatic effect and audience engagement.

3.2 Implementation Detail

3.2.1 The Definition and Agents
Our system takes in a plan and returns the actual
story realized. We denote the input plan as Pp,
which specifies the presentation order of scenes,
representing the syuzhet. An input plan consists
of a list of scenes to be written for the story. We
define a scene, labelled S, as the minimum plan
unit in our writing process. The scene includes a
presentation outline (op) detailing a sequence of
events (e), along with location information and the
characters involved. To support character simula-
tion, we define a character as an entity or a group
of minor supporting entities in the story, with their
name, gender, age, narrative role, setup, speaking
characteristics, and character goal.

89

We define two types of agents: the director agent
and the character agent. The director agent, la-
belled D, controls the scene’s development in the
role-playing process. It selects (next_speaker)
and instructs (next_command) individual char-
acter agents. The character agent, labelled A,
responds (get_response) to the director’s com-
mands by considering its goal, physical state, and
memory. These responses are described from a
third-party perspective, providing realistic dialogue
and action descriptions. Both agent types can be
powered by either LLMs or human participants,
enabling effective human-AI collaboration.

3.2.2 The Role-playing Step
While other LLM-based methods for narrative plan
generation (Huot et al., 2024; Mirowski et al., 2023)
rely on one LLM call to generate the content of a
section, we divide the process into two subtasks,
where the role-playing step is the first step.

Unlike RPG games, stories may not follow the
chronological order to describe the events. As such,
the input plan Pp provided by the users may con-
tain two scenes Si and Sj , where Si happens after
Sj chronologically, even though Si should be pre-
sented earlier than Sj in the actual plan. As such,
we define the role-play plan (Pc) consisting of the
scenes from Pp in chronological order representing
the fabula. A separate LLM-based sorting algo-
rithm is used to create Pc from Pp. In this paper,
we assume that for any two scenes Si, Sj → S, Si

cannot overlap Sj in the time domain, meaning
any events in Si will happen all before or all after
the events in Sj . On top of this, another LLM-
based sorting algorithm will generate a chronolog-
ical outline (oc) based on the presentation outline
(op) of the scene and further refine it to be suitable
for subsequence character-based role play and en-
sure that events within scenes are correctly ordered.
Both LLM prompts are detailed in Appendix B.1.1,
Prompt Sort Scenes, and Appendix B.1.2, Prompt
Chronological Outline Creation, respectively.

After creating Pc and oc, we obtain the full
chronological development of the events in the
whole story. Then, for each scene Si → Pc, we
use algorithm 1 to role-play that scene. The other
input, M , to the algorithm, is an accumulated map
with the key being the name of the character agent
and the value being the agent instance. We will
re-use the same character agent, if it has already
been created, to update the accumulated memory
and, whenever it is involved, the physical state.

The role-playing logic for each scene is the same,
where a group chat manager will be initialized for
two tasks:

1. Determining whether the role-playing game
has covered oc, and terminate if so.

2. Guiding the role-playing game by following
oc, selecting the proper character agent to
speak to, and providing them with the com-
mand of action.

When a character agent is selected, it first updates
its internal states, including memory and physical
state. In our implementation, we use a text-based
memory and physical-state system, which updates
based on the new chat history that the agent has
not seen before. The agent then responds based
on the role-playing game’s history for consistency,
the Director Agent’s command, its memory and
physical state, and its scene-level goal. This ap-
proach balances the agent/character goal (Riedl
and Young, 2010), provided within the plan, with
the author goal (Riedl, 2009), represented by the
director agent’s command. We instruct agents to
respond in a third-person perspective to create re-
alistic character dialogue and action descriptions,
catering to the story-generation use case. Please re-
fer to Appendix B.1 for the relevant prompts used.

3.2.3 The Rewrite Step
The role-playing output may not produce a perfect
story, however, because it only replicates the fab-
ula as part of the story world. A story should be
produced by viewing the fabula from a specific an-
gle (Swartjes and Theune, 2006), following Pp, the
presentation order of the initially planned scenes.
As mentioned in Section 3.2.2, our role-playing re-
sult follows oc for the sequence of events in a scene
and Pc for the sequence of scenes. This means
oc ↑= op and Pc ↑= Pp are possible.

To address this, we implement a re-writing algo-
rithm. For each scene, we prompt LLMs to write
the scene content based on the presentation out-
line op, referencing the corresponding simulation
results in the role-play step for character dialogues
and actions. We also generate the scene content
sequentially, following the presentation order spec-
ified in the input plan Pp. This modular approach
allows authors to revise the content of each scene
before it is utilized in the subsequent scene genera-
tion. The prompts used for this step are available
in Appendix B.2.

90

Algorithm 1 Scene-level role-playing.

Require: Scene Si,
Character Agents Map M

1: Init Chat History, H ↓ [] ω H will store all messages in the session
2: Init Director Agent D.init()
3: while not D.should_terminate(Si, H) do ω Check if the scene should end
4: Ai ↓ D.next_speaker(Si, H) ω The director selects the next character agent
5: if Ai.name →M then
6: Ai ↓M.get(Ai.name) ω If this agent exists, retrieve the agent
7: else
8: M.add(Ai.name, Ai) ω If this agent is new, add it to the map
9: end if

10: Cj ↓ D.next_command(Si, H) ω The director selects the next command
11: Ai.update_state(H) ω The chosen agent updates its internal memory
12: hi ↓ Ai.get_response(H, Cj) ω The agent generates a response
13: H.append(hi) ω Add the agent’s response to the chat history
14: end while
15: return H ω Return the full history once the scene is complete

Figure 2: Writing prompts from the Tell Me A Story
dataset, clustered into 14 groups using UMAP and k-
means.

4 Experiments

4.1 Dataset

For our dataset, we used Tell Me A Story,1 made
up of complex writing prompts and human-written
stories. This dataset is contains 230 prompts
in total, but upon manual inspection, we found
that many of the prompts differed by only a few
words. Therefore, we first evaluated the num-
ber of unique prompts present in the dataset. To
do this, we first created sentence embeddings us-
ing sBERT (Reimers and Gurevych, 2019), then
reduced the dimensions of the embedding using
UMAP (McInnes et al., 2018) before using k-
means to assign each sentence to a cluster. We

1https://github.com/google-deepmind/tell_me_a_story

tested various numbers of clusters and found that
the number that fit the data best was 14, shown in
Figure 2. After determining the number of writing
prompts clusters, we manually looked through the
data and selected 28 representative prompts so that
we would have coverage over the range of stories
that could be generated with this dataset.

4.2 Experiment Setup
In this section, we describe our setup for the ex-
periment to prove the validity of our method. We
compare our approach with two approaches:

1. The single-agent-based approach, where Dra-
matron (Mirowski et al., 2023) is the baseline,

2. The multi-agent-based approach, where
Agents’ Room (Huot et al., 2024) is the base-
line.

At a high level, as shown in Figure 3, our ex-
periment can be treated as a back-translation pro-
cess between the gold story and the synthetic plan,
where we first generate the plan using a teacher
LLM model and then use each system to write the
final story, given the plan created.

4.2.1 Plan Synthesis
We can treat each of Dramatron’s and Agents’
Room’s story-writing approaches as a sequence of
planning and writing tasks. By the writing portion
of Dramatron, we intend to refer to the dialogue

91

!"#"$%&"'()&*$+

Figure 3: Experimental overview: given the writing prompt and the gold story, we first generate a synthetic plan
using a Teacher LLM. The plan is then used to generate the final story.

generation step that follows the hierarchical gen-
eration process. We consider the writing portion
of the Agents’ Room approach following what is
mentioned in their paper. Since a plan is required
for all three systems, including ours, we applied a
similar approach as in previous work ((Huot et al.,
2024; Schick et al., 2022; Josifoski et al., 2023),
where the expected plan is synthesized to generate
through distilled back-translation.

For the Agents’ Room implementation, we pro-
vide the writing prompt and gold story to a teacher
LLM (O3-mini) to obtain the story’s central con-
flict, characters, setting and plot. We followed
exactly the prompt used in their work to extract the
plan.

For our system, we first prompt the teacher LLM
(O3-mini) to generate all the characters that ap-
peared in the gold story, providing both the writ-
ing prompt and the gold story. We then prompt
the teacher LLM (O3-mini) with the additional
character extracted to obtain the list of scenes that
happened in the gold story, denoted by Pp in Sec-
tion 3.2.2. In addition, we also consider the cen-
tral conflict and setting generated using the same
method as the Agents’ Room part of the plan.

For Dramatron, we share the plan information
with the one generated for our system, as no details
are provided in their work. Specifically, we provide
the place and character information, along with the
sequence op from the Pp extracted.

4.2.2 Writing Task
We defined similar writing tasks for all methods
tested. The LLM used for our experiments was the
GPT-4o model, with the temperature set to 0.9, and
frequency penalty equal to 0.2. We used a zero-
shot prompting strategy for all systems for a fair
comparison. Here, we go into the details of each
method: Agents’ Room (Huot et al., 2024), Drama-
tron (Mirowski et al., 2023), and our method.

First, for the Agents’ Room writing task, we
followed the procedures mentioned in their work,
where five agents are created with the prompt pro-

vided in their paper, each writing a stage of a nar-
rative arc (exposition, rising action, climax, falling
action and resolution). The final story is the five
agents’ output, concatenated sequentially.

For Dramatron, we had to modify their approach
so that we could generate the story scenes rather
than scenes made up of screenplay dialogues. Ad-
ditionally, we removed their few-shot examples,
which would be incomparable if included. Oth-
erwise, we followed the exact implementation for
the prompt as shared in their codebase2 to the best
of our ability and retained the scene-by-scene gen-
eration process. The changed prompts are shown
in Appendix B. As for our method, we used the
approach described in Section 3.2.

4.3 Evaluation Method

In this work, we take inspiration from the auto-
matic evaluation used in Agents’ Room (Huot et al.,
2024) to build an LLM-based evaluator. We chose
to use the same set of criteria that align with Agents’
Room’s LLM-based evaluation. Specifically, we
construct prompts that will evaluate the story in
terms of four criteria, namely, Plot, Creativity, De-
velopment and Language Use.

We provide a template of a prompt that specifies
the above criteria as its aspects, along with a pre-
sentation of the pair of stories to be compared. The
detailed definition of each criterion is written in
the template, which can be found in Appendix B.5.
To align with Agents’ Room’s choice of evaluator
model, we also use Gemini 1.5 Pro.

As mentioned earlier, to ensure the fairness of
the comparison, we evaluate each pair of stories
twice by swapping the presentation order of the
stories within the evaluation prompt.

For each of the 5 criteria (overall is a separate
criterion, as we explicitly ask the evaluator to gen-
erate an“overall” decision), c, we perform evalu-
ations on all pairs of stories that are of the same
writing prompt across all pairs of systems to ob-

2https://github.com/google-deepmind/dramatron

92

2.397
2.477

1.862

2.397
2.251

0.802 0.758

0.974
0.802

0.888

0.520 0.533 0.551 0.520 0.501

Overall Plot Creativity Development Language Use
0

0.5

1

1.5

2

2.5

Ours AGENTS’ ROOM Dramatron
Evaluation Criteria

S
ys

te
m

 S
tr

en
gt

h

Figure 4: System strength across dimensions of plot, creativity, development, language use and overall, according to
the LLM-based evaluator.

tain a win matrix W c → RN↑N , where N is the
number of systems. Each element W c

i,j represents
the number of times system i beats system j. We
then linearize these pairwise comparisons using
the Bradley-Terry model to obtain latent ability pa-
rameters, which denote the numerically ordered
strengths of each system with respect to c. To
present the result, we follow Agents’ Room’s con-
vention of normalizing the log strengths, centered
around 0.

5 Results

5.1 LLM Evaluation Results

Figure 4 demonstrates the strength of the three
systems across the set of criteria defined at the
beginning of Section 4.3. Overall, our system out-
performs both Agents’ Room and Dramatron. This
behaviour is consistent across each criterion. The
values of each win matrix can be found in Ap-
pendix A.

In terms of strength, our system comes out on
top among all the criteria, and by a large gap. These
are easily misinterpreted, however. BTL strengths
are not a measure of how much better one system’s
stories are over another’s, but rather of how often
the one’s are preferred (here, by the LLM evaluator)
over the other’s. This method can be interpreted
by analogy to a consumer-product trial, in which
the LLM evaluator samples a population of con-
sumers, and the generated stories are the products
being tried. The result of the trials only indicates
with what likelihood a consumer might choose one
brand over another.

The results are generally consistent when swap-
ping the order of presentation for each pair of sto-
ries. In cases where inconsistency is observed, it
often occurs in stories where the various criteria
conflict. Such inconsistencies, however, are han-
dled by the nature of our design, which treats them
as less rewarding than a consistent win and more
rewarding than a consistent loss.

5.2 Qualitative Analysis

In addition to the LLM evaluation above, we in-
vestigated the individual stories generated by those
systems. One observation we made was that the sto-
ries generated by our system often maintain better
character consistency and narrative coherence. For
example, train 026 golden story primarily revolves
around the interactions between Scholar Kissen and
Courier Aerie. The first scene portrays their initial
meeting, whereas the second involves Aerie recall-
ing her earlier journey to a remote site, illustrating
a non-chronological scene arrangement. As such,
the extracted plan from the story poses a significant
challenge for the Dramatron system to create the
narration of the first scene, given that the model
inherently lacks awareness of chronologically ear-
lier events that have nevertheless not yet been nar-
rated (as with the second scene). This results in
an hallucination of Aereo’s dialogue about the site
being created. Conversely, systems such as Agents’
Room, which provide a full story outline upfront,
face the risk of prematurely revealing information.
Specifically, in the first scene, Aerie’s dialogue
preemptively references details that should appear

93

later in the story, thus disrupting the narrative flow.
Our approach is more balanced. By employing the
sorting mechanism to role-play chronologically, the
character agent, Aerie, has the memory of her visit
to the site (second scene) before role-playing the
first scene (meeting scholar Kissen). Additionally,
the rewriting mechanism ensures that the gener-
ated scene content strictly adheres to the current
scene outline, effectively preventing the premature
disclosure of future information and resulting in a
more consistent and coherent story. Please refer to
Appendix C.1 for details.

It is also observed that the other approaches are
not as consistent in producing high-quality stories
in the long run. For the Agents’ Room approach,
we have spotted repetition and, occasionally, ran-
dom off-topic words generated. We believe this is
caused by the generation process being too weakly
constrained, in which only a few constraints other
than the plot line are provided to guide the genera-
tion.

Another observation of our proposed system is
that sometimes the group chat manager repeats the
same command to the character agents when it is
unsatisfied with the agent’s response. This often
happens to content corresponding to plots near the
end of the scene outline. To mitigate this issue,
we set a maximum number of 10 iterations, which
avoids the potential for infinite repetition.

6 Conclusion

In conclusion, our work is the first to integrate the
concepts of fabula and syuzhet into a unified pro-
cess for generating stories from a narrative plan.
We decomposed story creation into two distinct
phases/steps: a fabula generation phase (role-play
step) driven by realistic, LLM-backed character
agents under the guidance of a director agent. This
achieves a natural balance between authorial intent
and character-driven conversation history. This is
followed by a syuzhet modification phase (rewrite
step), which refers to the conversation history and
can potentially reuse the majority of dialogues and
actions, only needing to manipulate their order,
thus significantly reducing the difficulty of the ac-
tual story-content-writing process.

Our current approach assumes that a scene con-
sists of a sequence of events occurring within a
specific location and time frame. However, there
are cases where scenes interleave between present
conversations and flashbacks — for example when

a character recalls a memory. As such, our sorting
algorithm may fail to produce a strictly chronolog-
ically ordered plan for the role-play step. Future
work could address this limitation by sorting all
events in the story with finer granularity, regardless
of scene boundaries, to handle complex temporal
structures better. Additionally, while our system
updates agents’ memories to reflect only the in-
formation they should see, it does not explicitly
enforce privacy during the role-play process. Fu-
ture work can improve upon this by implementing
explicit privacy controls. Lastly, our LLM eval-
uation method aligns with human-tested criteria.
Since our project’s goal is to assess the potential
of agent-based simulation for story creation, future
work can explore effective approaches for integrat-
ing human participants into this process.

Acknowledgments

This research was supported by a grant from
NAVER corporation. Besides, we thank our anony-
mous reviewers for their very helpful suggestions.

References
Amal Alabdulkarim, Siyan Li, and Xiangyu Peng. 2021.

Automatic story generation: Challenges and attempts.
In Proceedings of the Third Workshop on Narrative
Understanding, pages 72–83, Virtual. Association for
Computational Linguistics.

Arwa I. Alhussain and Aqil M. Azmi. 2021a. Automatic
story generation: A survey of approaches. ACM
Comput. Surv., 54(5).

Arwa I. Alhussain and Aqil M. Azmi. 2021b. Automatic
story generation: A survey of approaches. ACM
Comput. Surv., 54(5).

Peter F Brown, Stephen A Della Pietra, Vincent J
Della Pietra, and Robert L Mercer. 1992. Class-based
n-gram models of natural language. Computational
Linguistics, 18(4):467–479.

Edirlei Soares de Lima, Bruno Feijó, and Antonio L.
Furtado. 2022. A character-based model for inter-
active storytelling in games. In 2022 21st Brazilian
Symposium on Computer Games and Digital Enter-
tainment (SBGames), pages 1–6.

Natlie Dehn. 1981. Story generation after tale-spin. In
IJCAI, volume 81, pages 16–18.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

94

https://doi.org/10.18653/v1/2021.nuse-1.8
https://doi.org/10.1145/3453156
https://doi.org/10.1145/3453156
https://doi.org/10.1145/3453156
https://doi.org/10.1145/3453156
https://doi.org/10.1109/SBGAMES56371.2022.9961071
https://doi.org/10.1109/SBGAMES56371.2022.9961071
https://doi.org/10.18653/v1/P18-1082

Rui Figueiredo, António Brisson, Ruth Aylett, and Ana
Paiva. 2008. Emergent stories facilitated an archi-
tecture to generate stories using intelligent synthetic
characters.

Senyu Han, Lu Chen, Li-Min Lin, Zhengshan Xu, and
Kai Yu. 2024. IBSEN: Director-actor agent collab-
oration for controllable and interactive drama script
generation. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 1607–1619,
Bangkok, Thailand. Association for Computational
Linguistics.

Fantine Huot, Reinald Kim Amplayo, Jennimaria Palo-
maki, Alice Shoshana Jakobovits, Elizabeth Clark,
and Mirella Lapata. 2024. Agents’ room: Narrative
generation through multi-step collaboration. arXiv
preprint arXiv:2410.02603.

Martin Josifoski, Marija Sakota, Maxime Peyrard,
and Robert West. 2023. Exploiting asymmetry
for synthetic training data generation: Synthie and
the case of information extraction. arXiv preprint
arXiv:2303.04132.

Alice LaPlante. 2007. The Making of a Story: A Norton
Guide to Creative Writing. W. W. Norton & Com-
pany, New York, NY.

Mina Lee, Katy Ilonka Gero, John Joon Young Chung,
Simon Buckingham Shum, Vipul Raheja, Hua
Shen, Subhashini Venugopalan, Thiemo Wambs-
ganss, David Zhou, Emad A Alghamdi, and 1 others.
2024. A design space for intelligent and interactive
writing assistants. In Proceedings of the 2024 CHI
Conference on Human Factors in Computing Systems,
pages 1–35.

Cheng Li, Ziang Leng, Chenxi Yan, Junyi Shen,
Hao Wang, Weishi Mi, Yaying Fei, Xiaoyang
Feng, Song Yan, HaoSheng Wang, and 1 others.
2023. Chatharuhi: Reviving anime character in
reality via large language model. arXiv preprint
arXiv:2308.09597.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024a. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157–173.

Yinhong Liu, Han Zhou, Zhijiang Guo, Ehsan Shareghi,
Ivan Vulić, Anna Korhonen, and Nigel Collier. 2024b.
Aligning with human judgement: The role of pair-
wise preference in large language model evaluators.
In First Conference on Language Modeling.

Adian Liusie, Potsawee Manakul, and Mark Gales. 2024.
LLM comparative assessment: Zero-shot NLG eval-
uation through pairwise comparisons using large lan-
guage models. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 139–151, St. Julian’s, Malta. Association for
Computational Linguistics.

Genevieve Liveley. 2019. Narratology. Oxford Univer-
sity Press.

Liam Magee, Vanicka Arora, Gus Gollings, and Norma
Lam-Saw. 2024. The drama machine: Simulat-
ing character development with llm agents. arXiv
preprint arXiv:2408.01725.

Leland McInnes, John Healy, and James Melville. 2018.
Umap: Uniform manifold approximation and pro-
jection for dimension reduction. arXiv preprint
arXiv:1802.03426.

James Meehan. 2013. Tale-spin. In Inside Computer
Understanding, pages 197–226. Psychology Press.

Piotr Mirowski, Kory W Mathewson, Jaylen Pittman,
and Richard Evans. 2023. Co-writing screenplays
and theatre scripts with language models: Evaluation
by industry professionals. In Proceedings of the 2023
CHI Conference on Human Factors in Computing
Systems, pages 1–34.

Aline Normoyle, João Sedoc, and Funda Durupinar.
2024. Using llms to animate interactive story char-
acters with emotions and personality. In 2024 IEEE
Conference on Virtual Reality and 3D User Interfaces
Abstracts and Workshops (VRW), pages 632–635.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S. Bern-
stein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th An-
nual ACM Symposium on User Interface Software
and Technology, UIST ’23, New York, NY, USA.
Association for Computing Machinery.

Martin Pichlmair, Riddhi Raj, and Charlene Putney.
2024. Drama : for. Technical, Write with LAIKA,
Copenhagen, Denmark.

Julie Porteous and A. Lindsay. 2019. Protagonist vs
antagonist provant: Narrative generation as counter
planning. In Adaptive Agents and Multi-Agent Sys-
tems.

Vladimir Propp. 1968. Morphology of the Folktale.
University of Texas Press.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

95

https://api.semanticscholar.org/CorpusID:15274129
https://api.semanticscholar.org/CorpusID:15274129
https://api.semanticscholar.org/CorpusID:15274129
https://doi.org/10.18653/v1/2024.acl-long.88
https://doi.org/10.18653/v1/2024.acl-long.88
https://doi.org/10.18653/v1/2024.acl-long.88
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://openreview.net/forum?id=9gdZI7c6yr
https://openreview.net/forum?id=9gdZI7c6yr
https://aclanthology.org/2024.eacl-long.8/
https://aclanthology.org/2024.eacl-long.8/
https://aclanthology.org/2024.eacl-long.8/
https://doi.org/10.1109/VRW62533.2024.00124
https://doi.org/10.1109/VRW62533.2024.00124
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
https://api.semanticscholar.org/CorpusID:169033255
https://api.semanticscholar.org/CorpusID:169033255
https://api.semanticscholar.org/CorpusID:169033255
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

Mohi Reza, Nathan M Laundry, Ilya Musabirov, Peter
Dushniku, Zhi Yuan “Michael” Yu, Kashish Mittal,
Tovi Grossman, Michael Liut, Anastasia Kuzminykh,
and Joseph Jay Williams. 2024. Abscribe: Rapid
exploration & organization of multiple writing vari-
ations in human-ai co-writing tasks using large lan-
guage models. In Proceedings of the CHI Conference
on Human Factors in Computing Systems, pages 1–
18.

Mark O Riedl. 2009. Incorporating authorial intent
into generative narrative systems. In AAAI Spring
Symposium: Intelligent Narrative Technologies II,
pages 91–94.

Mark O Riedl and Robert Michael Young. 2010. Narra-
tive planning: Balancing plot and character. Journal
of Artificial Intelligence Research, 39:217–268.

Timo Schick, Jane Dwivedi-Yu, Zhengbao Jiang, Fabio
Petroni, Patrick Lewis, Gautier Izacard, Qingfei You,
Christoforos Nalmpantis, Edouard Grave, and Sebas-
tian Riedel. 2022. Peer: A collaborative language
model. arXiv preprint arXiv:2208.11663.

Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu.
2023. Character-LLM: A trainable agent for role-
playing. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 13153–13187, Singapore. Association for
Computational Linguistics.

Mei Si, Stacy C. Marsella, and David V. Pynadath. 2005.
Thespian: using multi-agent fitting to craft interactive
drama. In Proceedings of the Fourth International
Joint Conference on Autonomous Agents and Multia-
gent Systems, AAMAS ’05, page 21–28, New York,
NY, USA. Association for Computing Machinery.

Ivo Swartjes and Mariët Theune. 2006. A fabula model
for emergent narrative. In International Conference
on Technologies for Interactive Digital Storytelling
and Entertainment, pages 49–60. Springer.

Jonathan Teutenberg and Julie Porteous. 2013. Efficient
intent-based narrative generation using multiple plan-
ning agents. In Adaptive Agents and Multi-Agent
Systems.

Saranya Venkatraman, Nafis Irtiza Tripto, and Dongwon
Lee. 2024. Collabstory: Multi-llm collaborative story
generation and authorship analysis. arXiv preprint
arXiv:2406.12665.

Lei Wang, Jianxun Lian, Yi Huang, Yanqi Dai, Haox-
uan Li, Xu Chen, Xing Xie, and Ji-Rong Wen. 2024a.
Characterbox: Evaluating the role-playing capabil-
ities of llms in text-based virtual worlds. arXiv
preprint arXiv:2412.05631.

Yi Wang, Qian Zhou, and David Ledo. 2024b. Story-
verse: Towards co-authoring dynamic plot with llm-
based character simulation via narrative planning. In
Proceedings of the 19th International Conference on
the Foundations of Digital Games, FDG ’24, New
York, NY, USA. Association for Computing Machin-
ery.

Bohao Yang, Dong Liu, Chenghao Xiao, Kun Zhao,
Chen Tang, Chao Li, Lin Yuan, Guang Yang, Lanxiao
Huang, and Chenghua Lin. 2024. Crafting customis-
able characters with llms: Introducing simschat, a
persona-driven role-playing agent framework. arXiv
preprint arXiv:2406.17962.

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7378–7385.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Runcong Zhao, Wenjia Zhang, Jiazheng Li, Lixing Zhu,
Yanran Li, Yulan He, and Lin Gui. 2024. Narrative-
Play: Interactive narrative understanding. In Pro-
ceedings of the 18th Conference of the European
Chapter of the Association for Computational Lin-
guistics: System Demonstrations, pages 82–93, St.
Julians, Malta. Association for Computational Lin-
guistics.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems,
volume 36, pages 46595–46623. Curran Associates,
Inc.

96

https://aclanthology.org/2023.emnlp-main.814/
https://aclanthology.org/2023.emnlp-main.814/
https://doi.org/10.1145/1082473.1082477
https://doi.org/10.1145/1082473.1082477
https://api.semanticscholar.org/CorpusID:8201007
https://api.semanticscholar.org/CorpusID:8201007
https://api.semanticscholar.org/CorpusID:8201007
https://doi.org/10.1145/3649921.3656987
https://doi.org/10.1145/3649921.3656987
https://doi.org/10.1145/3649921.3656987
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://aclanthology.org/2024.eacl-demo.10/
https://aclanthology.org/2024.eacl-demo.10/
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf

A The Win Matrices of Section by Evaluation Criteria 5.1

Overall =




0 41 47
15 0 33
9 23 0


 (1)

Plot =




0 42 47
14 0 32
9 24 0


 (2)

Creativity =




0 36 44
20 0 35
12 21 0


 (3)

Development =




0 41 47
15 0 33
9 23 0


 (4)

Language Use =




0 39 47
17 0 34
9 21 0


 (5)

97

B The Prompt Used

B.1 Our System - Role Play Step
B.1.1 Plan Synthesis and Sorting

Character Extraction
You are provided with:

1. <Writing Prompt>: This is the original instruction that was used to generate
a story.

2. <Story>: This is the actual narrative generated based on the writing prompt.

3. <Characters>: A list of **most of the characters** that appeared in the story
following the following schema: input_story_characters_schema

{{divider}}
Based on <Story>, and <Characters>, and also consider the <Writing Prompt>, divide
the **ENTIRE** <Story> into scenes. A scene is a unit of story that takes place
in a single location and time. Each scene should be a self-contained unit that
moves the story forward, and try to divide the story based on the plot elements:
exposition, rising action, climax, falling action, resolution.
For each divided scene content, considering the <Characters> information, you
should provide the following information:

1. name: A high level name for the scene

2. outline: The outline of the scene, which is a description of the
action/story/dramatic event occurring in the scene. It should comprehensively
capture the actions and interactions of all characters involved. Answer in a
list of bullet points

3. plot_element: Which plot element is being developed in this scene. You can
choose from the following: exposition, rising action, climax, falling action,
resolution.

4. place: The place of the scene with a SPECIFIC AND DETAILED description of that
place

5. importance: The relative importance of the scene in the story. It is an integer
in the scale 1-10, where 1 is the least important and 10 is the most important.
You should provide importance based on the number of words of this scene
compared to the total number of words in the story, and also the significance
of the scene in the story.

6. characters: **ALL** the characters that **are present in the scene**. Also
provide the scene level **CHARACTER GOAL** of each character. If you find
any additional characters/group not provided in <Characters>, add them to the
scene, and provide their character goal as well.

{{divider}}
Once you have divided the story into scenes, reflect on the scenes you have
created, and ensure that all content is covered. If you have missed any content,
add additional scenes/details to the outline to cover the missing content.
{{divider}}
Provide your output in JSON following the following schema:
{{OutScenesSchema}}

98

Scene Extraction
You are provided with:

1. <Writing Prompt>: This is the original instruction that was used to generate
a story.

2. <Story>: This is the actual narrative generated based on the writing prompt.

3. <Characters>: A list of **most of the characters** that appeared in the story
following the following schema: input_story_characters_schema

{{divider}}
Based on <Story>, and <Characters>, and also consider the <Writing Prompt>, divide
the **ENTIRE** <Story> into scenes. A scene is a unit of story that takes place
in a single location and time. Each scene should be a self-contained unit that
moves the story forward, and try to divide the story based on the plot elements:
exposition, rising action, climax, falling action, resolution.
For each divided scene content, considering the <Characters> information, you
should provide the following information:

1. name: A high level name for the scene

2. outline: The outline of the scene, which is a description of the
action/story/dramatic event occurring in the scene. It should comprehensively
capture the actions and interactions of all characters involved. Answer in a
list of bullet points

3. plot_element: Which plot element is being developed in this scene. You can
choose from the following: exposition, rising action, climax, falling action,
resolution.

4. place: The place of the scene with a SPECIFIC AND DETAILED description of that
place

5. importance: The relative importance of the scene in the story. It is an integer
in the scale 1-10, where 1 is the least important and 10 is the most important.
You should provide importance based on the number of words of this scene
compared to the total number of words in the story, and also the significance
of the scene in the story.

6. characters: **ALL** the characters that **are present in the scene**. Also
provide the scene level **CHARACTER GOAL** of each character. If you find
any additional characters/group not provided in <Characters>, add them to the
scene, and provide their character goal as well.

{{divider}}
Once you have divided the story into scenes, reflect on the scenes you have
created, and ensure that all content is covered. If you have missed any content,
add additional scenes/details to the outline to cover the missing content.
{{divider}}
Provide your output in JSON following the following schema:
{{OutScenesSchema}}

99

Sort Scenes
You are a creative writer for the story. Your task is to sort an array of story
scenes based on the chronological order, and provide the sorted result.
{{divider}}
You are provided with:
1. <StoryScenes>: The list of story scenes, following the schema:
{{input_story_scenes_schema}}
{{divider}}
Your Task is to
1. Sort the <StoryScenes> based on the chronological order of the story development
by each scene’s outline, and provide the sorted result, by the name of each scene.
{{divider}}
Output in JSON format following the schema provided below:
{{sort_scene_results_schema}}

B.1.2 Director Agent
Chronological Outline Creation
You are provided with the following information:

1. <Scene>: The scene object, which includes both scene outline, detailed location
description and involved character/group of characters information following
the schema: {{input_scene_schema}}

2. <Outline>: The outline of the scene you are adjusting divider

Sort, and rewrite the scene outline bullet points to be suitable for a role-playing
game (RPG). Ensure that:

• Strict chronological order: Events must be structured in the order they occur,
avoiding retrospective narration (e.g., no "recounting" of past events).

• The outline focuses on character-driven development and role-playing dynamics
• The sequence of events reflects meaningful interactions between characters
• The updated outline should be similar in format. The events MUST BE in
CHRONOLOGICAL ORDER, and described in present tense

• The updated outline should have similar number of word as the original <Outline>
provided.

• Do not add any event, only reorder original events mentioned in <Outline>
provided.

return the bullet points in str

100

Group Chat Termination
You are the director of a scene in a role playing game, and you are responsible
for GUIDE the agents to act and speak according to the scene outline.
{{divider}}
You are provided with the following information:

1. <Scene>: The scene object, which includes both scene outline in
chronological order for this RPG game, detailed location description and
involved character/group of characters information following the schema:
input_scene_schema

2. <ChatHistories>: The history of the role playing game, which is a sequence
of message from participating characters in an array following the schema:
{{input_chat_histories_schema}}

3. <NextAgentNames>: This is an array of str, representing the name of the
characters that you are able to select to speak next. You should select
EXACTLY ONE NAME TO RESPOND, and provide the **EXACT NAME OF THE AGENT**.

{{divider}}
First, review the <ChatHistories> provided, and also look at the <Scene> outline,
and decide if the chat has covered the outline of the scene. And provide the
reasoning of your decision. The reasoning must be specific, in terms of exact
character and event in the scene outline not yet covered.
Then Answer True if the chat has covered the entire content, where the director
should terminate the conversation, or False otherwise.
{{divider}}
Output in JSON format following the schema provided below:
{{out_director_should_terminate_schema}}

101

Director Command and Select Agent

You are the director of a scene in a role playing game, and you are responsible
for GUIDE the agents to act and speak according to the scene outline.
{{divider}}
You are provided with the following information:

1. <Scene>: The scene object, which includes both scene outline, detailed location descrip-
tion and involved character/group of characters information following the schema: in-
put_scene_schema

2. <ChatHistories>: The history of the role playing game, which is a sequence of message from
participating characters in an array following the schema: input_chat_histories_schema

3. <NextAgentNames>: This is an array of str, representing the name of the characters that
you are able to select to speak next. You should select **EXACTLY ONE NAME TO
RESPOND**, and provide the **EXACT NAME OF THE AGENT**.

{{divider}}
1. Continuation Planning:
- Examine the <ChatHistories>, which document the role-playing game progress
so far. - Based on this conversation history, repeat **EXACTLY** the remaining
part of the **outline** of the <Scene> provided that is not shown in the
<ChatHistories>.
2. Agent Selection and Command:
- From your continuation plan, which provides the remaining scene outline to
be role-played, choose which character agent should role-play next. Provide
the exact name of that agent. - Directly address the chosen agent with a
concise, high-level command for one turn. The command should provide a summary
directive—indicating the intended action or dialogue direction—tailored to the
character’s age, gender, and personality. Avoid including detailed dialogue or
overly specific descriptions. **Be concise**
{{divider}}
Generate the output in JSON following the following schema:
{{out_director_selection_command_schema}}

102

B.1.3 Character Agent
Character Agent Response

You are acting as an agent in a role-playing game. You will produce responses
on behalf of the agent from a third-person perspective, describing both the
agent’s actions and dialogue. Adhere to the agent’s goals, age, gender, and
personality at all times, **ensuring the response reflects their memory and
physical state in a logical way.**
{{divider}}
You are provided with the following information:

1. <Character>: The character you are role playing for, and you should keep in mind
the Character’s goal, and act accordingly and realistically. It follows the schema:
{{input_story_character_schema}}

2. <DirectorCommand>: The command from the director of the role play game, representing
what the agent should incoporate to say and do in the role playing game.

3. <CharacterMemory>: The memory of the character, in string.

4. <CharacterPhysicalState>: The physical state of the character, in string.

5. <RecentHistories>: The most recent, up to 10 histories of the role playing game, following
the schema: {{input_chat_histories_schema}}

{{divider}}
Based on <Character>, <DirectorCommand>, <CharacterMemory>,
<CharacterPhysicalState>, and <RecentHistories>, generate the agent’s response
from a third-party perspective. The dialogue, actions, and overall tone must
be **natural** realistic, taking into account the agent’s age, background,
personality, and speech patterns.
Important Guidelines: 1. Do not include any concluding commentary—only provide
the agent’s response in the role playing game. 2. Maintain an observer’s
perspective, presenting the agent’s actions and dialogue authentically while
ensuring alignment with their character traits. 3. Consider the agent’s current
memory and physical state, ensuring the response is realistic, concise, and
free of contradictions with their established characteristics.
Generate the response in JSON in the following format:
{{out_response_schema}}

103

Character Agent Update Memory

You are the mechanism to update the current character’s memory given the history of a role playing
game.
{{divider}}
You are provided with:
1. <NewChatHistories>: The list of conversation and action history of the agents in the
role playing game that is **not yet seen by the current character** following the schema:
{{chat_histories_schema}}
2. <Character>: The character whose memory you are updating, following the
schema:{{story_character_schema}}
3. <CharacterMemory>: The current memory of the character whose memory you are updating.
{{divider}}
Update the memory on what the current character should know based on the history, and return
the updated memory. The memory should contain the history of events that the character has
experienced, and any information that the character has learned from the conversation. Do not
include any irrelavant information, and the memory should be in first character standpoint. For the
output, only provide the **updated** memory in string, nothing else.

Physical State Update

You are the mechanism to record the physical state of the character based on the history of a role
playing game.
{{divider}}
You are provided with:

1. <NewChatHistories>: The list of conversation and action history of the agents in the role
playing game that is **not yet seen by the current character** following the schema:
{{chat_histories_schema}}

2. <Character>: The character whose physical state you are updating, following the schema:
{{story_character_schema}}

3. <CharacterPhysicalState>: The physical state of the character whose physical state you are
updating.

{{divider}}
Update the physical state to reflect the changes based on the history. The physical state must be
consistent with the <Character>, in terms of their age, gender and set up, and also make sense
based on the the <NewChatHistories>. For the output, only provide the **updated** physical state
in string, nothing else.

B.2 Our System - Rewrite Step
We share the same extraction process as AR in the creation of central conflict, story-setting. Please refer
to their work for details.

104

Rewrite to Story

You are a creative writer writing a story. Your task is to write the content of the <TaskScene> for
the story.
{{divider}}
You are provided with:

1. <WritingPrompt>: The writing prompt for the story

2. <CentralConflict>: The central conflict of the story

3. <StorySetting>: The setting of the story

4. <StoryScenes>: The list of story scenes planned out, by name and outline, following the
schema: input_story_scenes_v2_schema

5. <StoryContent>: The story content written so far

6. <SceneCharacters>: The characters involved in the scene you are writing, following the
schema: input_characters_schema

7. <TaskScene>: The scene object you are writing the content for, following the schema:
input_story_scene_v2_schema

8. <TaskScenePlotElement>: The plot element of the scene you are writing

9. <TaskScenePlace>: The place where the scene unfolds.

10. <RolePlayHistory>: The conversation of <SceneCharacters> role playing <TaskScene> in an
array, following the schema: input_chat_histories_v2_schema

{{divider}}
Besure to understand the <TaskScene>’s role in the whole narrative arc, and write the content of
the scene accordingly.
Refer to the <RolePlayHistory> for **realistic character actions and dialogues** in an RPG game
of the <TaskScene>. But begin your portion of the story in a way that naturally flows from the
ending of <Story>. Match the writing style, vocabulary, and overall mood of the existing text. Do
not re-explain details or events that have already been described. Ensure dialogue and actions
align with character traits
{{no_end_instruction}}

1. <WritingPrompt>: {{writing_prompt}}

2. <CentralConflict>: {{central_conflict}}

3. <StorySetting>: {{story_setting}}

4. <StoryScenes>: {{story_scenes}}

5. <StoryContent>: {{story_content}}

6. <SceneCharacters>: {{characters}}

7. <TaskScene>: {{task_scene}}

8. <TaskScenePlotElement>: {{plot_element}}

9. <TaskScenePlace>: {{place}}

10. <RolePlayHistory>: {{role_play_history}}
105

B.3 Dramatron
We modified Dramatron’s original prompt template in order to adapt their work for writing stories. We
removed their example for two reasons: Their work was designed for writing screen play and all systems
used for experiment are zero-shot. Below is the prompt we used.

Scene Content Generation

Use the following description, write the content of the scene
Place: {{place_name}} + \n + {{place_description}}
Characters: {{characters}}
Plot Element: {{plot_element}}
Summary: {{summary}}
Outline: {{outline}}

B.4 Agents’Room
We followed strictly the implementation of the original paper for all implementations.

106

B.5 LLM Evaluation
Rewrite to Story

You will conduct a side-by-side evaluation. You will be given two system-generated stories. Your
task is to compare the two stories and determine which one is better based on the following
dimensions:
• Plot: The story should have a recognizable structure, e.g., with a connected beginning, middle,
and end. The story should exhibit events and turns that move the plot forward. The story should not
have logical or conceptual inconsistencies. Surprising or disruptive elements should be intentional,
e.g., they serve the story and do not feel jarring, odd, or out of place.
• Creativity: There should be engaging characters, themes, and imagery. The ideas should not
feel generic or bland. There should be avoidance of overly cliched characters and storylines,
unintentional tropes, and stereotypes. When used, tropes and cliches should serve a purpose (e.g.,
comedic effect, twist on a common trope etc). The story should include original elements that
were not explicitly mentioned in the prompt.
• Development: Characters and settings should be introduced and contextualized with relevant
details that allow the reader to understand their place in the story. Appropriate levels of detail and
complexity should be provided to lend the story a feeling of realness and believability.
• Language Use: The language used should feel varied and rich: Variance of sentence structure,
verbiage, and vocabulary. The story should exhibit rhetorical, linguistic and literary devices (e.g.,
ambiguity, alliteration, etc) to create interesting effects. The story should avoid bland or repetitive
phrases (unless used intentionally to create a narrative, thematic, or linguistic effect).
Provide a detailed assessment of the two stories in terms of these four dimensions. Conclude your
assessment with scores for each dimension using the template below. Do not add any emphasis,
such as bold and italics, on your assessment.
[Assessment Ending Template]
Based on my assessment, the better story for each dimension is:
Plot: [A or B or Same]
Creativity: [A or B or Same]
Development: [A or B or Same]
Language Use: [A or B or Same]
Overall: [A or B or Same]
[Story A]
{{story_A_content}}
[Story B]
{{story_B_content}}
[Assessment]

107

C Qualitative Analysis Sample

C.1 Consistency Comparison

Type Content

Dramatron & Our Approach
Selected First Scene Outline

 Aerie recounts the details of her visit to the
archaeological site, including the camp setup and initial
observations about the ruins and the mysterious object.

Dramatron Corresponding Content "The camp is well-managed," Aerie detailed, hands
gesturing animatedly. "Our colleagues do enjoy their
creature comforts even when surrounded by stone ruins
and eerie silence."

Agents’ Room Corresponding
Content

Aerie's account conveyed more than just facts; it
captured nuances—a skill honed through years served
as both courier and covert operative. They spoke of a
shattered crystal obelisk unearthed amid ruins steeped
in legend. Inscriptions marred its surface in a language
long forgotten by all but a handful of scholars and
archaeologists like Mage Myssa.

Our Approach Corresponding
Content

Aerie’s grin was both playful and knowing. "Indeed. The
Malborn ruins were more than just scenery this time,"
she replied, lowering herself onto a nearby chair, her
cloak settling around her like a second skin. "The camp
is thriving under Mage Zolen's watchful eye—though
one has to wonder if his precautions are as much for
keeping us out as anything else."

Golden Story Corresponding
Content

“The archaeological mages have set up camp between
the lake and the ruins, using a grid formation common to
our Empire. Mage Zolen is in charge, and he is a stickler
for protocol. However, the camp appeared hastily
constructed; rumor in the camp was that the site was
very far down on Zolen’s list of priorities, but that an
incident on the longest day of the year caused him to
focus more on this specific ruin.”

The table above compares content generated by each system corresponding to the same selected outline
segment. The yellow highlighting indicates a hallucination produced by the Dramatron approach, resulting
in nonsensical content. The green highlighting marks premature references to content and characters
intended to appear later in the story.

108

