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Abstract

This paper presents our approach for Task 3
of the GenAI content detection workshop at
COLING-2025, focusing on Cross-Domain
Machine-Generated Text (MGT) Detection.
We propose an ensemble of fine-tuned trans-
former models, enhanced by inverse perplexity
weighting, to improve classification accuracy
across diverse text domains. For Subtask A
(Non-Adversarial MGT Detection), we com-
bined a fine-tuned RoBERTa-base model with
an OpenAI detector-integrated RoBERTa-base
model, achieving an aggregate TPR score of
0.826, ranking 10th out of 23 detectors. In
Subtask B (Adversarial MGT Detection), our
fine-tuned RoBERTa-base model achieved a
TPR score of 0.801, securing 8th out of 22
detectors. Our results demonstrate the effec-
tiveness of inverse perplexity-based weighting
for enhancing generalization and performance
in both non-adversarial and adversarial MGT
detection, highlighting the potential for trans-
former models in cross-domain AI-generated
content detection.

1 Introduction

The proliferation of advanced language models
such as GPT (Radford et al., 2019) and RoBERTa
(Liu et al., 2019), machine-generated content has
become prevalent across social media, journalism,
and academia, raising concerns about authenticity
and misinformation. Detecting AI-generated text
is especially challenging across diverse domains,
where variations in language and style can hinder
detection efforts.

In Task 3 of the COLING 2025 Workshop on De-
tecting AI-Generated Content (Dugan et al., 2025),
we tackle cross-domain Machine-Generated Text
(MGT) detection using an ensemble approach that
combines fine-tuned RoBERTa-base models (Liu
et al., 2019) and OpenAI detection tools (Solaiman
et al., 2019). Our method leverages inverse per-
plexity weighting to enhance the contributions of

high-confidence models, yielding a robust detec-
tion system.

Our approach achieved an aggregate score of
0.826 in Non-Adversarial Cross-Domain MGT de-
tection (Subtask A), ranking 10th, and 0.801 in Ad-
versarial Cross-Domain MGT detection (Subtask
B), ranking 8th. This paper outlines our ensemble-
based methodology, dataset considerations, and
insights for effective cross-domain AI-generated
text detection.

2 Background

2.1 Dataset

The RAID dataset (Dugan et al., 2024), provided
for the competition, is designed for evaluating
machine-generated text detectors. It contains over
10 million documents across 11 language models,
11 genres, 4 decoding strategies, and 12 adver-
sarial attacks, including both human-written and
machine-generated content from 8 different do-
mains like books, news, poetry, and recipes. For
training and validation, we used the RAID-train
subset (802 million words, 11.8GB) and RAID-
test subset (81 million words, 1.22GB). We also
utilized the RAID-extra subset, which includes lan-
guages like Czech and German (275 million words,
3.71GB). This dataset provides a comprehensive
resource for AI-generated text detection.

For the fine-tuning of our model, we reduced
the dataset by using about 10% of the publicly
available data. This reduction was carried out
in a balanced manner across all genres, decod-
ing strategies, attacks, and domains to ensure that
each subset was proportionally represented. Specif-
ically, we reduced the data across the following
domains: abstracts, books, news, poetry, recipes,
reddit, reviews, and wiki. The distribution of this
reduced data across models is shown in Table 1,
with domain-specific sample sizes for each model.
For example, the number of samples for "Chat-
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Model Domain Total
Abstracts Books News Poetry Recipes Reddit Reviews Wiki

Human 2119 2137 2136 2125 2126 2135 1132 2135 17109
ChatGPT 4238 4274 4272 4250 4253 4270 2263 4270 34090
Cohere 4238 4274 4272 4250 4253 4270 2263 4270 34090
Cohere-Chat 4238 4274 4272 4250 4253 4270 2263 4270 34090
GPT-2 8477 8549 8544 8501 8506 8540 4526 8540 68183
GPT-3 4238 4274 4272 4250 4253 4270 2263 4270 34090
GPT-4 4238 4274 4272 4250 4253 4270 2263 4270 34090
Llama-Chat 8477 8549 8544 8501 8506 8540 4526 8540 68183
Mistral 8477 8549 8544 8501 8506 8540 4526 8540 68183
Mistral-Chat 8477 8549 8544 8501 8506 8540 4526 8540 68183
MPT 8477 8549 8544 8501 8506 8540 4526 8540 68183
MPT-Chat 8477 8549 8544 8501 8506 8540 4526 8540 68183

Total 62516 63577 63538 63380 63408 63606 37338 63606 518469

Table 1: Data distribution for various models across different domains, with total data per model and summed values
for each domain. The values represent domain-specific sample sizes for each model. We used only 10% of the
RAID (Dugan et al., 2024) dataset for fine-tuning our models.

GPT" in the "Books" domain is 4274, while for
"Human" in the "Reviews" domain, it is 1132. This
balanced reduction ensures the data used for train-
ing is representative across models and domains,
enabling efficient and effective fine-tuning.

2.2 Related Work

The detection of machine-generated text has gained
attention with the rise of large language models
(LLMs) like GPT (Radford et al., 2019) and BERT
(Devlin et al., 2019). Fine-tuned Transformer mod-
els have succeeded in binary classification tasks,
but challenges remain in cross-domain and multi-
lingual contexts due to data biases (Liu et al., 2019;
Solaiman et al., 2019). Ensemble methods combin-
ing models like BERT, RoBERTa, GPT variants,
and perplexity-based weighting have been explored
to improve domain robustness (Schick and Schütze,
2020; Clark et al., 2019).

Recent work in cross-domain detection shows
that RoBERTa-based detectors for GPT-2 generated
technical text can be transferred with few labeled
examples, such as from physics to biomedicine (Ro-
driguez et al., 2022). Paragraph-level detection is
also being explored to address document tampering
in mixed-domain texts.

For multilingual detection, models like XLM-
RoBERTa (Conneau et al., 2019) and RemBERT
(Chung et al., 2021) improve cross-lingual detec-
tion, though challenges remain for low-resource
languages (Hu et al., 2020). Recent SemEval
tasks (Fetahu et al., 2023; Wang et al., 2024) have
refined these approaches with task-specific fine-
tuning. Our work builds on these methods by using

inverse perplexity-weighted ensembles to enhance
detection across domains and languages.

Figure 1: Overall Framework of our Proposed Sys-
tem for both Non-Adversarial and Adversarial Cross-
Domain MGT Detection.

3 System Overview

We developed an ensemble approach for AI-
generated text detection across multiple domains,
using Transformer models with inverse perplexity-
based weighted voting for improved accuracy. The
system overview is shown in Figure 1.

3.1 Ensemble Model Selection and
Justification

For the ensemble model, we selected two
Transformer-based models tailored for Non-
Adversarial and Adversarial cross-domain text de-
tection, leveraging their strengths in capturing lin-
guistic, syntactic, and semantic patterns essen-
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tial for AI-generated content detection. For non-
adversarial tasks, we employed RoBERTa-base,
recognized for its strong performance in natural
language understanding and robust generalization
across text domains (Liu et al., 2019), alongside
the RoBERTa-base OpenAI Detector, fine-tuned
specifically for distinguishing AI-generated text
from human-authored content (Solaiman et al.,
2019). For adversarial scenarios, RoBERTa-base
was selected again for its ability to capture sub-
tle linguistic patterns and semantic inconsistencies,
making it highly effective in challenging detection
tasks (Liu et al., 2019). This strategic selection
ensures a balanced approach to handling diverse
and adversarial text detection challenges.

3.2 Data Pre-processing
For text classification, the data was preprocessed
using model-specific tokenizers, incorporating trun-
cation and padding as required. To enhance mem-
ory efficiency and training performance, texts
were sorted by word count, reducing unnecessary
padding. A fixed random seed was maintained to
ensure reproducibility.

3.3 Training Procedure
The models were fine-tuned using the Hugging
Face Transformers library 1 for English and mul-
tilingual text classification. Tokenization was per-
formed with ‘AutoTokenizer‘, and the architectures
were adapted for classification tasks with appropri-
ate label mappings.

Training was conducted for 3 epochs with a
learning rate of 2× 10−5, batch sizes of 4 for train-
ing and 16 for validation, and weight decay of
0.01. Early stopping was applied with a patience
of 5 evaluations and a 0.001 improvement thresh-
old. Evaluation checkpoints were saved after each
epoch, and the best-performing model was used for
testing.

This procedure ensured robust generalization
across subtasks. Further training details are pro-
vided in Table 2.

3.4 Ensemble Voting Strategy
Our ensemble employs a weighted soft-voting strat-
egy, combining predictions from all fine-tuned
models for each subtask. The weights are deter-
mined based on inverse perplexity, with lower per-
plexity values reflecting higher confidence.

1Hugging Face Transformers: https://huggingface.
co/transformers/

Hyperparameter Value
Number of Epochs 2 ∼ 3

Learning Rate 1× 10−5 ∼ 2× 10−5

Training Batch Size 4
Validation Batch Size 16
Early Stopping Patience 5 validation steps
Early Stopping Threshold 0.001
Weight Decay 0.01
Optimizer AdamW
Loss Function Binary Cross-Entropy
Evaluation Strategy Every ¼ epoch
Checkpointing Strategy Validation loss

Table 2: Training Configuration

3.4.1 Perplexity Calculation
For each model, we compute the perplexity based
on its predictions. The perplexity P is computed
using the Negative Log Likelihood formula:

P = exp

(
− 1

N

N∑
i=1

log(p(yi | xi))

)
where p(yi | xi) is the predicted probability

for the true label yi, and N is the number of test
samples. Lower perplexity values indicate higher
confidence.

To compute perplexity, we use each model’s log-
its, apply softmax to obtain probabilities, and then
calculate perplexity based on the true labels and
these probabilities.

3.4.2 Perplexity-Based Weighting Adjustment
To calculate model weights, each model’s perplex-
ity is adjusted by subtracting 1, creating an effective
weighting scale. The weight wi for model i is then
computed as the inverse of this adjusted perplex-
ity and normalized across models, giving higher
confidence models greater influence.

wi =
1/(Pi − 1)∑M

j=1(1/(Pj − 1))

where M represents the total number of models,
and Pi is the original perplexity of model i.

3.4.3 Weighted Soft-Voting
Each model’s predicted probabilities are scaled by
its weight and summed to form the final ensemble
prediction. This weighted voting prioritizes models
with higher confidence (lower perplexity), giving
them greater influence on the final decision. The
ensemble’s final prediction for each class c is:

https://huggingface.co/transformers/
https://huggingface.co/transformers/
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Non-Adversarial Results
Detector Chat

GPT
GPT-4 GPT-3 GPT-2 Mistral Mistral-

Chat
Cohere Cohere-

Chat
Llama-
Chat

MPT MPT-
Chat

AGG
TPR

Rank

FT RoBERTa +
RoBERTa
OpenAI

0.960 0.861 0.895 0.753 0.734 0.936 0.546 0.748 0.891 0.804 0.901 0.826 10/23

FT RoBERTa +
RoBERTa
OpenAI +

BERT

0.983 0.934 0.755 0.730 0.709 0.960 0.510 0.747 0.943 0.772 0.932 0.825 11/23

FT RoBERTa 0.943 0.836 0.902 0.739 0.719 0.916 0.542 0.737 0.870 0.800 0.891 0.813 12/23

Binoculars 0.997 0.907 0.989 0.678 0.610 0.914 0.935 0.943 0.973 0.447 0.707 0.790 -

Adversarial Results

FT RoBERTa 0.911 0.808 0.873 0.730 0.720 0.887 0.567 0.740 0.855 0.806 0.861 0.801 8/22

FT RoBERTa +
RoBERTa
OpenAI

0.876 0.777 0.813 0.690 0.681 0.851 0.518 0.696 0.823 0.757 0.817 0.760 10/22

FT RoBERTa +
RoBERTa
OpenAI +

BERT

0.896 0.843 0.675 0.663 0.651 0.874 0.457 0.670 0.857 0.711 0.841 0.749 11/22

SuperAnnotate
AI Detector

0.963 0.913 0.720 0.411 0.342 0.897 0.445 0.685 0.918 0.314 0.767 0.649 -

Table 3: Cross-domain MGT detection performance under non-adversarial and adversarial conditions. The table
shows detector performance across various generator models, with aggregate True Positive Rate (AGG TPR) and
rankings. "FT" denotes fine-tuned models, and base models are used for training and evaluation.

pensemble(c) =

M∑
i=1

wi · pi(c)

where pi(c) is the predicted probability for class
c by model i, and wi is its weight.

This method enhances ensemble accuracy by pri-
oritizing predictions from more confident models,
improving overall performance.

4 Results

Table 3 shows cross-domain MGT detection perfor-
mance for non-adversarial and adversarial testing,
with detectors ranked based on aggregate True Pos-
itive Rate (TPR).

4.1 Performance

In the non-adversarial setting, the fine-tuned
RoBERTa + RoBERTa OpenAI model which was
fine-tuned on RAID dataset (Dugan et al., 2024)
achieved the highest performance, with an aggre-
gate (AGG) score of 0.826, ranking 10th out of
23 detectors (see Table 3). This model effec-
tively combined fine-tuned RoBERTa Base and
RoBERTa Base OpenAI models, with perplexity-
based weighting to give more influence to lower-

perplexity models, enhancing overall accuracy. It
consistently delivered strong results across various
generator models, including ChatGPT and GPT-3.

In the adversarial testing, the fine-tuned
RoBERTa model outperformed other detectors,
achieving an aggregate (AGG) score of 0.801 and
ranking 8th out of 22 (see Table 3). This demon-
strates the model’s robust adaptability in adversar-
ial conditions, achieving top scores with GPT-3 and
GPT-4, even under altered input scenarios.

4.2 Model Comparison

The performance of various detectors was eval-
uated under both non-adversarial and adversar-
ial conditions, revealing key insights into their
strengths and limitations.

In the non-adversarial setting, FT RoBERTa +
RoBERTa OpenAI emerged as the top performer,
achieving an AGG TPR of 0.826 and ranking 10th
overall. It demonstrated exceptional performance
with models such as ChatGPT (TPR: 0.960) and
GPT-4 (TPR: 0.861), outperforming FT RoBERTa
(AGG TPR: 0.813, ranked 12th) and the ensem-
ble model FT RoBERTa + RoBERTa OpenAI +
BERT (AGG TPR: 0.825, ranked 11th). Interest-
ingly, Binoculars (Hans et al., 2024) showed strong
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results with specific generators like GPT-3 (TPR:
0.989) and Llama-Chat (TPR: 0.973). However,
its inconsistent performance with other generators,
such as MPT (TPR: 0.447), limited its reliability.
In contrast, FT RoBERTa + RoBERTa OpenAI
demonstrated stable results across all generators,
including strong performances with Mistral-Chat
(TPR: 0.936) and Cohere-Chat (TPR: 0.748), un-
derscoring its robustness and versatility.

Under adversarial conditions, FT RoBERTa
proved to be the most robust model, achieving
an AGG TPR of 0.801 and ranking 8th overall.
It excelled with GPT-3 (TPR: 0.873) and MPT-
Chat (TPR: 0.861), outperforming FT RoBERTa +
RoBERTa OpenAI (AGG TPR: 0.760, ranked 10th)
and FT RoBERTa + RoBERTa OpenAI + BERT
(AGG TPR: 0.749, ranked 11th). In comparison,
the SuperAnnotate AI Detector (SuperAnnotate,
2024) delivered competitive results with ChatGPT
(TPR: 0.963), but its performance was inconsistent,
particularly with GPT-2 (TPR: 0.411) and Mistral
(TPR: 0.342). These results emphasize the variabil-
ity of some detectors when faced with adversarial
data, highlighting the consistent reliability of FT
RoBERTa.

The consistent dominance of FT RoBERTa +
RoBERTa OpenAI in non-adversarial settings and
FT RoBERTa in adversarial conditions underscores
the importance of tailoring architectures to specific
scenarios. While models like Binoculars and Super-
Annotate excelled in isolated cases, their lack of sta-
bility across diverse generators reinforces the value
of robust, well-balanced models like FT RoBERTa.
These findings suggest that future efforts should fo-
cus on further optimizing architectures to enhance
cross-domain robustness and adversarial detection
capabilities.

5 Limitations

Our approach, while effective, has several limi-
tations. Focusing on RoBERTa models for fine-
tuning and ensemble weighting excluded alterna-
tives like RemBERT (Chung et al., 2021) and XLM-
RoBERTa (Conneau et al., 2019), which might
better handle longer sequences, noisy data, and
multi-label tasks.

Due to computational constraints, we trained on
a subset of the RAID dataset, limiting the model’s
ability to capture its full diversity. Training on the
full dataset could greatly improve detection perfor-
mance, especially for underrepresented domains.

Performance variability across generator mod-
els (e.g., GPT-4 vs. Mistral) and limited multi-
lingual capabilities highlight the need for better
cross-domain generalization and robust multilin-
gual detection. While the ensemble approach en-
hanced generalization, it increased computational
overhead, warranting exploration of more efficient
strategies in future work.

6 Discussion and Conclusion

In this paper, we proposed an ensemble-based ap-
proach for cross-domain MGT detection, combin-
ing fine-tuned RoBERTa Base and RoBERTa Base
OpenAI detectors with inverse perplexity weight-
ing. Our method achieved competitive results, rank-
ing 10th and 8th in non-adversarial and adversarial
tasks, respectively, in Task 3 of the GenAI con-
tent detection workshop at COLING-2025. Inverse
perplexity weighting improved generalization by
prioritizing more confident models across diverse
domains. For non-adversarial tasks, we explored an
inverse perplexity-based ensemble approach. How-
ever, the detectors in this ensemble underperformed
compared to the fine-tuned RoBERTa model, high-
lighting the value of fine-tuning on task-specific
data and suggesting avenues for refining ensemble
techniques.

Our results show that transformer-based mod-
els, particularly RoBERTa, are effective for non-
adversarial and adversarial MGT detection. For
non-adversarial detection (Subtask A), we achieved
a score of 0.826, and for adversarial detection (Sub-
task B), we scored 0.801. However, cross-domain
detection remains challenging, especially with var-
ied generator models and multilingual data. Our
system performed well with generators like Chat-
GPT and GPT-4 but struggled with others like Co-
here and Mistral, indicating the difficulty of detect-
ing diverse machine-generated content.

Due to limited computational resources, we
trained on a subset of the available data. Despite
this, our models performed well, demonstrating the
potential of our approach even with partial data.
This work lays the foundation for further progress
in MGT detection, especially in adversarial and
cross-lingual settings. Future research can focus on
enhancing multilingual capabilities, incorporating
more diverse language models, and exploring dy-
namic ensemble strategies to improve performance
across domains and attack scenarios.
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A Appendix

Tools & Libraries Version
Python 3.10.14
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PyTorch 2.4.0
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WandB 0.16.6

Table 4: Main tools and libraries used in our system

Table 4 provide the details about the correspond-
ing libraries, which are beneficial to help replicate
our experiments.
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