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Abstract

The paper describes a system designed by Ad-
vacheck team to recognise machine-generated
and human-written texts in the monolingual
subtask of GenAI Detection Task 1 competi-
tion. Our developed system is a multi-task ar-
chitecture with shared Transformer Encoder be-
tween several classification heads. One head is
responsible for binary classification between
human-written and machine-generated texts,
while the other heads are auxiliary multiclass
classifiers for texts of different domains from
particular datasets. As multiclass heads were
trained to distinguish the domains presented
in the data, they provide a better understand-
ing of the samples. This approach led us to
achieve the first place in the official ranking
with 83.07% macro F1-score on the test set
and bypass the baseline by 10%. We further
study obtained system through ablation, error
and representation analyses, finding that multi-
task learning outperforms single-task mode and
simultaneous tasks form a cluster structure in
embeddings space. We release our code and
model1.

1 Introduction

With the continuous improvement of Large Lan-
guage Models (LLMs), the task of detection
machine-generated texts demands more and more
attention from the community. The potential
cases of misuse include malicious usage by stu-
dents (Zeng et al., 2023; Koike et al., 2023) and
scientists (Ma et al., 2023; Gritsay et al., 2023a).
Furthermore, this is often the cause of plagia-
rism (Avetisyan et al., 2023) and spam (Labonne
and Moran, 2023). The mentioned things are en-
couraging researchers to improve methods for de-
tecting artificial text simultaneously with enhanc-
ing generation methods.

1https://github.com/Advacheck-OU/
ai-detector-coling2025

Figure 1: Overview of the proposed multi-task archi-
tecture. Modules marked only with are trainable at
all stages. The weights of the Transformer Encoder are
frozen at the first stage of training and trainable at
the second one. The Custom Classification Head (CCH)
described in Appendix A is used for predictions.

The task of detecting machine-generated texts
is usually formulated as a binary text classifica-
tion task (Jawahar et al., 2020). The most com-
mon solutions are to fine-tune the Transformer-
based model (Gritsay et al., 2023b) or to use
zero-shot approaches with intrinsic statistics of
the text (Mitchell et al., 2023; Hans et al., 2024).
While these methods perform well on in-domain
tasks (Uchendu et al., 2021), they are not robust
to change of the domain, generator model, or lan-
guage of the texts (Wang et al., 2024a; Tulchin-
skii et al., 2023; Kuznetsov et al., 2024). Mean-
while, for the detection of AI-content in the wild
such a change is, on the contrary, a more realistic
setup (Dugan et al., 2024). Beyond this, the data
presented for the detection task may be of poor
quality, which also complicates the challenge of
the detection task (Gritsai et al., 2024). Therefore,
the goal is to obtain a model that is robust to the
presence of data of poor quality and with a lot of
noise, and, in addition, to make this model capable
to adapt to new domains.

https://github.com/Advacheck-OU/ai-detector-coling2025
https://github.com/Advacheck-OU/ai-detector-coling2025
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The high coherence and quality of writing
achieved by modern LLMs makes it difficult to
find a specific sample-counted qualitative feature
by which it would be possible to create a hyper-
plane in the space of texts and separate generated
from human-generated ones. One of the possible
refinements of the representations from the single-
task learning architecture is the multi-task learning
(MTL) (Crawshaw, 2020; Gritsay et al., 2022). It
was also noted that systems with MTL architecture
had achieved high results in the previous compe-
titions (Guo et al., 2024), therefore we decided to
utilize this approach in our work. In this paper
we discuss our solution as the Advacheck team at
GenAI Content Detection Task 1: English and Mul-
tilingual Machine-generated Text Detection: AI vs.
Human (Wang et al., 2025). Our method shows
that with additional internal data analysis and em-
bedding alignment using MTL, it is still possible to
achieve high performance in detecting fragments in
cross-domain and cross-generator setups on texts
from the advanced LLMs. As we forced model to
focus on various domains, it allowed us to form
a cluster domain-wise structure for the text repre-
sentations in the vector space. In our research, we
show that (1) multi-task learning outperforms the
default single-task, (2) cluster structure is formed
at the shared encoder (3) compare different config-
urations of the system and (4) analyse the errors of
the system.

2 Task Definition

The monolingual subtask of Task 1: Binary Multi-
lingual Machine-Generated Text Detection focuses
on identifying whether the English text was en-
tirely authored by a human or generated by a lan-
guage model. The competition is the continuation
and improvement of the SemEval Shared Task 8
(subtask A) (Wang et al., 2024b) and combines re-
freshed training and testing samples from different
domains and novel LLMs. The statistics of the
dataset are summarised in Appendix C. The official
evaluation metric for the monolingual subtask is
Macro F1-score and the additional metric is Micro
F1-score.

3 System Overview

Why multi-task learning? In the current task
formulation we have more than 600k texts in the
training set with dozens of domains and generation
models. Such an amount is very noisy for a binary

classification task, because it can be challenging
for a model to distinguish between relevant and ir-
relevant features. Multi-task learning may help the
model focus on those features that actually matter
as other tasks will update representation of sam-
ples with inner information. Our aim is to obtain
fine-grained representations of the data that ide-
ally ignores data-dependent noise and generalises
well. Since different tasks involve distinct noises,
a model trained on multiple tasks simultaneously
is able to learn a more general representation. Fur-
thermore, it reduces the risk of overfitting.

Model. We propose an MTL architecture with
hard parameter sharing (HPS), it is depicted in Fig-
ure 1. In HPS, a common Transformer-based en-
coder is used for multiple tasks. After several vari-
ations of set of parallel heads, we focused on three
custom classification heads (CCH) for simultane-
ous training:

• Binary CCH head for solving the initial mono-
lingual subtask [2 classes]

• Multiclass CCH to define a sub-source within
the HC3 (Su et al., 2024) source [5 classes]

• Multiclass CCH for sub-source detection
within the M4GT (Wang et al., 2024a) source
[6 classes]

The model was trained in two phases: fine-
tuning chosen classifiers with frozen shared en-
coder weights and fine-tuning the complete model
with all weights unfrozen . These learning stages
help to shift the distribution of the encoder weights
in the right direction and avoid overfitting (Xie
et al., 2021). At the inference stage, only binary
CCH predictions used for final classification.

4 Experiments

We focused on the monolingual subtask, carrying
out comparisons among models and ablations of
the best system. For these we employed the orig-
inal training and development splits provided by
the organizers. Our objective here was to reveal the
quality improvement in multi-task training com-
pared to single-task training.

4.1 Model Comparison

Baselines. As models for comparison we
chose Logistic Regression classifier (Chao-Ying
Joanne Peng and Ingersoll, 2002) with TF-IDF
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Figure 2: Two principal component decomposition of PCA for texts from the development subsample. In (a) the
vector space structure for the deberta-v3-base fine-tuned in single-task mode is shown, while figure (b) shows the
same model but fine-tuned in MTL mode with two additional custom classification heads.

Model Development Test
TF-IDF with LogReg 63.53 60.93
DeBERTaV3 base 82.56 78.52
MTL: 1 stage 80.51 78.67
MTL: 2 stage 87.33 81.55
MTL: 2 stage + threshold 87.96 83.07

Table 1: Results of model comparison on the test and
development set. The highlighted metric is macro F1-
score (%).

features on word n-grams, and DeBERTa-v3 fine-
tuned in two-stage mode described earlier, but in
single-task setting. In the MTL approach, we com-
pared checkpoints from different stages, and also
explored the effect of adding thresholds on the out-
put of the final classifier. We chose DeBERTa-
v3 base for the baseline and the backbone in our
system, as it is currently state-of-the-art model
for supervised fine-tuning for binary classifica-
tion (Macko et al., 2023).

The results are presented in Table 1. It can be
seen that there is a weak correlation between the
gap within the predictions on the dev and test sub-
samples. For example, the presence of a threshold
after the final layer affected the dev result only
slightly, but at the same time allowed us to achieve
a winning result on the test set. The hyperparame-
ters of the final model are given in Appendix B.

Rank System F1-score (%)
1 Advacheck (germgr) 83.07
2 tmatchitan 83.01
3 karla 82.80

15 baseline 73.42
36 nitstejasrikar 44.89

Table 2: Final results on the official ranking. Bold
denotes our team’s placement.

5 Results

Table 2 reports the leaderboard results on the
test set, where our system, Advacheck, achieves
a macro F1-score of 83.07%, outperforming ap-
proaches of the other participants and ranking first.
Our solution surpassed the claimed baseline by
10%.

6 Analysis

6.1 Embeddings after MTL

We made a comparison of text embeddings after
fine-tuning stages. Samples from development part
of data were forwarded to the Transformer-encoder
and [CLS] vectors were extracted as outputs. We
visualised these vectors using PCA in Figure 2. We
observe that the alignment of the representations,
which was mentioned above, introduces a cluster
domain-wise structure. Although the clusters are
not perfectly separable, a meaningful difference
between the standard BERT-like model and MTL
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Figure 3: Macro F1-score on the test set of different
configuration of the systems depending on the threshold.

Task Head Development Test
HC3 92.27 82.70
M4GT 91.70 81.07
MTL (HC3 + M4GT) 87.96 83.07
HC3 + M4GT + MAGE 91.43 79.23

Table 3: Comparison of different configurations of
heads and tasks trained simultaneously in MTL archi-
tecture. The highlighted metric is macro F1-score (%).

fine-tuning pipelines can be seen. Additional de-
compositions are presented in Appendix E.

6.2 Ablations

To provide further analysis on the multi-task setup
we experimented with configurations of our sys-
tems, changing the number of multiclass CCH. The
system on the leaderboard has 2 Multiclass CCH,
and we ran ablation experiments with 1 CCH and
3 CCH. The results are in the Table 3. Setups with
1 and 3 CCH showed better performance on the
development set, but marginally dropped in per-
formance on the test set compared to setup with
2 CCH. What is also interesting is that the results
obtained on HC3-trained CCH are similar to the
results obtained in M4GT-trained CCH, although
M4GT has 10 times more training data than HC3.
Additionaly, we experimented with the threshold
values on all our configurations. The figures are
shown in the Figure 3 and reaffirm the choice of
the final system and threshold for it.

6.3 Error Analysis

Answers on different datasets. The two datasets
with the highest percentage of incorrect predictions
are Mixset (Zhang et al., 2024) and CUDRT (Tao

Figure 4: Proportion of predictions for different gener-
ators from test set. Labels in bold are generators texts
from which are present in the train set.

et al., 2024), while the texts in the other datasets
are detected with very high precision. We attribute
this to the additional manipulations with these texts,
such as rewriting, “humanizing” and other editing,
done by the authors of the initial datasets. Other
texts in the test set and in train set, on the other
hand, are the raw output of generation models, with-
out post-processing them, or otherwise not stated.
See more details in Appendix D. In future itera-
tions, it may be worth trying to address these chal-
lenges with the post-processing addition for some
samples in the training data.

Answers on different generators. The propor-
tions of correct and incorrect predictions on test
set with respect to different generators are shown
in Figure 4. The majority of texts in the test set
are either human-written or generated with gpt-4o
and our system predicted labels for them very ac-
curately, therefore compensating the poorer perfor-
mance on other generators. Still, our system is not
yet robust enough to the change of generators, such
as texts from some of the unseen detectors, and we
will focus future research on addressing generali-
sation gaps and refining the approach for unseen
generators.

7 Conclusion

In this paper we described the system by the Ad-
vacheck team in the monolingual subtask at GenAI
Detection Task 1 competition. We proposed so-
lution with multi-task learning architecture that
consists of shared Transformer Encoder and com-
position of one binary and two multiclass Custom
Classification Heads. Our system obtained the best
results in the official ranking bypassing the base-
line by 10%. Adding tasks for training in parallel
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reveal the formation of a cluster structure in the
space of embeddings, helping to achieve high re-
sults despite the presence of a large amount of noisy
data. Also, it has been demonstrated that training a
similar model but in single-task mode loses to the
proposed approach, and configurations with one or
three multiclass heads also perform worse than our
final system.
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Hyperparameters 1st stage 2nd stage
Epochs 1 1
Learning rate (LR) 3e-4 3e-6
Warmup steps 50 75
Weight decay 0.01 0.01
Batch size 32 16
Classifier threshold - 0.92

Table 4: Hyperparameters for fine-tuning MTL archi-
tecture. We trained for 1 epoch in both stages with
possibility of early exit.

solutions. This is the continuation and improve-
ment of the SemEval Shared Task 8 samples. New
domains and generation models were added to the
data; details of train and dev sets are shown in Ta-
ble 7. In addition, a separate development dataset
was available on the CodaBench2 platform where
the competition was held; its statistics are shown
in Table 5.

Source Development Set
Human Machine

RAID 13371 0

LLM-DetectAIve 0 19186

Total 32557

Table 5: Statistics on development data from Cod-
aBench platform for monolingual subtask of the GenAI
Detection Task 1.

Source Test Set
Human Machine

CUDRT 12287 10691

IELTS Duck 9747 12418

PeerSum 5080 6995

LLM-DetectAIve 1635 900

Mixset 0 1086

NLPeer 5326 5376

Total 34075 37466

Table 6: Statistics on test data for monolingual subtask
of the GenAI Detection Task 1.

2https://www.codabench.org/competitions/3734/

D Percentage of Failures

See Figure 6 for detailed proportions of incorrectly
predicted texts from CUDRT and Mixset.

Figure 6: The percentage of falsely labelled texts from
two subdatasets in test set.

E Decomposition Study

In addition to the PCA decomposition of text em-
beddings after passes on our system, we mapped
the logit decomposition of two multiclass heads –
CCH on HC3 and CCH on M4GT. We sampled
the texts from the dev set, passed them through
the encoder and the corresponding classifiers, and
then decomposed the logits. From Figure 7, we
can observe that the data after the classifiers passes
remain in the expected cluster structure intended
by shared encoder. On the dataset HC3 this can
be seen more clearly. With these plots we can also
understand how well the multiclass classification
heads were trained directly, as they were not used
for the inference.

https://www.codabench.org/competitions/3734/
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Source Sub-sources Training Set Dev Set
Human Machine Human Machine

HC3
Finance, Medicine, OpenQA, Reddit_ELI5,
Wiki_CSAI

39140 17671 16501 7917

M4GT
Arxiv, Outfox, PeerRead, Reddit,
WikiHow, Wikipedia

86682 180381 36420 74167

MAGE
CMV, CNN, DialogSum, ELI5, HellaSwag,
IMDB, PubMed, Roct, SciGen, SQUAD,
TLDR, WP, XSum, Yelp

103100 183793 45407 81462

Total 228922 381845 98328 163430

Table 7: Statistics on training and development data from monolingual subtask of the GenAI Detection Task 1.

Figure 7: Two principal component decomposition of PCA for texts from development sub-sample. We decomposed
here by PCA the logits of the texts after the corresponding multiclass classifiers, namely HC3 and M4GT.
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