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Abstract

Entity Linking in biomedical literature is a crit-
ical task that enhances the extraction and in-
tegration of information from diverse scien-
tific literature. This paper introduces "BioEL",
a robust open-source Python package devel-
oped to advance Biomedical Entity Linking.
BioEL serves as an accessible and comprehen-
sive tool aimed at researchers and practition-
ers, facilitating the implementation and com-
parison of BioEL tasks. The package encom-
passes four key components: (1) Ontology
Object, which manages and applies ontolo-
gies across datasets; (2) Dataset Object, in-
tegrated with BigBIO for handling annotated
corpora; (3) BioEL Model Object, supporting
training of various BioEL models, including
those with pre-trained weights; and (4) Eval-
uation Framework, offering robust metrics
and methodologies for assessing model per-
formance. The library is extensible and con-
figurable, fostering ongoing development and
customization opportunities. This paper details
the design principles, core components, and
functionalities, and presents benchmarking re-
sults on entity-linking tasks using prevalent
biomedical datasets.

Our unified evaluation framework
and all included models are on
GitHub at https://github.com/pathology-
dynamics/biomedical-entity-linking.

1 Introduction

Entity Linking in biomedical literature is nec-
essary to harness the vast amount of information
embedded within scientific texts. The task involves
linking mentions of entities such as genes, proteins,
and diseases to their corresponding entries in the
Knowledge Base (KB) so researchers can navigate,
integrate, and analyze biomedical knowledge.

* These authors contributed equally to this work.

Figure 1: Disambiguation challenge in Biomedical En-
tity Linking

Despite its significance, biomedical entity link-
ing faces major challenges due to complex termi-
nology, limited labeled data, and a lack of inter-
operability between ontologies. Kartchner and
colleagues (Kartchner et al., 2023) introduced a
unified evaluation framework for state-of-the-art
Biomedical Entity Linking models. However, ac-
cessing, training and evaluating models across var-
ious tasks and datasets still requires extensive do-
main knowledge and time. The manual manip-
ulation of different files, model versions, model
settings, and data preprocessing steps decreases
reproducibility and slows innovation:

• Lack of model interface standardization -
Models have different requirements for input
formats, hyperparameters, and outputs, which
complicates the integration and comparison of
multiple models. For example, arboEL (Agar-
wal et al., 2022) supports only MedMentions,
BC5CDR, and ZeShEL datasets, and each has
its own preprocessing script.

• Dataset and ontology format variance -
Datasets and ontologies vary in formats and
annotation standards, resulting in significant
effort to convert and standardize. For exam-
ple, MEDIC (Davis et al., 2019) and Entrez

1709

https://github.com/pathology-dynamics/biomedical-entity-linking/tree/main/bioel
https://github.com/pathology-dynamics/biomedical-entity-linking/tree/main/bioel


Figure 2: Overview Structure of the Package.

Gene (Maglott et al., 2005) have distinct struc-
tures and contain different types of informa-
tion in their ontologies.

• Inconsistent task evaluations across the lit-
erature - Studies employ different metrics
and evaluation protocols, which makes it chal-
lenging to reproduce results and objectively
compare model performance. For instance,
(Zhang et al., 2022) showed that BYOSIN
(Sung et al., 2020) and SapBERT (Liu et al.,
2021) do not resolve ambiguity for an entity
mention that matches multiple entities. The
prediction is considered correct if the gold
entity is among the matching entities. Addi-
tionally, some models, like arboEL (Agarwal
et al., 2022), report results up to recall@64,
while others, like KRISSBERT (Zhang et al.,
2022), only report accuracy.

• Lack of model and dataset documentation -
Each model needs instructions for testing on
different datasets. Lack of instructions or hav-
ing poor or outdated documentation has been
a large impediment in reproducing published
experiments. MedLinker (Loureiro and Jorge,
2020), BioGenEL (Yuan et al., 2022b), and
ArboEL were previously found to be the most
challenging to adapt and reproduce (Kartch-
ner et al., 2023).

• Inefficient handling and processing - Machine
Learning researchers often repeat data prepro-
cessing, model training, and evaluation setup
for each model and dataset, making it a time-
consuming and inefficient process.

In this work, we introduce BioEL, an open-
source Python package tailored for biomedical en-

tity linking. BioEL establishes a standardized and
user-friendly framework that streamlines the exe-
cution and assessment of biomedical entity link-
ing tasks. By integrating existing resources and
methodologies, this package makes several key
contributions:

• BioEL currently supports 6 biomedical entity
linking models, utilizing an extensive collec-
tion of over 300 ontologies and spanning 26
diverse datasets.

• BioEL offers a unified interface for models,
datasets, and evaluation metrics, which sig-
nificantly reduces setup time and effort in
biomedical entity-linking research.

• The package promotes consistent model eval-
uation by facilitating objective comparisons
between different approaches and enhancing
result reproducibility.

• The BioEL user-friendly design and compre-
hensive documentation make the package ac-
cessible to new and existing practitioners.

• BioEL serves as a robust platform for devel-
oping and testing new models, thereby accel-
erating advancements in the field.

• BioEL is designed to be extensible and con-
figurable - facilitating seamless integration of
new models into the framework.

This paper outlines the design and implementa-
tion of BioEL and showcases its efficacy through
case studies and evaluations. In summary, the open-
source BioEL Python package enhances the effi-
ciency, accessibility, and impact of biomedical en-
tity linking research.
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2 Related work

Open-source packages such as BLINK (Wu et al.,
2020) and SpaCy (Honnibal and Montani, 2017)
are commonly used for entity linking and are easy
to use. However, they are general-purpose tools
that lack dedicated support for biomedical data and
each relies on its own model.

BioDBLinker (Walsh et al., 2020) is a rule-based
library designed for linking entities across biolog-
ical knowledge bases, enhancing data integration
and interoperability. However, it does not perform
traditional entity linking, such as resolving men-
tions to specific entities within a knowledge base,
nor does it support a unified entity linking model.

BENT: Biomedical Entity Annotator (Ruas and
Couto, 2022) is an entity linking tool that provides
end-to-end named entity recognition and linking
in the biomedical domain. It utilizes a graph-based
approach tightly integrated with 14 supported on-
tologies and employs pre-processing dictionaries to
map recognized entities to ontology entries. How-
ever, the package is restricted to this methodology
and does not support alternative models or linking
techniques.

BERN2 (Sung et al., 2022) and HunFlair2
(Sänger et al., 2024) also follow a fixed methodol-
ogy for entity linking, combining rule-based tech-
niques with BioSyn (Sung et al., 2020) and Sap-
BERT (Liu et al., 2021). However, like BENT, they
lack support for diverse and dataset independent
entity linking models, limiting their adaptability to
broader applications. Furthermore, both tools pro-
vide only pre-trained models optimized for specific
biomedical entity types—genes/proteins, diseases,
chemicals, species, and cell lines—while entity
linking for unsupported types relies solely on rule-
based methods.

Table 1 provides a comparison of BioEL’s func-
tionalities with BENT, BERN2 and HunFlair2

Feature BENT BERN2 HunFlair2 BioEL

Dataset Loader × × × ✓
Ontology Support ✓ ✓ ✓ ✓
Training Pipeline × × × ✓
Evaluator Object × × ✓ ✓
Benchmarking framework × × ✓ ✓
Plotting & Visualization × × × ✓
Pre-trained model ✓ ✓ ✓ ✓

Table 1: Comparison of BioEL with BENT (Ruas and
Couto, 2022), BERN2 (Sung et al., 2022) and

HunFlair2 (Sänger et al., 2024)

3 Architecture and Overview

3.1 Architecture
BioEL is a unified environment that integrates core
components to streamline biomedical entity linking
model development and evaluation without techni-
cal inconsistencies or redundant efforts.

• Ontology - bioel.ontology handles and uti-
lizes domain-specific knowledge representa-
tions, enabling the use of established ontolo-
gies like Unified Medical Language System
(UMLS) (Bodenreider, 2004) (100+), OBO-
Foundary (Smith et al., 2007) (~200), Med-
ical Subject Headings (MeSH) (Lipscomb,
2000), Entrez Gene (Maglott et al., 2005),
and MEDIC dictionary (Davis et al., 2019)
which includes disease entities from MeSH
and OMIM (Hamosh et al., 2005).

• Dataset - bioel.datasets efficiently handle
annotated corpora essential for training and
evaluating entity linking models. The BioEL
dataset object manages datasets from BigBIO
(Fries et al., 2022), a resource for biomedical
text mining. It supports loading, preprocess-
ing, and splitting datasets into training, vali-
dation, and test sets. It utilizes Ab3P (Sohn
et al., 2008) to identify and resolve abbrevia-
tions at train/inference time.

• BioEL model - bioel.model provides a uni-
fied interface for training and deploying vari-
ous entity-linking models, supporting model
configuration, training, and inference.

• Evaluation - bioel.evaluate assesses
BioEL model outputs by ranking entity candi-
dates for each dataset. Following (Kartchner
et al., 2023), it employs metrics like recall@k
for k ∈ N. By default, it uses the basic evalu-
ation strategy, with options to choose between
basic, strict, and relaxed approaches. Users
can also add custom metrics as needed.

The package allows seamless integration of new
datasets and models, enabling users to train, evalu-
ate, and compare state-of-the-art models for com-
prehensive exploration and development.

3.2 Package Structure Overview
Package components collectively facilitate the end-
to-end workflow of data handling, model develop-
ment, training, and evaluation.
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3.2.1 Data Template
The data template serves as a foundational
blueprint for managing ontologies and datasets
within the package, providing a standardized
framework for data structuring. In Biomedical
Entity Linking, we handle two main data types:
Ontology and Dataset.

For Ontology, BioEL supports a structured
format to define entities. The structure of the
BiomedicalOntology is as follows:
1 class BiomedicalOntology:
2 name: str
3 types: List[str]
4 entities: Dict[str ,

BiomedicalEntity]
5 dataset: Optional[str] = None

- name: Ontology identifier

- types: Types in the Ontology

- entities: CUI-to-Entity mappings

- dataset: Dataset name (optional)

Note that a dataset name is required for the
Entrez Gene Ontology. Each entity within the
ontology is encapsulated as an instance of the
BiomedicalEntity class, which is structured as
follows:
1 class BiomedicalEntity:
2 cui: str
3 name: str
4 types: List[str]
5 aliases: List[str]
6 definition: Optional[str] = None
7 equivalant_cuis:

Optional[List[str]] = None
8 taxonomy: Optional[str] = None
9 metadata: Optional[dict] = None

- cui: Concept Unique Identifier

- name: Entity name

- types: Entity types

- aliases: Entity aliases

- definition: Entity definition (optional)

- equivalent_cuis: Equivalent CUIs (optional)

- taxonomy: Entity taxonomy (optional)

- metadata: Metadata dictionary (optional)

This structure ensures that the ontology and
its entities are defined consistently. Users
can add a new ontology by implementing its
loader function as a class method within the
BiomedicalOntology class.

BigBIO datasets (Fries et al., 2022) are the pri-
mary framework for dataset management due to
their widespread usage. For integrating further
datasets, we recommend exploring the collections
available on HuggingFace.

We provide the Mention class to integrate addi-
tional datasets while insuring consistency:

1 class Mention:
2 cui: str
3 start: int
4 end: int
5 name: str
6 types: List[str]
7 deabbreviated_text: Optional[str]

= None

- cui: Concept Unique Identifier

- start: Start index of the mention

- end: End index of the mention

- name: Mention name

- types: Mention types

- deabbreviated_text: Deabbreviated mention
(optional)

3.2.2 Data Module

The data module uses LightningDataModule
from the PyTorch Lightning library (Falcon and
team, 2019) to manage model-specific data prepa-
ration and processing. It is structured as follows:

• prepare_data - Handles one-time tasks like
downloading datasets or tokenizing large text
corpus on a single GPU.

• setup - Initializes and partitions datasets into
training, validation, and test sets individually
on each GPU, if multiple GPUs are used.

• train_dataloader - Creates the
DataLoader for the train data.

• valid_dataloader - Creates the
DataLoader for the validation data.

• test_dataloader - Creates the DataLoader
for the test data.

These methods efficiently handle and distribute
data across multiple GPUs (in a multi-GPU setup),
optimizing the model training process by maxi-
mizing computational resources and accelerating
performance.
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3.2.3 Model Template
The Model Template serves as a blueprint for train-
ing and evaluating models within the package. To
incorporate a new model into the library, users
should adhere to the specific structure illustrated
in Figure 5 in the Appendix.

In train.py, the essential training loop resides
within the function placeholder train_model,
while evaluate.py houses the fundamental
evaluation loop in the function placeholder
evaluate_model.

3.2.4 Model Object
The BioEL_Model class serves as a versatile inter-
face for managing various biomedical entity link-
ing models within a unified framework. The struc-
ture is outlined as follows:

• Initialization - Sets up the BioEL model
by defining key attributes including its name,
the selected entity linking model, paths to
training and evaluation scripts, and necessary
parameters for configuration and execution.

• Entity Linking Model - Creates an instance
of the model with configured parameters

• Training - Initiates model training using the
specified training script path

• Inference - Executes model evaluation and
inference using the designated evaluation
script path

• Configuration Handling - Configures
model with config.json

Users can integrate a new model into the pack-
age using the following code snippet:
1 from bioel.models.NewModel.model

import new_model
2 from bioel.model import BioEL_Model
3

4 class newModel(BioEL_Model):
5 @classmethod
6 def new_model(cls , name , params ,

checkpoint_path=None):
7 model=new_model(params)
8 train_script_path=
9 "bioel/models/NewModel/train.py"

10 evaluate_script_path=
11 "bioel/models/NewModel/evaluate.py"
12 return cls(model , name ,

train_script_path ,
evaluate_script_path , params)

3.2.5 Evaluator
The Evaluate class in BioEL, accessed through
bioel.evaluate, is designed for evaluating

model performance on specified datasets. It sup-
ports different metrics (Recall@k, MAP@k), and
includes functionalities for model analysis (failure
stage, error per type · · ·), comparison, and score
visualization across different models. There are
currently 3 different evaluation strategies :

• Basic: Resolves ties by randomly ordering
equally ranked entities.

• Relaxed: An entity link is correct if any
predicted normalization matches any ground
truth.

• Strict: A normalization is correct only if all
predicted normalizations match the ground
truth.

The Evaluator expects model outputs in a
specific format where each sample is repre-
sented as a dictionary containing at least db_ids,
mention_id, type and candidates keys, struc-
tured as follows :
[
{

data about the mention 1 ...
"db_ids": Gold CUI of mention 1,
"mention_id": "9288106.1",
"type": type of mention 1,
"candidates": [
[candidate 1 and its equivalent cuis],
[candidate 2 and its equivalent cuis],
etc...
]

},
{

data about the mention 2 ...
"db_ids": Gold CUI of mention 2,
"mention_id": "9288106.2",
"type": type of mention 2,
"candidates": [
[candidate 1 and its equivalent cuis],
[candidate 2 and its equivalent cuis],
etc...
]

},
etc..
]

If using abbreviations in the analysis, re-
place "mention_id": "9288106.1" with
"mention_id": "9288106.1.abbr_resolved"

4 Available Models and ontologies

BioEL provides unparalleled flexibility with its
support for 6 distinct biomedical entity linking
models, paired with a vast array of over 300 on-
tologies and 26 datasets. This creates a massive
range of model-ontology-dataset combinations al-
lowing users to tailor their entity linking tasks with
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precision, ensuring the system is adaptable to a
variety of biomedical challenges. This versatility
positions BioEL as a leading tool in biomedical re-
search, enabling users to explore a huge number of
approaches to entity linking. Table 2 summarizes
the supported models, datasets and ontologies.

4.1 Models

BioEL supports multiple categories of models:

4.1.1 Alias Matching EL
Alias-based EL associates entity mentions with the
correct aliases in a KB. This includes exact string
matching and computing similarity scores between
the mention and a set of candidate aliases. Alias
matching methods include SciSpacy (Neumann
et al., 2019) and SapBERT (Liu et al., 2021).

4.1.2 Contextualized EL
Contextualized EL leverages transformer (Vaswani
et al., 2023) abilities to capture semantic simi-
larities between contextualized mention and en-
tity metadata (Logeswaran et al., 2019). For in-
stance, (Wu et al., 2020) used a pretrained BERT
bi-encoder (Devlin et al., 2019) to first generate
candidates based on these similarity scores and
then a cross-encoder for the final disambiguation
step. The BioEL package features two contextual-
ized EL models: KRISSBERT (Zhang et al., 2022)
and ArboEL (Agarwal et al., 2022).

4.1.3 Autoregressive EL
Autoregressive model-based EL approach (Cao
et al., 2021) uses a generative language model to
map textual mentions directly to canonical entity
names. This method contrasts with traditional ap-
proaches by not relying on predefined indices for
entities, allowing for seamless handling of new
and unseen data without re-training. This makes it
particularly robust in zero-shot settings. The pack-
age includes BioBART (Yuan et al., 2022a) and
BioGenEL (Yuan et al., 2022b).

5 Usage

This section explores how to utilize the BioEL
library’s full range of features.

5.1 Installation

BioEL can be installed via pip:

pip install bioel 1

1https://pypi.org/project/bioel/

5.2 Loading a Dataset

Load datasets with BioEL’s Dataset (from
bioel.dataset). Here’s a code snippet for load-
ing the dataset BC5CDR (Li et al., 2016) dataset.

1 from bioel.dataset import Dataset
2

3 dataset = BigBioDataset(dataset_name =
"bc5cdr")

5.3 Loading Ontology

BioEL supports loading ontologies us-
ing the BiomedicalOntology class from
the bioel.ontology module. The func-
tions adhere to a consistent naming con-
vention, load_<ontology_name>, where
<ontology_name> is substituted with the actual
ontology name. The code snippet demonstrates
loading MEDIC ontology.

1 from bioel.ontology import
BiomedicalOntology

2

3 ontology =
BiomedicalOntology.load_medic(
filepath = "path/to/medic.tsv",
name="medic")

5.4 Loading Model

BioEL provides the BioEL_Model class from the
bioel.model module for loading, training and
evaluating the models. The code snippet below
illustrates the process of loading the KrissBERT
model (Zhang et al., 2022).

1 from bioel.model import BioEL_Model
2

3 krissbert =
BioEL_Model.load_krissbert(params)

4 krissbert.training ()
5 krissbert.evaluation ()

Here, the params argument refers to a configura-
tion file containing details like the dataset name,
ontology, model hyperparameters, training settings,
and evaluation configurations. Examples of config-
uration files for each supported model are provided
in the GitHub link.

During execution, the
krissbert.evaluation() method gener-
ates a result.json file formatted to be suitable
for the Evaluate object.

5.4.1 Evaluating Results
BioEL facilitates model evaluation through the
Evaluate class from the bioel.evaluate mod-
ule. The snippet below demonstrates the process:
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Models Supported Ontologies Datasets

SapBERT, SciSpacy, KRISSBERT,
ArboEL, BioBART, BioGenEL

UMLS (100+), OBO (Gathers
~200), MEDIC, Entrez,

BigBio datasets (26)

Table 2: Available Datasets and Models in BioEL.

Impl. NCBI-Disease BC5CDR MM-Full MM-ST21PV GNormPlus NLM-Chem NLM-Gene
1 5 1 5 1 5 1 5 1 5 1 5 1 5

SapBERT 0.753 0.899 0.873 0.926 0.608 0.795 0.594 0.771 0.174 0.538 0.755 0.876 0.066 0.314

0.753 0.896 0.883 0.934 0.611 0.786 0.637 0.788 0.234 0.614 0.812 0.889 0.075 0.348

KRISSBERT 0.745 0.797 0.720 0.757 0.583 0.745 0.548 0.689 0.108 0.121 0.551 0.583 0.280 0.484

0.752 0.803 0.735 0.766 0.591 0.755 0.559 0.701 0.079 0.087 0.560 0.596 0.279 0.482

SciSpacy 0.697 0.838 0.843 0.902 0.590 0.773 0.577 0.751 0.110 0.375 0.616 0.706 0.055 0.228

0.680 0.780 0.780 0.803 0.582 0.759 0.572 0.741 0.471 0.772 0.467 0.503 0.163 0.349

ArboEL 0.771 0.820 0.902 0.938 NR NR 0.687 0.798 0.585 0.647 0.790 0.857 0.560 0.751

0.774 0.832 0.921 0.958 NR NR 0.747 0.890 0.441 0.524 0.828 0.882 0.543 0.734

BioBART 0.728 0.834 0.864 0.921 0.586 0.805 0.569 0.788 0.112 0.363 0.721 0.823 0.061 0.319

0.423 0.608 0.572 0.733 0.548 0.764 0.496 0.700 0.175 0.499 0.512 0.650 0.043 0.233

BioGenEL 0.734 0.851 0.867 0.920 0.574 0.783 0.561 0.764 0.141 0.412 0.743 0.856 0.062 0.305

0.518 0.692 0.909 0.953 0.567 0.763 0.520 0.691 0.081 0.281 0.786 0.879 0.043 0.233

Table 3: Comparison Recall@1 and recall @ 5 between (Kartchner et al., 2023) and replicated performance
for models in the BioEL Python package. NR=Not reproducible due to computational constraints.

1 from bioel.evaluate import Evaluate
2

3 eval_strategies = ["basic"]
4 dataset_names = ["bc5cdr"]
5 model_names = ["krissbert"]
6 path_to_result = {
7 "bc5cdr": {
8 "krissbert": "path/to/result.json"
9 }

10 }
11 eval_strategies =["basic"]
12 abbreviations_path =

"path/to/abbreviations.json"
13

14 evaluator = Evaluate(dataset_names ,
model_names , path_to_result ,
eval_strategies ,
abbreviations_path)

15 evaluator.load_results ()
16 evaluator.process_datasets ()
17 evaluator.evaluate ()
18 evaluator.plot_results ()
19 evaluator.detailed_results ()

- datasets: List of dataset names to be evaluated

- models: List of model names to be evaluated

- results_path: directory where result.json
files each model are stored.

- eval_strategy: "basic", "relaxed", "strict"

- abbreviations_path: (Optional) Path to JSON
file containing mappings for abbreviations.

5.4.2 Evaluation features

The Evaluate class from the bioel.evaluate
module supports a variety of statistical tests, includ-
ing fine-grained metrics computation through the
detailed_results_analysis attribute. It pro-
vides stratified evaluation per entity type (e.g.,
chemical vs. disease), which allows users to gain
deeper insights into model performance across
different semantic categories. This process de-
termines whether the observed variations in met-
rics, such as accuracy, are statistically significant,
thereby enabling a more rigorous and comprehen-
sive evaluation of model performance.

5.5 Documentation

Additional resources on how to modify the datasets,
the ontologies, and how to utilize the different mod-
els, as well as how to initiate their training, per-
form inference, and review all evaluation results,
are provided in the README.md file available in
the GitHub repository.

6 Results

BioEL was benchmarked to ensure the BioEL
Python package re-implementation accurately
replicated the included models.
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Figure 3: Accuracy vs Training time (s) for all models
supported by BioEL on MM-ST21PV dataset

6.1 Main Results

The methodology of (Kartchner et al., 2023) was
closely followed. The main findings, detailed in
Table 3, show recall@1 (accuracy) and recall@5
for all models included in the package across vari-
ous datasets. Figure 4 provides a visual illustration
of the changes in recall@k for k = 1, . . . , 10, gen-
erated by the BioEL evaluator object. The train-
ing time for all models supported by BioEL was
reported for the largest dataset, MM-ST21PV, as
shown in Figure 3. All experiments were con-
ducted on a single Nvidia A40 GPU.

Additional results were included in the appendix,
such as failure stage analysis (Table 7), perfor-
mance by entity type (Table 4), statistical signifi-
cance (Table tests 5), and Mean Average Precision
(MAP) (Table 6).

6.2 Difference in reported results

For most models and datasets, BioEL results
closely aligned with those reported by (Kartch-
ner et al., 2023). Notably, KRISSBERT required
minimal modifications, as we used the model with
its original pre-trained weights, ensuring strong
consistency. In contrast, models that required train-
ing or fine-tuning, along with adjustments to data
processing for better generalization across differ-
ent datasets, occasionally exhibited discrepancies.
These differences could be attributed, for example,
to variations in hyperparameters.

6.2.1 ArboEL
ArboEL requires both the title and description of
entities. In this package, we standardized the de-
scription pattern across all KBs to enhance gener-
alizability as mentioned in 2.2.1. This standardiza-

tion may account for the minor differences shown.

6.2.2 Scispacy

In (Kartchner et al., 2023) work, the Approximate
Nearest Neighbor (ANN) was trained exclusively
on UMLS across all datasets. To derive their re-
sults, they remapped the CUIs from UMLS to those
of their respective original ontologies, which is not
the optimal methodology for entity linking. For the
BioEL evaluation, we aligned the training of the
ANN with the specific ontology relevant to each
dataset. This nuanced approach explains the simi-
lar performance for datasets using UMLS and the
superior performance for datasets employing the
MEDIC and MeSH ontologies (due to a reduced
number of aliases). Conversely, the outcomes for
the GNormPlus and NLMGene datasets declined
because the initial UMLS encompasses only a lim-
ited subset of the most frequent CUIs from Entrez
Gene, drastically narrowing the spectrum of plau-
sible aliases and therefore candidates; making the
task simpler.

6.2.3 BioGenEL / BioBART

In the BioEL benchmark, both BioGenEL and Bio-
BART were fine-tuned using their respective pre-
trained weights available in the original BioGenEL
repository and on HuggingFace. These models
were fine-tuned with the same trainer, utilizing the
BART-large tokenizer to generate the results. Note
that the outcomes are within the range of the re-
sults of (Kartchner et al., 2023) and those reported
by the original authors (Yuan et al., 2022a). In the
BioEL package, entity definitions were intention-
ally omitted while creating the target knowledge
base (KB) for the Entrez ontology, as only the
aliases are required. This omission accounts for
the differences in results for the GNormPlus and
NLMGene datasets. Additional variances are antic-
ipated due to changes in data preprocessing, such
as tokenized inputs for the encoder and decoder,
optimization techniques, and other user-specific
parameter selections.

6.2.4 SapBERT

The main source of variance arises from differ-
ences in the fine-tuning strategies. While we fine-
tuned SapBERT on UMLS combined with its asso-
ciated ontology, the authors of the referenced paper
fine-tuned it directly on the associated ontology.
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Figure 4: Recall@K for all models using basic evaluation strategy (generated by BioEL Evaluator)

7 Conclusion

BioEL is a free, open-source Python library de-
signed to simplify biomedical entity linking. It
features a user-friendly interface and flexible de-
sign, enabling researchers to easily apply advanced
entity-linking techniques. BioEL offers robust
tools for ontology management, dataset handling,
and model training and evaluation, supporting var-
ious models with comprehensive metrics. Its ex-
tensibility and configuration options allow for the
customization and integration of new models or
datasets. Benchmarking demonstrates BioEL’s ef-
fectiveness across diverse datasets, enhancing in-
formation extraction and integration from the sci-
entific literature to advance biomedical research.

8 Limitations and Future Directions

While BioEL provides a convenient and integrated
platform for conducting EL analysis, supporting re-
producible research, and fostering future advance-
ments, it also has inherent limitations. Its associ-
ation with the biomedical domain raises concerns

about potential misuse, especially in healthcare
settings. To mitigate these risks, we recommend
users refer to comprehensive discussions and guide-
lines on responsible AI in biomedical research
(Blasimme and Vayena, 2020).

Currently, BioEL incorporates versatile models,
yet lacks specialized models tailored for specific
entities such as genes and chemicals, which could
enhance performance on specific datasets. Addi-
tionally, it’s crucial to acknowledge the evolution
of knowledge bases. Therefore, we strongly advise
users to thoroughly evaluate both the models and
the overall BioEL system before proceeding with
practical implementations.

Priorities for future releases of BioEL include
more entity-linking models and a wider range of
datasets that go beyond the currently supported
BigBio datasets. Contributions from the open-
source community are encouraged to join this
evolving effort.
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A Appendix

We organize the appendix into three sections:

• Further details on the Model Template are
provided in Appendix A.1.

• Additional results and analysis can be found
in Appendix A.2.

• Discussions on the potential use of LLMs for
entity linking are presented in Appendix A.3.

A.1 Model Template
Figure 5 shows the structure users must follow to
add their own model to BioEL.

Figure 5: Model structure

The diverse nuances and variances in biomedi-
cal entity linking models necessitated this specific
design of the BioEL architecture. To ensure consis-
tency and reproducibility with the original works,
each model uses its own training and evaluation
script, allowing seamless integration of original
code while minimizing new variances. Importantly,
this design maintains ease of use and supports fu-
ture expansion to new models.

A.2 Additional Results
In this section, we present additional results, in-
cluding evaluation by entity type, MAP@k scores,
and an error analysis detailing failure stages (CG
or NED).

A.2.1 Evaluation per entity type for
MM-ST21PV

In Table 4, we show the performance recall@1 and
recall@5 on the different types within MedMen-
tions_st21pv dataset for all supported models.
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ArboEL BioBART BioGenel KRISSBERT SapBERT SciSpacy
1 5 1 5 1 5 1 5 1 5 1 5

Virus 0.703 0.808 0.663 0.930 0.663 0.895 0.465 0.564 0.709 0.878 0.634 0.883

Bacterium 0.693 0.766 0.621 0.759 0.633 0.797 0.452 0.535 0.624 0.751 0.590 0.751

Anatomical Structure 0.659 0.748 0.610 0.793 0.584 0.768 0.515 0.639 0.637 0.772 0.619 0.763

Body System 0.767 0.811 0.578 0.811 0.622 0.833 0.689 0.856 0.656 0.800 0.589 0.800

Body Substance 0.830 0.892 0.802 0.910 0.793 0.877 0.689 0.807 0.745 0.882 0.745 0.816

Finding 0.703 0.851 0.545 0.755 0.546 0.737 0.558 0.701 0.572 0.776 0.546 0.723

Injury or Poisoning 0.647 0.849 0.493 0.756 0.518 0.784 0.476 0.650 0.580 0.776 0.504 0.748

Biologic Function 0.741 0.851 0.626 0.858 0.613 0.833 0.592 0.731 0.674 0.839 0.660 0.817

Health Care Activity 0.645 0.784 0.448 0.758 0.460 0.746 0.517 0.691 0.489 0.762 0.474 0.739

Research Activity 0.800 0.902 0.393 0.632 0.380 0.603 0.722 0.884 0.422 0.612 0.400 0.581

Medical Device 0.544 0.710 0.530 0.699 0.467 0.631 0.260 0.431 0.501 0.606 0.515 0.654

Spatial Concept 0.750 0.844 0.656 0.820 0.633 0.798 0.659 0.800 0.671 0.798 0.678 0.809

Biomedical Occupation or Discipline 0.740 0.867 0.755 0.878 0.744 0.883 0.541 0.791 0.776 0.893 0.755 0.888

Organization 0.649 0.764 0.602 0.751 0.576 0.738 0.547 0.691 0.586 0.673 0.605 0.691

Professional or Occupational Group 0.731 0.864 0.689 0.838 0.686 0.800 0.631 0.775 0.700 0.839 0.675 0.828

Population Group 0.862 0.972 0.580 0.885 0.572 0.865 0.801 0.935 0.615 0.867 0.584 0.847

Chemical 0.594 0.679 0.575 0.758 0.571 0.729 0.429 0.552 0.603 0.752 0.580 0.717

Food 0.630 0.736 0.693 0.817 0.618 0.742 0.497 0.668 0.559 0.646 0.568 0.668

Intellectual Product 0.647 0.792 0.482 0.714 0.433 0.659 0.540 0.711 0.445 0.638 0.444 0.638

Clinical Attribute 0.858 0.913 0.483 0.848 0.474 0.882 0.752 0.824 0.678 0.879 0.511 0.848

Eukaryote 0.694 0.789 0.647 0.844 0.635 0.823 0.511 0.627 0.617 0.805 0.625 0.806

Table 4: Performance recall@1 and recall@5 on the different types within MedMentions_st21pv dataset for all
supported models.

A.2.2 Statistical Significance Tests
In Table 5, we provide the p-values for the accu-
racy of all evaluated models and datasets. The
p-values determine whether the performance dif-
ferences across various types within a dataset are
statistically significant.

MM-Full and MM-ST21PV consistently show
extremely low p-values across all models, indicat-
ing that there is a significant statistical difference in
performance for all models on these datasets. All
models exhibit varying performance on different
data types for these datasets.

On the other hand, for datasets such as BC5CDR
and NLM-Gene, some models show higher p-
values (e.g., ArboEL with a p-value of 0.812 on
BC5CDR or BioBART with 0.353 on NLM-Gene).
These higher p-values indicate that these models
are more robust across the different types for these
datasets.

A.2.3 Mean Average Precision
In Table 6, we show the score of MAP@1 and
MAP@5 for all evaluated models and datasets.

A.2.4 Failure Stage
To compute the scores for Candidate Generation
(CG) and Named Entity Disambiguation (NED)
failures in 7, we defined a CG failure as occurring
when the correct CUI does not appear within the
top-k candidates generated. For NED failures, we

only counted instances where the top-ranked candi-
date was incorrect, given that the correct CUI was
still present in the list of plausible candidates.

A.3 Potential role of LLM for entity-linking
Currently, LLMs are not ideal for entity linking due
to several key limitations. Firstly, they are not in-
herently aware of the databases in the different on-
tologies, which often leads to hallucination when
generating candidates even with explicit informa-
tion. This makes them completely unreliable for
the candidate generation step. While fine-tuning
them could mitigate this issue, it is both more
resource-intensive and challenging given their size,
especially for domain-specific tasks like biomedi-
cal entity linking.

However, people are leveraging LLMs as an
external tool to enhance the data quality for tradi-
tional biomedical entity linking models (Borchert
et al., 2024) (Chen et al., 2024).

Regardless of the LLM usage and performance,
this package offers researchers an additional tool
designed to support their work in biomedical entity
linking.
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NCBI-Disease BC5CDR MM-Full MM-ST21PV NLM-Gene

SapBERT 5.18−6 4.45−88 0.00 6.75−216 3.62−2

KRISSBERT 1.81−8 2.17−20 0.00 1.74−293 3.56−8

SciSpacy 1.69−3 2.66−126 0.00 2.05−217 1.29−1

ArboEL 7.89−4 8.12−1 NR 4.86−191 7.14−5

BioBART 8.09−6 1.32−1 0.00 2.26−199 3.53−1

BioGenEL 3.17−6 7.43−3 0.00 2.67−201 9.87−3

Table 5: P-value of recall@1 for all evaluated models and datasets. GNormPlus and NLM-Chem were not shown
because they only have 1 type. NR=Not reproducible due to computational constraints.

NCBI-Disease BC5CDR MM-Full MM-ST21PV GNormPlus NLM-Chem NLM-Gene
1 5 1 5 1 5 1 5 1 5 1 5

SapBERT 0.752 0.812 0.873 0.895 0.608 0.686 0.594 0.667 0.174 0.282 0.755 0.803 0.066 0.142

KRISSBERT 0.745 0.765 0.720 0.735 0.583 0.650 0.548 0.606 0.108 0.113 0.551 0.565 0.280 0.368

SciSpacy 0.567 0.681 0.843 0.865 0.590 0.665 0.577 0.649 0.110 0.197 0.616 0.649 0.055 0.109

ArboEL 0.771 0.791 0.902 0.917 NR NR 0.687 0.731 0.585 0.611 0.790 0.819 0.560 0.642

BioBART 0.728 0.774 0.864 0.886 0.586 0.674 0.569 0.656 0.112 0.183 0.721 0.760 0.061 0.141

BioGenEL 0.734 0.784 0.867 0.888 0.574 0.659 0.561 0.644 0.141 0.218 0.742 0.788 0.062 0.136

Table 6: MAP@1 and MAP@5 for all evaluated models and datasets. NR=Not reproducible due to computational
constraints.

NCBI-Disease BC5CDR MM-Full MM-ST21PV GNormPlus NLM-Chem NLM-Gene
CG NED CG NED CG NED CG NED CG NED CG NED CG NED

SapBERT 0.307 0.693 0.501 0.499 0.469 0.531 0.508 0.492 0.182 0.818 0.451 0.549 0.196 0.804

KRISSBERT 0.686 0.314 0.800 0.200 0.450 0.550 0.547 0.453 0.983 0.017 0.859 0.141 0.638 0.362

SciSpacy 0.252 0.748 0.513 0.487 0.464 0.536 0.486 0.514 0.510 0.490 0.706 0.294 0.629 0.371

ArboEL 0.664 0.336 0.500 0.500 NR NR 0.591 0.409 0.817 0.183 0.653 0.347 0.493 0.507

BioBART 0.437 0.563 0.428 0.572 0.284 0.716 0.283 0.717 0.326 0.674 0.442 0.558 0.135 0.865

BioGenEL 0.357 0. 643 0.402 0.598 0.321 0.679 0.327 0.673 0.224 0.776 0.345 0.655 0.130 0.870

Table 7: Percentage of failure stage for each evaluated model and dataset. NR=Not reproducible due to
computational constraints.
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