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Abstract
Generalized zero-shot intent detection (GZID)
aims to recognize the labels of utterances from
both seen and unseen intents by utilizing the
knowledge learned from seen intents. Enhanc-
ing the generalization ability from seen intents
to unseen intents is a key challenge in the GZID
setting. Existing methods attempt to tackle
this challenge by distinguishing unseen intents
from seen intents or focusing on enhancing the
model discriminability. However, the challenge
is not solved substantially as they ignore to
promote the representation learning ability of
the model itself and neglect to strengthen the
model adaptability to new tasks, resulting in
overfitting on the seen intents. In this paper,
we propose a pairwise prompt-based tuning
model with parameter efficient fast adaptation
which involves two training steps. In the first
step, we leverage hybrid contrastive learning in
discriminant space and masked language mod-
eling to make predictions at both sentence and
token levels, which can enhance the model dis-
criminability and representation learning ability
respectively. In the second step, we design a
pipeline for generating and filtering unseen data
by only providing unseen intent labels, and uti-
lize parameter-efficient fine-tuning to quickly
adapt to unseen intents. Experiments on four
intent detection datasets demonstrate that our
two-step training method has better comprehen-
sion and generalization capabilities.

1 Introduction

Conversational systems such as social robots and
voice assistants emerge almost in every digital de-
vice (Seminck, 2023), which need to comprehend
human intent to provide appropriate responses or
execute corresponding instructions. However, with
the expansion of conversational systems, the dia-
logue topics are no longer limited to predefined do-
mains. To recognize the fast-emerging intents, col-
lecting the annotated data and retraining the intent
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detection model are resource-intensive. To solve
this issue, zero-shot intent detection is proposed
to detect unseen intents with the help of learned
knowledge from seen intents. In standard zero-shot
learning setting (Chang et al., 2008; Xian et al.,
2019), the test set only contains data in unseen
classes, making it impractical in real applications.
Approaches designed under this circumstance is
hard to generalize to unseen classes, i.e., classify-
ing most test data into seen classes, which moti-
vates generalized zero-shot intent detection (GZID)
that classify utterances in both seen and unseen
classes during inference (Socher et al., 2013; Atz-
mon and Chechik, 2019; Pourpanah et al., 2023).

The challenge of GZID lies in how to improve
the generalization ability of identifying unseen
intents. Recently, various GZID methods have
been proposed. These include pre-partitioning ap-
proaches that first use a classifier such as LOF
(Breunig et al., 2000) or PU (Su et al., 2021) to
distinguish unseen intents from seen ones, and then
classify utterances with zero-shot intent detection
models. Some of these models such as Zero-Shot
DNN (ZSDNN) (Kumar et al., 2017) learn the pro-
totypes using neural network trained via a ranking
loss. Others reconstruct the transformation matri-
ces, like CapsNet (Xia et al., 2018) and ReCapsNet
(Liu et al., 2019), or incorporate external knowl-
edge, such as RIDE (Siddique et al., 2021). Ad-
ditionally, the models above can further enhance
their performance by leveraging a plugin called
Class-Transductive Intent Representations (CTIR)
(Si et al., 2021), a framework that incorporates un-
seen label names during training.

Another branch of approaches implement GZID
via an end-to-end manner. The network called
Learn to Adapt (LTA) (Zhang et al., 2022) simu-
lates the training scenario of GZID by constructing
virtual unseen categories from seen classes. This
involves continually adjusting category prototypes
and sample representations to obtain improved em-
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beddings. SP RoBerta+template (Lamanov et al.,
2022) utilizes templates to fuse utterances and in-
tent labels, transforming intent recognition into a
text entailment task (Yin et al., 2019), then it ap-
plies contrastive learning on multiple pairs of seen
data and intent labels to enhance discriminability.
AGCR (Liu et al., 2024) employs a generation-
based method that utilizes a large pre-trained lan-
guage model to produce pseudo-novel samples.
The most representative samples are selected as
category anchors, and labels are predicted based on
similarity to these anchors. Despite its advantages,
training from scratch on the generated unseen data
can be resource-intensive and time-consuming.

Nevertheless, current models face two main is-
sues. Firstly, the generalization ability of pre-
partitioning methods highly relies on the perfor-
mance in distinguishing unseen intents from seen
intents in the first stage. Therefore, these meth-
ods sometimes struggle to adapt effectively to the
GZID setting. Although some methods can directly
detect unseen intents by skipping the first stage, the
performance tends to be poor in the GZID setting.
Secondly, while end-to-end methods are devoted
to enhancing the model discriminability by mini-
mizing classification errors in loss function, they
often ignore to promote the representation learning
as well as adaptability to new tasks, limiting the
generalization ability when it comes to identifying
unseen intents.

To address these issues, we propose a pairwise
prompt-based tuning model with parameter effi-
cient fast adaptation for GZID. This method in-
volves two steps. In the first step, we concatenate
the utterances and intent labels with a template,
and conduct prompt-based tuning with two loss
functions. The hybrid contrastive learning loss in
discriminant space employs a more challenging
negative sampling strategy by sampling both hard
utterances and hard intents. The masked language
modeling loss further leverages information from
positive samples, enhancing the model’s represen-
tation learning at the token level by predicting the
random mask tokens. In the second step, we ap-
ply a parameter-efficient fine-tuning strategy called
P-tuning (Liu et al., 2021) to quickly adapt the
base model trained in the first step to unseen tasks.
To accomplish this, we use a generative model to
produce a small batch of unseen data, which is
then filtered by a similarity model. Subsequently,
P-tuning is applied to fit the unseen intents by freez-
ing the base model’s parameters from the first step

and adding a small prompt encoder to facilitate
rapid adaptation to unseen intents.

Our contributions can be outlined as follows.
(1) We introduce a two-step training approach to
address the challenge of generalizing to unseen
intents in the GZID setting. (2) We propose a
novel hybrid contrastive learning loss function in
a discriminant space, coupled with masked lan-
guage modeling loss targeting each positive pair
of utterance and intent to make predictions at the
sentence and token levels, respectively. (3) We
devise a systematic process for acquiring unseen
data through data generation and filtering, and em-
ploy a parameter-efficient fine-tuning strategy P-
tuning to rapidly adapt the model to new intents
with minimal parameter adjustments. (4) Experi-
ments on four dialogue datasets demonstrate that
our approach outperforms state-of-the-art baselines
in the GZID setting.

2 Related Work

2.1 Generalized Zero-Shot Intent Detection

In the intent detection task, the generalized zero-
shot learning (GZSL) methods can be broadly clas-
sified into three categories: transformation-based
methods, compatibility-based methods and textual
entailment based methods. Transformation-based
methods such as CapsNet (Xia et al., 2018), ReCap-
sNet (Liu et al., 2019), and CTIR (Si et al., 2021)
calculate inter-intent similarity based on word em-
beddings of intent labels. These methods leverage
this similarity to effectively transform predictions
from seen intents to unseen ones, establishing se-
mantic connections between seen classes and un-
seen classes. Compatibility-based methods like
ZSDNN (Kumar et al., 2017), LTA (Zhang et al.,
2022), AGCR (Liu et al., 2024) strive to establish a
unified semantic space for label names or category
anchors and utterances through training on labeled
data. This shared space facilitates the computa-
tion of similarity between unseen label names and
test utterances, enabling effective prediction for
unseen classes. Textual entailment-based methods
(Lamanov et al., 2022) expand labels into coherent
sentences, then concatenate them with correspond-
ing samples to form sentence pairs. By inputting
these pairs into PLMs, the similarity of sentence
pairs is calculated using a linear classification head.
This process transforms intent recognition into a
text entailment task (Sun et al., 2022). Besides
the GZID setting that has seen intents, some meth-
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Figure 1: The framework of our pairwise prompt-based tuning model. There are two steps to train this model: base
model training and parameter efficient fast adaptation. The first step is to concatenate the utterances and the intent
labels with a template, then train the encoder by predicting randomly masked tokens for positive sentence pairs
as well as identifying the positive and negative sentence pairs with a hybrid contrastive learning loss. The second
step is to generate unseen data by providing category descriptions to GPT3.5 and filter these generated data with
SimCSE, then fine-tune the prompt encoder by adding some soft prompts to adapt to incoming unseen intents.

ods like ZeroGen (Ye et al., 2022) and PromptMix
(Sahu et al., 2023) assume that there are no seen
data available, thus they implement data augmen-
tation, which leverages large language models and
label descriptions to generate synthetic data, then
train a supervised model to identify unseen data.

2.2 Contrastive Learning

The effectiveness of contrastive learning is promi-
nently demonstrated in both computer vision (Bach-
man et al., 2019; He et al., 2020; Zhang et al.,
2021a; Han et al., 2021) and natural language pro-
cessing (Gunel et al., 2021; Gao et al., 2021; Yan
et al., 2021). This approach typically includes cate-
gorizing samples into positive and negative pairs,
enabling the model to better capture the data repre-
sentations. Some studies employ contrastive learn-
ing in the prototype space, such as the work of
intent recognition (Zhang et al., 2021b). There are
also instances of using contrastive learning in the
discriminative space to construct positive and neg-
ative examples (Sun et al., 2022; Lamanov et al.,
2022). Research in (Zhang et al., 2021b) indicates
that self-supervised contrastive pre-training and
supervised contrastive fine-tuning are highly bene-
ficial for improving intent recognition with limited
samples. Simultaneously, the straightforward unsu-
pervised contrastive learning proposed by SimCSE
(Gao et al., 2021) has achieved significant success
in text alignment tasks.

2.3 Parameter-Efficient Tuning

Fine-tuning large pre-trained language models for
downstream tasks has proven effective, but it is
also computationally expensive (Pourpanah et al.,
2023; Xu et al., 2023; Ding et al., 2023). Re-
cent approaches aim to make transfer learning
more parameter-efficient by tuning only a small
subset of parameters, which helps to reduce both
memory and computational costs while preserv-
ing strong performance. Common techniques in-
clude: Adapters (Houlsby et al., 2019), which
add lightweight layers to the model, enabling task-
specific adjustments without the need for full net-
work retraining. LoRA (Low-Rank Adaptation)
(Hu et al., 2021), which reduces the number of
trainable parameters by decomposing weight ma-
trices into low-rank matrices. P-Tuning (Liu et al.,
2021), which freezes the original model parame-
ters and instead employs a small set of trainable
continuous prompt embeddings, concatenated with
discrete prompts, to guide the model training.

3 The Proposed Method

3.1 Problem Formulation

The goal of generalized zero-shot intent detection
is to train a model with utterances of seen intents
to recognize unseen intents. Given a set of seen
classes Y s = {y1, ..., yk} and a set of unseen
classes Y u = {yk+1, ..., yn}, where Y s ∩ Y u = ∅.
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Intent Template

VERB + NOUN book_hotel the user wants to book a hotel
NOUN flight_status the user wants to get a flight status.

Table 1: Illustration of converting intent labels into
sentences.

During the training stage, the model can only lever-
age the samples Ds = {(xi, yi)}mi=1 belonging
to the seen classes, where xi is an utterance and
yi ∈ Y s is its corresponding label. Whereas during
the test stage, the trained model can be used to pre-
dict the samples in both seen and unseen classes.

3.2 Framework Overview

We propose to detect the intent behind each utter-
ance by designing a pairwise prompt-based tuning
model, which is trained in two steps. The frame-
work is shown in Figure 1. In step 1, we propose
a hybrid contrastive learning loss and a masked
language modeling loss to train the base model at
both the sentence and token levels. In step 2, we
devise a data generation and filtering strategy to
produce a handful of unseen data, and use them to
fine-tune the base model in a parameter efficient
way.

3.3 Pairwise Prompt-Based Tuning Model

We leverage the powerful pre-trained language
model to conduct prompt-based tuning with the
samples Ds = {(xi, yi)}mi=1 belonging to the seen
classes. Considering that the number of classes
in the training and test stages are usually inconsis-
tent, to strengthen the generalization ability of the
model, we transform the multi-class classification
task into a binary classification task which predicts
whether there is a contextual relationship between
two sentences.

To better align with the NSP task, we expand
the intent label y into a coherent sentence, referred
to as template(y). This expansion is illustrated
in Table 1, as intents typically follow the form of
gerunds or noun phrases.

Given an utterance x and an intent label y, we
first combine them to obtain a synthetic sentence:

T(x,y) = [cls] x [sep] template(y). (1)

Then we input the whole sentence T(x,y) into the
pre-trained language model Encoder(·) and obtain
the [cls] embedding Encoder(T(x,y)). Finally, we
construct a linear classification module upon the

[cls] embedding to obtain the correlation between
the utterance x and the intent label y:

v(T(x,y)) = Sigmoid(WEncoder(T(x,y)) + b),
(2)

where v(x, y) is a value between 0 and 1, and W
and b are model parameters.

3.4 Step 1: Base Model Training

Hybrid Contrastive Learning Loss in Discrimi-
nant Space The goal of contrastive learning is to
construct positive and negative samples to train the
model, improving its representation and discrimina-
tive capabilities. Several zero-shot intent detection
methods utilize contrastive learning in discrimi-
nant space (Sun et al., 2022; Lamanov et al., 2022).
However, they typically treat each utterance or in-
tent as an anchor and select a few intents or utter-
ances as negative samples. This approach, due to
the vast number of potential negative samples, of-
ten fails to guarantee that each intent or utterance
has sufficient hard negative samples.

In this section, we define the similarity and dis-
similarity (i.e., positive and negative pairs) of sam-
ples in discriminant space, which promote the dis-
criminability and robustness of data representa-
tions.

Given a positive pair of utterance and intent
(x+i , y

+
i ), we use hybrid negative sampling strate-

gies to sample negative pairs, which involves two
parts: 1) sampling a set of hard negative utterances
for intent y+i : Nuttr

i = {(x−j , y+i )}k1j=1; 2) sam-
pling a set of hard negative intents in terms of ut-
terance x+i : N intent

i = {(x+i , y−j )}k1j=1.
In the first scenario, for each positive pair

(x+i , y
+
i ), we use a pre-trained sentence similarity

learning model SimCSE-RoBERTa-large (Gao et al.,
2021) to compute the cosine similarity between
each utterance and y+i . Then, we select the top 100
out-of-class utterances with highest cosine similar-
ity values with y+i , and randomly choose k1 sam-
ples from the top 100 out-of-class utterances to con-
struct k1 negative pairs Nuttr

i = {(x−j , y+i )}k1j=1.
In the second scenario, we adopt a similar strat-

egy to sample hard negative intents y−j for a given
utterance x+i . In particular, we use SimCSE-
RoBERTa-large to calculate the similarity score
between each intent and x+i , then select the top
k1 intents besides y+i that have higher similar-
ity values. Finally we obtain k1 negative pairs
N intent

i = {(x+i , y−j )}k1j=1.
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We perform contrastive learning on each posi-
tive pair and its corresponding negative pairs and
minimize the following loss:

Li
dis = −log(v(x+i , y

+
i ))

−
∑

(x−
j ,y+i )∈Nuttr

i

log(1− v(x−j , y
+
i ))

−
∑

(x+
i ,y−j )∈N intent

i

log(1− v(x+i , y
−
j )).

(3)

Masked Language Modeling The hybrid con-
trastive learning loss in discriminant space en-
hances the model’s ability to distinguish hard neg-
ative samples. We aim to further capture token-
level connections within positive sample pairs by
deriving token representations through contextual
understanding.

For each positive utterance-intent pair (x+i , y
+
i ),

we concatenate them with a template using Eq.
(1) to obtain the sentence pi = T(x+

i ,y+i ). Then
we employ the MLM task to randomly mask the
sentences of all the positive pairs Ds. Our goal
is to predict the masked tokens in each sentence
pi, and minimize the cross-entropy loss between
the predicted tokens and true tokens. Here we use
Li
mlm as the average cross-entropy loss over all

masked tokens for each utterance xi:

Li
mlm = − 1

|M(pi)|
∑

wj∈M(pi)

logP (wj |p̃i), (4)

where p̃i represents the masked version of the sen-
tence pi. M(pi) represents the set of masked to-
kens in the sentence pi, and its cardinality is de-
noted as |M(pi)|.

Training loss In the training phase, for each ut-
terance xi ∈ Ds, we combine its hybrid contrastive
learning loss and masked language modeling loss,
and obtain the overall loss function for all the train-
ing utterances.

minL =
∑

xi∈Ds

Li
dis + λLi

mlm, (5)

where λ ∈ (0, 1] is a trade-off hyperparameter.

3.5 Step 2: Parameter Efficient Fast
Adaptation

Data Generation via Category Descriptions
Large language models have demonstrated out-
standing capabilities in generating high-quality text

samples (Schick and Schütze, 2021). In this sec-
tion, we utilize GPT3.5 as a generator to produce
unseen data.

Given an unseen category yu ∈ Y u, we slightly
extend the intent label to obtain a natural sen-
tence lu, then design a data construction template
Tgen(l

u) to encapsulate the category description
lu so as to guide the generation of unseen data.
Specifically, the template Tgen(l

u) takes the form:
"If I want to <category description>, I will say :"
(Liu et al., 2024). To ensure that the generated to-
kens end at a logical position, we adopt the "quote-
ending" strategy (Schick and Schütze, 2021) to
generate m′ training data Du

gen = {(xui , yui )}m
′

i=1

for each unseen category yu.
To avoid introducing noise into the generated

data, we further use SimCSE-RoBERTa-large to
select data xui whose cosine similarity to their cor-
responding textual intent template(yui ) is higher
than the threshold ϵ, and obtain the filtered gener-
ated dataset:

Du
gen′ = {(xui , yui ) | sim(xui , template(yui )) > ϵ},

(6)
where template(yui ) is a sentence converted from
the intent label yui through the template in Table 1.

Additionally, to prevent overfitting to unknown
categories, we randomly select k′ samples for each
seen intent category from the initial training set Ds

to form Ds
k′ , then combine them with the generated

unseen data Du
gen′ to constitute the training dataset

in step two.

P-tuning After generating a few number of un-
seen data, we adopt a popular parameter-efficient
fine-tuning strategy called P-tuning (Liu et al.,
2021) to achieve fast adaptation. In specific, we fix
the parameters of the base model and only fine-tune
a small number of new parameters to quickly adapt
the model to unseen intents.

Firstly, we construct pseudo tokens for soft
prompts: [p0, · · · , pz]. For each sentence con-
structed by a template T(x,y), we encapsulate it
using the soft prompts as:

T p
(x,y) = {[p0:i], T(x,y), [pi+1:z]}. (7)

Secondly, we concatenate the embeddings of
the original input sequence T(x,y) with z trainable
embedding vectors from the prompt encoder, for-
mulating the input as:

{e0, · · · , ei, enc(T(x,y)), ei+1, · · · , ez}, (8)
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Dataset #Classes #Samples Average Length Balanced
seen unseen overall unseen% total average

Atis 12 5 17 30% 4972 245 11.44 False
MultiWoZ 8 3 11 30% 27449 2495 11.07 False
Clinc150 112 38 150 25% 22500 150 8.31 True
Banking77 57 20 77 25% 13083 170 11.91 True

Table 2: Dataset statistics. "Unseen%" indicates the percentage of unseen intents in the total classes. The "average
#Samples" indicates the average number of samples per class. "Balanced" indicates whether the dataset is balanced
or imbalanced.

where ei is the embedding of the pseudo to-
ken pi obtained through the prompt encoder, and
enc(T(x,y)) is the input embeddings of the sentence
T(x,y).

For the prompt encoder, we choose a bidirec-
tional Long Short-Term Memory (LSTM) net-
work paired with a two-layer Multilayer Perceptron
(MLP) with ReLU activation.

ei = MLP([
→
ei ||

←
ei])

= MLP([LSTM(e0:i)||LSTM(ei+1:z)]),
(9)

where || denotes the concatenation operator.
We employ the same hybrid negative sampling

strategy as in section 3.4 to construct positive and
negative examples for contrastive learning, updat-
ing only the prompt encoder’s parameters. Using a
small amount of generated unseen data and freez-
ing the base model, we can fine-tune and save a
minimal number of parameters, enabling fast adap-
tation to new intents.

3.6 Inference
In the test phase, we input an utterance xtest com-
bined with the trained soft prompts into the model,
and calculate its correlation value with each intent
in both seen and unseen class sets, then predict
its label by selecting the intent which yields the
highest correlation score.

y∗ = arg
yj∈Y

max v(T p
(xtest,yj)

), (10)

where Y = Y s ∪ Y u is a class set that involves all
the intents.

4 Experiment

4.1 Dataset
We conduct experiments across four widely-used
English intent recognition datasets. The statistics
and data splitting of all the datasets are presented
in Table 2.

Atis (Hemphill et al., 1990): is a classic dataset
for natural language processing (NLP) and dia-
logue system research. Atis encompasses dialogues
related to air travel. It covers 17 fine-grained in-
tents involving flight information, ticket reserva-
tions, and airline details. It is noteworthy that the
number of utterances of each intent in Atis is highly
imbalanced. Specifically, the "flight" category con-
stitutes approximately 73.73% of the whole Atis
dataset.

MultiWoZ (Budzianowski et al., 2018): is a
well-known and publicly available dataset. We
use the recent version 2.2 of MultiWoZ in our
experiments, which contains utterances with 11
intents. Following the previous works (Siddique
et al., 2021; Lamanov et al., 2022), we keep the
utterances that have intents expressed by users.

Clinc150 (Larson et al., 2019): is a recently
published intent detection dataset that includes
22,500 in-scope queries covering 150 intent classes
from 10 domains.

Banking77 (Casanueva et al., 2020): is a fine-
grained intent detection dataset with 77 intents,
which is collected from banking dialogues compris-
ing 13,083 utterances.

4.2 Data Splitting

Data Splitting for Classes. We adopt the parti-
tioning approach proposed by (Zhang et al., 2022)
for the Atis dataset. For the MultiWoZ, Clinc150,
and Banking77 datasets, we follow the approach
outlined in (Lamanov et al., 2022). Specifically,
for Atis and MultiWoZ, we choose 30% of intents
as unseen intents (5 out of 17 and 3 out of 11).
For CLINC and BANKING, we select 25% of in-
tents as unseen intents (38 out of 150 and 20 out
of 77). It is noteworthy that unlike conducting 10
tests under a fixed splitting of classes, we imple-
ment 10 tests by randomly splitting the classes, i.e.,
we set the seed value from 0 to 9 to split the seen
and unseen classes, ensuring a random and diverse
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Atis

unseen seen overallMethod
Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

ZSDNN+CTIR 5.76±6.73 6.27±8.47 69.42±24.80 72.43±23.79 61.38±27.06 51.60±25.10
CapsNet+CTIR 5.85±7.45 9.72±12.10 95.12±1.78 96.82±1.34 62.26±38.93 59.77±40.01
RIDE+PU 48.29±20.48 53.48±20.70 86.40±7.65 91.92±4.99 71.95±20.44 74.04±15.88
LTA 34.92±9.10 46.74±10.64 97.02±1.46 71.64±25.96 70.00±20.24 72.57±14.31
SP RoBerta+template 39.70±21.30 48.80±21.98 94.94±7.21 96.23±4.35 81.28±10.25 81.23±8.38
AGCR 39.43±20.92 43.46±24.12 67.40±11.81 76.85±19.11 67.37±12.80 62.42±13.79

Ours (step1) 43.23±21.90 52.45±22.78 96.23±5.18 96.40±5.08 82.71±10.49 82.20±8.65
Ours (step1+step2) 54.55±21.41 62.78±21.90 95.58±5.04 96.01±4.70 85.54±7.85 85.54±6.86

Table 3: Results on Atis.

MultiWoZ

unseen seen overallMethod
Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

ZSDNN+CTIR 32.29±9.22 45.80±12.99 86.30±0.83 90.21±0.92 72.14±4.93 68.80±6.72
CapsNet+CTIR 0.18±0.07 0.36±0.14 93.50±0.95 94.12±0.84 68.73±5.05 60.36±6.81
RIDE+PU 74.28±9.61 79.46±13.72 89.84±6.85 91.43±7.36 81.63±3.93 82.03±6.35
LTA 69.84±12.87 76.90±12.81 91.55±2.75 82.35±4.96 79.08±9.93 78.96±10.00
SP RoBerta+template 62.40±23.10 72.20±17.50 94.10±1.10 94.80±1.00 78.50±10.30 78.20±10.50
AGCR 75.36±9.41 83.45±7.83 84.37±6.98 85.74±5.24 80.28±6.91 79.68±7.46

Ours (step1) 72.86±8.21 81.03±6.64 87.71±5.12 89.45±4.50 80.52±4.53 81.07±4.37
Ours (step1+step2) 75.43±7.56 83.61±6.47 91.70±1.53 92.86±1.04 82.60±4.47 82.99±4.49

Table 4: Results on MultiWoz.

Clinc150

unseen seen overallMethod
Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

ZSDNN+CTIR 29.84±3.04 38.81±3.60 78.48±1.10 79.12±0.93 66.21±1.04 63.22±1.31
CapsNet+CTIR 4.25±2.62 7.15±2.03 92.68±0.90 93.24±0.95 69.86±0.82 64.13±0.50
RIDE+PU 51.69±24.58 50.69±25.37 53.59±28.09 54.82±26.57 52.69±25.89 51.94±26.30
LTA 59.49±2.86 67.09±2.68 93.89±1.09 82.56±1.87 75.64±1.93 74.35±2.16
SP RoBerta+template 69.20±3.10 76.60±2.80 92.70±0.90 93.10±0.80 80.20±1.80 81.70±1.50
AGCR 62.08±3.16 62.19±2.84 77.35±0.92 78.24±0.76 70.58±1.93 71.63±1.56

Ours (step1) 71.68±3.38 77.83±3.42 95.55±0.87 96.11±0.87 82.88±1.76 82.14±2.01
Ours (step1+step2) 73.23±2.69 79.13±2.77 95.74±0.91 96.33±0.78 85.05±0.93 84.16±1.14

Table 5: Results on Clinc150.

Banking77

unseen seen overallMethod
Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

ZSDNN+CTIR 11.87±1.83 29.10±1.47 39.31±1.05 41.36±0.74 31.45±1.10 29.14±1.17
CapsNet+CTIR 1.36±0.42 3.19±0.80 79.67±1.52 80.56±1.22 58.89±1.72 52.63±1.34
RIDE+PU 31.37±14.59 30.16±16.12 21.16±10.04 23.43±9.82 26.17±11.75 25.12±12.73
LTA 56.02±1.97 64.89±2.31 89.46±0.76 76.59±1.93 71.32±1.39 70.25±1.85
SP RoBerta+template 58.38±3.76 67.89±3.09 88.61±0.99 90.20±0.78 72.22±1.97 71.70±2.08
AGCR 49.65±3.32 56.37±2.22 73.64±1.77 78.42±1.17 63.28±2.15 62.55±2.31

Ours (step1) 62.64±3.65 70.23±3.67 83.39±1.60 85.97±1.33 72.26±1.63 71.78±1.83
Ours (step1+step2) 62.82±3.34 70.48±3.42 86.11±1.22 88.49±0.77 73.40±1.52 72.79±1.65

Table 6: Results on Banking77.

923



evaluation of our proposed model and baselines.

Data Splitting for Training and Test Sets. We
randomly select 70% of samples for each seen in-
tent. 90% of them are assigned to the training set,
and the remaining 10% of samples constitute the
validation set. The test set comprises the remain-
ing 30% of samples in each seen class and all the
samples in unseen classes.

4.3 Baselines and Evaluation Metrics

We compare our method with existing zero-shot
intent detection methods including ZSDNN (Ku-
mar et al., 2017), CapsNet (Xia et al., 2018), CTIR
(Si et al., 2021), RIDE+PU (Siddique et al., 2021;
Su et al., 2021), LTA (Zhang et al., 2022), SP
RoBerta+template (Lamanov et al., 2022), and
AGCR (Liu et al., 2024). To enhance the perfor-
mance of ZSDNN and CapsNet in the GZID setting,
we apply CTIR to them, and denote them as ZS-
DNN+CTIR and CapsNet+CTIR. The details of
these baselines are provided in Appendix A.1.

Following the previous GZID methods, we use
accuracy (Acc) and weighted F1 score (F1) to eval-
uate classification performance. Both metrics are
computed with the average value weighted by the
sample ratio of the corresponding class.

4.4 Implementation Details

Following previous works, we conduct 10 tests us-
ing seeds ranging from 0 to 9 to randomly split
the seen and unseen classes, dividing the data into
training, validation, and test sets. We then report
the mean results and standard deviations for seen,
unseen, and overall intents separately. All experi-
ments are performed on NVIDIA RTX A100 GPU
with 80GB VRAM. More details about the hyper-
parameter setting are provided in Appendix A.2.

4.5 Result Analysis

The results on four intent detection datasets are
presented in Table 3, Table 4, Table 5, and Table 6,
respectively. The highest results are highlighted in
bold, and the second-highest results are underlined.
From the results, the following observations can be
made.

(1) Our model exhibits remarkable performance
on both balanced and imbalanced datasets without
overfitting to the seen intents, demonstrating its ro-
bustness in handling the GZID tasks. Compared to
the state-of-the-art baseline SP Roberta+template,

the average accuracy and F1 score on overall intents
are increased by 3.60% and 3.16%, respectively.

(2) Training on step 1 has already surpassed the
baselines, although the network architecture of the
base model is similar with SP Roberta+template,
we have further boosted the model performance via
a combination of hybrid contrastive learning and
masked language modeling.

(3) Fine-tuning the prompt encoder in step 2 ad-
justs a few parameters on the generated unseen data,
further improving the ability of detecting unseen
intents without compromising the effectiveness in
detecting seen intents.

(4) ZSDNN+CTIR and CapsNet+CTIR demon-
strate competitive results on seen intents. However,
under the setting of 10 random data splitting, the
average performance on unseen intents is relatively
lower. This indicates that their models may overfit
to the seen intents, resulting in a decrease in the
overall performance.

(5) RIDE+PU, by integrating a robust external
knowledge source in the form of a knowledge
graph, mitigates model dependency and exhibits
satisfactory results even under unseen intents. How-
ever, the standard deviations on the four datasets
indicate that the effectiveness of RIDE+PU heavily
relies on the data splitting.

(6) LTA and AGCR directly incorporate virtual
unseen categories or generate unseen data during
training, yet their performance remains inferior to
our model (step1), further confirming the general-
ization capability of our model.

4.6 Ablation Study
To verify the effectiveness of hybrid contrastive
learning and masked language modeling in the first
step, we conduct ablation study using seeds from
0 to 9 to randomly split seen and unseen classes
with average results shown in Table 7 and Table
8. The highest results are in bold, and the second-
highest results are underlined. "w/o mlm" indicates
the removal of the masked language modeling loss,
while "w/o hard intent" and "w/o hard utter" repre-
sent using only hard utterances or hard intents as
negative samples in the hybrid contrastive learning
loss. To match the number of negative samples
in the original version, the number of hard utter-
ances in "w/o hard intent" is set to 2k1. In "w/o
hard utter", the number of negative intents is set to
k′1 = min(Nseen − 1, 2k1), as the number of seen
intents Nseen may be smaller than 2k1.

The results in Table 7 and Table 8 show a signifi-
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Atis MultiWoZ

unseen seen overall unseen seen overallConfiguration
Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

Ours (step1) 43.23 52.45 96.23 96.40 82.71 82.20 72.86 81.03 87.71 89.45 80.52 81.07

w/o mlm 37.21 45.68 97.07 97.61 82.77 81.62 71.12 80.02 90.92 92.01 79.77 80.43
w/o hard intent 43.42 53.63 97.12 97.72 82.57 82.54 72.71 81.15 90.24 91.62 80.50 81.07
w/o hard utter 34.84 43.60 94.40 94.10 77.91 77.29 73.10 81.49 90.82 91.07 81.35 81.88

Table 7: Ablation study on Atis and MultiWoZ.

Clinc150 Banking77

unseen seen overall unseen seen overallConfiguration
Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

Ours (step1) 71.68 77.83 95.55 96.11 82.88 82.14 62.64 70.23 83.39 85.97 72.26 71.78

w/o mlm 70.85 77.05 93.47 94.37 81.47 80.73 61.84 69.85 83.31 85.77 71.67 71.26
w/o hard intent 70.76 76.88 92.52 93.45 80.97 80.32 57.85 65.88 75.42 78.22 65.89 65.85
w/o hard utter 69.22 75.38 88.75 89.89 78.38 77.76 59.59 67.52 73.99 76.19 66.18 65.99

Table 8: Ablation study on Clinc150 and Banking77.

cant drop in performance for recognizing unseen in-
tents when a submodule is removed. (1) Removing
the masked language modeling loss (i.e., w/o mlm)
reveals that this task enhances the model’s ability
to classify unseen intents, showing that incorpo-
rating a cloze task within positive sample pairs at
token level improves generalization in the GZID
setting. (2) The performance of only utilizing hard
utterances or hard intents as negative samples (i.e.,
w/o hard intent or w/o hard utter) varies depending
on the datasets, with some datasets benefiting more
from hard utterance sampling and some benefiting
more from hard intent sampling. Nevertheless, the
overall performance across the four datasets indi-
cates that a hybrid negative sampling strategy by
combining both hard utterances and hard intents is
more useful for discriminating the unseen intents.

5 Conclusion

In this paper, we explore intent detection in dy-
namic development scenarios with continuously
evolving novel intents. To address this challenge,
we propose a pairwise prompt-based tuning model
with two steps: base model training and parameter
efficient fast adaptation. The first step uses hybrid
contrastive learning with informative negative sam-
ples, while enhancing token-level representation
through masked language modeling. The second
step generates and refines unseen data, utilizing
parameter-efficient fine-tuning for rapid adaptation
to new intents. Extensive experiments on four in-
tent detection datasets validate the superiority of

our method in the GZID setting.

Limitations

Firstly, our approach relies on templates to convert
intent labels into sentences. We only use a simple
template here, introducing more precise templates
or designing specialized templates for specific do-
mains may further enhance the results. Secondly,
in binary classification tasks, as the number of in-
tents increases, the computational resources also
escalate. Maintaining a balance between classifi-
cation performance and resource consumption is
worth further exploration in the future.
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A Appendix

A.1 Baseline Description

ZSDNN (Kumar et al., 2017) employs squared
Euclidean distance and triplet loss to maintain mar-
gins between different classes, with the label em-
bedding as the anchor and the closest sample as the
negative in each triplet.

CapsNet (Xia et al., 2018) leverages capsule
neural networks for effective adaptation to new in-
tents via knowledge transfer. It extends capsule
networks to text modeling, using a hierarchical
approach to extract and aggregate semantic infor-
mation from utterances.

CTIR (Si et al., 2021) is a class-transductive
framework that incorporates unseen label names
during training, expanding the prediction space to
involve unseen classes, which can be integrated
with existing zero-shot intent detection methods.

RIDE+PU (Siddique et al., 2021; Su et al.,
2021) leverages commonsense knowledge from
ConceptNet and Positive-Unlabeled learning to
capture deep semantic relationships between ut-
terances and intent labels.

LTA (Zhang et al., 2022) avoids overfitting on
seen classes by training an adaptive classifier using
both seen and virtual unseen classes to simulate a
generalized zero-shot learning scenario.

SP RoBerta+template (Lamanov et al., 2022)
extends labels into sentences transforming to a bi-
nary classification task and uses contrastive learn-
ing to enhance its discriminative capability.

AGCR (Liu et al., 2024) employs a generative
model to produce pseudo samples for unseen cate-
gories, selecting typical ones as category anchors
to avoid negative transfer and capture the essence
of unseen categories through their descriptions.

A.2 Hyperparameter Setting

For the baselines, we conduct experiments by uti-
lizing the open-source code. We follow their exper-
imental setting in the original paper and carefully

adjust the hyperparameters based on the valida-
tion set. For SP Roberta+template, four different
templates are tested in their experiments, and we
choose the d1_template that exhibits the best per-
formance.

For our model, the hyperparameters are set ac-
cording to the performance of validation set. In
the first step, for the linear classification module,
we employ a dropout layer with the dropout rate
of 0.5, a linear layer, and a Sigmoid function to
map the results between 0 and 1. In discrimi-
native space, the number of negative samples in
terms of hard utterances and hard intents is set to
k1 = 7. For the whole pairwise prompt-based
tuning model, the learning rates are configured sep-
arately for Atis, MultiWoZ, Clinc150, and Bank-
ing77 as [2e-5, 2e-6, 2e-5, 5e-5], and the batch
size is set to [16,16,32,32]. We set the hyperpa-
rameters λ as 0.3. RoBERTa-base is chosen as
our pre-trained language model to align with the
state-of-the-art method (Lamanov et al., 2022). The
dimension of the embeddings in the hidden layer
is 768. The dropout rate in RoBERTa-base is set
to its default value 0.1. In the MLM task of our
model, the masking ratio and strategy are hyper-
parameters. Conventionally, pre-trained models
such as BERT and RoBERTa choose a 15% prob-
ability for masking tokens of the input, following
the 80-10-10 masking allocation strategy: 80% are
replaced with [MASK] tokens, 10% are replaced
by some random words, and 10% of the words are
unchanged. However, based on the investigation of
(Wettig et al., 2023), we opt for a 20% probability
as the masking ratio instead of 15%, and modify
the 80-10-10 masking allocation strategy by 100%
replacing the masked tokens with [MASK] by de-
fault.

In the second step, the parameters used for in-
voking the GPT-3.5 API are set to p=0.9 and tem-
perature=1.5. The number of generated data for
each unseen intent is set to m′ = 50, and the num-
ber of selected data for each seen intent is set to
k′ = 50 as well. For filtering the generated un-
seen data and P-tuning, we customize thresholds,
prompt lengths, and learning rates for each dataset:
Atis (ϵ: 0.5, prompt length: 6, learning rate: 2e-4),
MultiWoZ (ϵ: 0.6, prompt length: 4, learning rate:
2e-6), Clinc150 (ϵ: 0.6, prompt length: 4, learning
rate: 2e-4), and Banking77 (ϵ: 0.6, prompt length:
6, learning rate: 5e-5).
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A.3 Selection of k1
To analyze the impact of different k1 values in
contrastive learning, we conduct experiments on
both the imbalanced MultiWOZ dataset and the
balanced Bank77 dataset using seed 0. We evaluate
our method by setting k1 = 1, 3, 5, 7, 9. Note that
since MultiWOZ only use 8 intent categories for
training, k1 cannot be set to 9. The accuracy results
on overall intents are shown in Table 9, which indi-
cates that the best performance is achieved when
k1 is around 7.

Method 1 3 5 7 9

MultiWOZ 85.49 85.62 86.93 88.41 -
Bank77 75.69 78.41 77.43 77.38 76.47

Table 9: Selection of k1

A.4 Effectiveness of Loss Function
We conduct experiments to compare the Binary
Cross-Entropy (BCE) loss with the ranking-based
contrastive loss using softmax (RBC). We run both
methods by setting seed value from 0 to 9. The av-
erage accuracy results on unseen, seen, and overall
intents are shown in Table 10, which shows that the
BCE loss is comparable with the RBC loss.

Method BCE Loss RBC Loss

MultiWOZ 75.43 / 91.70 / 82.60 73.48 / 93.71 / 83.36
Bank77 62.82 / 86.11 / 73.40 57.37 / 85.25 / 71.57

Table 10: Performance comparison of BCE and RBC
losses on unseen, seen, and overall intents.
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