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Abstract

Causal inference has demonstrated significant
potential to enhance Natural Language Process-
ing (NLP) models in areas such as predictive
accuracy, fairness, robustness, and explainabil-
ity by capturing causal relationships among
variables. The rise of generative Large Lan-
guage Models (LLMs) has greatly impacted
various language processing tasks. This sur-
vey focuses on research that evaluates or im-
proves LLMs from a causal view in the fol-
lowing areas: reasoning capacity, fairness and
safety issues, explainability, and handling mul-
timodality. Meanwhile, LLMs can assist in
causal inference tasks, such as causal relation-
ship discovery and causal effect estimation, by
leveraging their generation ability and knowl-
edge learned during pre-training. This review
explores the interplay between causal inference
frameworks and LLMs from both perspectives,
emphasizing their collective potential to further
the development of more advanced and robust
artificial intelligence systems.

1 Introduction

Recently Large Language Models (LLMs) have
showcased remarkable versatility across a spectrum
of critical tasks. Moreover, there has been a recent
expansion into multi-modal variants, such as Large
Vision Language Models (VLMs) or Multi-modal
Large Language Models (MLLMs), which broaden
their input/output capabilities to encompass vari-
ous modalities. This evolution has significantly
enhanced both the potential and range of applica-
tions of these models. In this survey, our primary
focus is on Transformer-based LLMs and LVLMs.

The capability of LLMs is fundamentally rooted
in their inference abilities, which dictates their pro-
ficiency in comprehending, processing, and provid-
ing solutions to various inquiries, as well as their
adaptability to societally impactful domains (Zhao
et al., 2023d). Consequently, extensive research

efforts have been dedicated to measuring and en-
hancing these capabilities, ranging from assess-
ing the reasoning abilities of LLMs to scrutiniz-
ing their decision-making processes and address-
ing challenges such as concept alignment across
different modalities and mitigating hallucination.
Meanwhile, causal inference has shown great po-
tential in improving predictive accuracy, fairness,
robustness, and explainability of Natural Language
Processing (NLP) models (Feder et al., 2022), With
LLMs revolutionizing various language processing
tasks, there is a growing trend in applying causal
inference to address LLM-related challenges and
enhance their functionality. This survey outlines
causal methodologies and their implementation in
LLMs, emphasizing their role in enriching our com-
prehension and application of language models.

Moreover, this survey also aims to explore how
LLMs can help with the causal inference frame-
work. Causal inference is formally defined as an in-
tellectual discipline that considers the assumptions,
study designs, and estimation strategies that allow
researchers to draw causal conclusions based on
data (Pearl, 2009). Causal inference has three main
origins: potential outcomes, graphs, and structural
equations, each serving unique purposes (Zeng and
Wang, 2022). In this survey, we mainly discuss
Pearl’s formulation of causal graphs (Pearl, 1998),
which formalized causal graphical models for pre-
senting conditional independence among random
variables using directed acyclic graphs (DAGs).

We summarize how LLMs can help causal infer-
ence in its two important components, i.e., causal
relationship discovery and treatment effect estima-
tion. Estimating causal effects between variables
requires assumptions about their relationships with
other variables, traditionally provided by experts
LLMs, leveraging pre-trained knowledge, can as-
sist in identifying these relationships and enhance
causal discovery methods (Zanga et al., 2022) for
more reliable outcomes. Additionally, estimating

7683

furongh@umd.edu


treatment effects is often hindered by the absence
of counterfactual data. By utilizing LLMs’ strong
generative abilities, researchers have developed var-
ious ways to generate high-quality counterfactu-
als to enable treatment effect estimation. Figure
1 shows an overview of selected topics about the
interplay between causal inference frameworks and
LLMs from both perspectives.

2 Causal Inference and Large Language
Models

In this section, we provide a brief introduction to
both large language models (LLMs) and causal
inference, laying the groundwork for understand-
ing their interaction. We begin by outlining the
core principles and recent advancements in LLMs,
which have reshaped natural language processing
by enabling sophisticated language generation and
comprehension. Following this, we introduce the
fundamental concepts of causal inference, empha-
sizing its role in discerning cause-and-effect rela-
tionships within data. By establishing a founda-
tional understanding of these two fields, we aim to
clarify how their integration can lead to significant
advancements, enhancing both the reasoning ca-
pabilities of LLMs and the development of causal
inference methodologies.

2.1 Evolution of the Large Language Models

Large Language Models (LLMs) have transformed
the way we interact with and process language,
opening up new possibilities for natural language
understanding, generation, and communication
(Zhao et al., 2023d). In this paper, we mainly fo-
cus on Transformer (Vaswani et al., 2017) based
LLMs, and we provide an overview of their recent
progress in this section.

The introduction of the highly parallelizable
Transformer architecture (Vaswani et al., 2017),
which leverages self-attention mechanisms, has
led to the development of a range of Pre-trained
Language Models (PLMs) with varying architec-
tures and pre-training strategies, e.g., BERT (De-
vlin et al., 2019), GPT2 (Radford et al., 2019), and
so on (Radford et al., 2018; Liu et al., 2019; Lewis
et al., 2020). These models largely improved perfor-
mances for NLP tasks with a learning paradigm of
general-purpose pre-training and task-specific fine-
tuning. Researchers then find that scaling the size
of the model or pre-training data often leads to fur-
ther improved model capacity on downstream tasks

(Kaplan et al., 2020; Wei et al., 2022a; Schaeffer
et al., 2024). These larger-scaled PLMs are referred
to as large language models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2022; Team et al., 2023;
Achiam et al., 2023; Bai et al., 2023; Touvron et al.,
2023; Dubey et al., 2024).

These LLMs demonstrated strong capacities for
language processing and solving complex tasks
through text generation. We briefly introduce three
common strategies that are used to further enhance
their performance: In-context Learning (ICL)
(Brown et al., 2020), which allows LLMs with
natural language instruction and/or several task
demonstrations (i.e., input-output pairs); Chain-
of-Through (CoT) prompting (Wei et al., 2024),
which includes intermediate reasoning steps into
prompts to guide the model toward the final answer;
and Instruction tuning (Sanh et al., 2024; Ouyang
et al., 2022; Thoppilan et al., 2022), which refers
to fine-tuning the LLMs with a mixture of multi-
task datasets formatted as natural language instruc-
tions. Additionally, researchers have extended
these LLMs to handle images as input (Team et al.,
2023; Achiam et al., 2023), leading to the develop-
ment of Large Vision Language Models (VLMs) or
Multi-modal Large Language Models (MLLMs).
In this survey, we primarily focus on works that
adopt a causal perspective to improve LLMs in
their generative capacities.

2.2 Introduction of Causal Inference
In this section, we present the background knowl-
edge of causal inference, including task descrip-
tions, basic concepts and notations, and general so-
lutions. More details can be found in Appendix A.

Causal inference aims to estimate the causal re-
lationship among variables. The variables of in-
terest are referred to as treatment, naturally, the
effects of treatments are referred to as treatment ef-
fects. Ideally, the treatment effect can be measured
as follows: applying different treatments to the
same cohort, and then the difference in the effect
is the treatment effect. However, it is impractica-
ble for perfectly controlled experiments in many
cases, requiring estimation of treatment effect from
observational data. One of the most influential
frameworks in identifying and quantifying causal
effects in observational data is the potential out-
comes framework (Rubin, 1974). The potential
outcomes approach associates causality with ma-
nipulation applied to units, and compares causal
effects of different treatments via their correspond-
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Causal for LLMs

Reasoning Capacity

Model Understanding Zečević et al. (2023); Romanou et al. (2023); Kim et al. (2023); Li and Li (2023)
Abdali et al. (2023); Tang et al. (2023); Zhang et al. (2023c); Chen et al. (2024b)

Commonsense Reasoning Gao et al. (2023); Willig et al. (2022); Zhang et al. (2022)
Zheng et al. (2023); Lu et al. (2022); Chen et al. (2023a)

Counterfactual Reasoning Betti et al. (2023); Miao et al. (2023); Li et al. (2023c); Liu et al. (2023d)

Fairness and Bias Meade et al. (2021); Achiam et al. (2023); Stanovsky et al. (2019); Ding et al. (2022); Zhou et al. (2023a); Wang et al. (2023)
Madhavan et al. (2023); Jenny et al. (2023); Xia et al. (2024); Wu et al. (2024a); Gallegos et al. (2024)

Safety Cao et al. (2022); Bao et al. (2021); Zhao et al. (2023e, 2022); Meng et al. (2021); Liu et al. (2023a)

Explanation Hou et al. (2023); Belrose et al. (2023); Gurnee et al. (2023); Zhao et al. (2023a); Liu et al. (2023b); Vig et al. (2020)

Multi-modality Pawlowski et al. (2023); Ko et al. (2023); Li et al. (2023b); Su et al. (2023); Tai et al. (2023); Zhao et al. (2023c); Chen et al. (2024a)

Benchmark Xie et al. (2023); Zhang et al. (2023b); Huang et al. (2023); Yu et al. (2023); Jin et al. (2023a); Nie et al. (2023)
Jin et al. (2023b); Su et al. (2023); Li et al. (2023b); Chen et al. (2023b); Gao et al. (2023); Chen et al. (2024b,a)

LLMs for Causal

Treatment Effect Estimation Chen et al. (2023c); Feder et al. (2023); Zhang et al. (2023a)

Causal Relationships Discovery
Kıcıman et al. (2023); Naik et al. (2023); Antonucci et al. (2023); Long et al. (2023); Vashishtha et al. (2023)

Arsenyan and Shahnazaryan (2023); Ban et al. (2023a); Tu et al. (2023); Ban et al. (2023b,a)
Joshi et al. (2024); Feng et al. (2024); Li et al. (2024); Khatibi et al. (2024); Wan et al. (2024)

Figure 1: An overview of the interplay between causal inference frameworks and LLMs.

ing potential outcomes.

Definition 2.1 (Binary Average Treatment Ef-
fect(ATE)). Suppose we want to measure the treat-
ment effect of a treatment T = 1. Then the average
treatment effect is defined as:

E[Y (T = 1)− Y (T = 0)] (1)

where Y (T = 1) and Y (T = 0) denote the po-
tential treated and control outcome of the whole
population respectively.

The potential outcome framework is powerful
in recovering the effect of causes. In a potential
outcome framework, causal effects are answered
by specific manipulation of treatments. However,
when it comes to identifying the causal pathway or
visualizing causal networks, the potential outcome
model has its limitations. In the front of the chal-
lenge, causal graphical models utilize directed
edges to represent causalities and encode condi-
tional independence among variables in the graphs.
One of the most widely-spread formulations is the
Structural Equation Model (Wright, 1934; Pearl,
1998), where linear structural equation models are
used to present causal relationships by directed
edges, which differentiate correlation from causa-
tion when the graph structure is given. The linearity
assumption was later relaxed by (Pearl, 1998) and
it formalized causal graphical models for present-
ing causal relations using Directed Acyclic Graphs
(DAGs).

Specifically, consider the random variable X ∈
RD×N = [X1, X2, ..., XN ], where D represents

the dimensionality of each variable, and N is the
number of variables, the linear SEM consists of a
set of equations of the form:

Xi = β0i+
∑

j∈pa(Xi)

βjiXj+ϵi, i = 1, 2, 3, ..., N

(2)
where pa(Xi) denotes the set of variables that are
direct parents of Xi. ϵ1, ϵ2, ..., ϵN are mutually
independent noise terms with zero mean, βji are
coefficients that quantify the causal effect of Xj on
Xi.

While the non-parametric SEM takes the form:

Xi = fi(Xpa(i), ϵi), i = 1, 2, 3, ..., N (3)

The random variables X that satisfies the model
structure of the form in Equation (6) or Equation (7)
can be represented by a directed acyclic graph
(DAG) G = (V,E), where V is the set of asso-
ciated vertices, each corresponding to one of a vari-
able of interest Xi, and E is the corresponding
edge set. With pre-specified DAG and assumptions
on the latent variables, the coefficients between the
latent variables are identifiable (Kuroki and Pearl,
2014). Next, we show a comprehensive survey of
how existing causal frameworks help challenges in
LLMs.

3 Causal Inference for Large Language
Models

LLMs can significantly benefit from causal infer-
ence as it enhances their ability to understand and
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reason about cause-and-effect relationships within
data. In this section, we review how LLMs can
benefit from a causal lens in various capacities. We
show an overview in Figure 1.

3.1 Reasoning Capacity

3.1.1 Model Understanding

LLMs have demonstrated many emerging abilities
in language generation and certain reasoning tasks
(Bubeck et al., 2023; Kıcıman et al., 2023). As the
reasoning process is often associated with causal
factors, it is logical to first understand and eval-
uate LLMs’ reasoning ability from a causal lens.
Zečević et al. (2023) argued LLMs are not causal
and hypothesized that LLMs are simply trained on
the data, in which causal knowledge is embedded.
Thus, in the inference stage, the LLMs can directly
recite the causal knowledge without understanding
the true causality in the context. Similar behaviors
are exhibited in a Causal Reasoning Assessment
Benchmark, CRAB (Romanou et al., 2023).

Kim et al. (2023) examined LLMs’ abilities to
understand the causalities of both scientific papers
and newspapers. The results show that ChatGPT
performs worse than a fine-tuned BERT model in
determining the causality or correlation of given
statements. Abdali et al. (2023) show the effective-
ness of applying LLMs to diagnose the cause of
issues from Microsoft Windows Feedback Hub. Li
and Li (2023) showed that LLMs can identify dy-
namical (spatio-temporal) effects. However, how
to infer the relationship and interactions of them is
still challenging for LLMs, which are more empha-
sized as causal structures in causal inference.

Another important line of work is to understand
LLMs’ hallucination and faithfulness in knowledge
reasoning by considering causal effects. Tang et al.
(2023) proposed a multi-agent system, CaCo-CoT,
where some LLMs are reasoners and others are
evaluators. Reasoners try to provide causal solu-
tions, while evaluators try to challenge the reason-
ers with counterfactual candidates. With the coop-
erative reasoning framework, CaCo-CoT helps to
improve causal-consistency. Zhang et al. (2023c)
identified the potential knowledge bias pretrained
in the LLMs as the confounder which causes incor-
rect answers and hallucinations. They proposed a
CoT framework to generate sub-questions neces-
sary to answer a question and require humans to
provide the correct answers. Moreover, Chen et al.
(2024b) introduced CaLM, a comprehensive bench-

mark that systematically assesses LLMs’ causal
reasoning across diverse tasks, adaptations, and
error types.

3.1.2 Commonsense Reasoning
Commonsense reasoning involves the ability to ap-
ply everyday knowledge and intuitive understand-
ings of the world to make decisions or draw conclu-
sions, which is vital for LLMs’ contextual under-
standing and human-like interactions (Davis and
Marcus, 2015; Storks et al., 2019). This section
briefly summarizes the commonsense reasoning
ability of LLMs under various settings (Gao et al.,
2023; Willig et al., 2022) and the employment
of causally motivated methods in improving com-
monsense causality reasoning (Zhang et al., 2022;
Zheng et al., 2023; Lu et al., 2022; Chen et al.,
2023a; Zhao et al., 2023b).

The reasoning ability of LLMs is limited but
it could generate good causal explanations (Gao
et al., 2023). This viewpoint has been validated
through ChatGPT on event causality identification,
causal discovery, and causal explanation generation.
Willig et al. (2022) showed a similar observation
by evaluating LLMs on causal question answer-
ing, where LLMs arrived at their answers through
memorization instead of reasoning.

To improve the commonsense causality reason-
ing of LLMs that identify causes from effects in
natural language, ROCK (Zhang et al., 2022) bal-
ances confounding effects using temporal propensi-
ties through an estimation of the average treatment
effect. While ROCK adopts a potential outcome
framework, Chen et al. (2023a) uses a conversa-
tion cognitive model based on intuition theories
and transforms intuitive reasoning into a structural
causal model.

Other than facilitating the reasoning ability of
LLMs directly, Zheng et al. (2023) use causal in-
ference to preserve commonsense knowledge from
pre-trained language models for fine-tuning to pre-
vent catastrophic forgetting; Lu et al. (2022) focus
on improving LLM’s ability in generalized proce-
dural planning with commonsense-infused prompts.
For procedural planning tasks, Lu et al. (2022) pro-
posed to learn causeeffect relations among complex
goals and stepwise tasks, and reduced spurious cor-
relation among them via front door adjustment.

3.1.3 Counterfactual Reasoning
LLMs can generate counterfactuals as data aug-
mentations for small language models. Given a
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text x and a black-box classifier B, the counter-
factual text x̃ of text x should satisfy: (Betti et al.,
2023; Miao et al., 2023): (1) x̃ has a different class
than x, B(x) ̸= B(x̃); (2) x and x̃ differ only by
minimal lexical changes; (3) x̃ is a feasible text and
the commonsense constraint is satisfied.

To understand LLM’s ability to generate counter-
factuals, Li et al. (2023c) examined the following
tasks: sentiment analysis , natural language infer-
ence (NLI) , named entity recognition (NER) , and
relation extraction (RE) For simple tasks like senti-
ment analysis and NLI, data augmented via LLMs
can mitigate potential spurious correlations. For
more complicated tasks like RE, LLMs may gener-
ate low-quality counterfactuals. Liu et al. (2023d)
evaluated abductive reasoning and counterfactual
reasoning abilities and found code large language
models (Code-LLMs) achieved better results com-
pared to text models.

Many research also showed different ways of
incorporating counterfactuals in domain-specific
tasks. Miao et al. (2023) claimed that existing meth-
ods for generating counterfactuals for RE face two
challenges: identifying causal terms correctly and
ignoring the commonsense constraint. To amend
this, they proposed an intervention-based strategy
to generate commonsense counterfactuals for sta-
ble relation extraction. Similarly, Oba et al. (2023)
and Sen et al. (2023) used counterfactual genera-
tion to address issues in gender bias and harmful
language detection, respectively.

3.2 Fairness and Bias
Fairness and bias are pivotal factors in deploying
language models effectively and ethically. Bias is
common in pretrained language models as they cap-
ture and potentially amplify undesired social stereo-
types and biases (Meade et al., 2021; Achiam et al.,
2023; Zhou et al., 2024; Wu et al., 2024b; Wang
et al., 2024; Gallegos et al., 2024). An example of
bias in language models includes gender associa-
tions with specific professions, such as male fire-
fighters and female nurses (Stanovsky et al., 2019).
Causality-based methodologies offer a promising
approach for mitigating biases in language models
by discerning the origins of bias through a causal
perspective. Bias mitigation is then followed by
eliminating the unwanted spurious correlation be-
tween generative factors through different types of
causal intervention or causal invariant learning.

Ding et al. (2022) introduced a proxy variable
related to gender bias in the causal graph, and used

two different ways to eliminate the potential proxy
bias and unresolved bias under the linear structural
equation model. Zhou et al. (2023a) believe that
the backdoor path between the ground truth label
and the non-causal factors is the source of bias, and
used the Independent Causal Mechanism principle
to mitigate bias. Wang et al. (2023), from a dif-
ferent angle, eliminated the bias by performing a
do operation on the intermediate variables for both
white-box and black-box LLMs. Madhavan et al.
(2023) considered the tokens generated by genera-
tive language models trained with causal language
modeling objectives as a causal graph, and ana-
lyzed the bias under this model. Xia et al. (2024)
used a reward model as an instrumental variable
to perform causal interventions to reduce biases in
LLM outputs by modeling the confounders in pre-
training data and input prompts. Wu et al. (2024a)
used external knowledge as an instrumental vari-
able and front-door adjustment to improve the ac-
curacy of CoT reasoning on knowledge-intensive
tasks. Jenny et al. (2023) used Activity Depen-
dency Networks to describe the causality effect
between normative variables, such as clarity and
authenticity, to structure the cause of bias.

3.3 Safety
As researchers have observed the unreliability phe-
nomenon of LLMs in various applications (Cao
et al., 2022; Zhao et al., 2023e, 2022; Meng et al.,
2021; Liu et al., 2023a; Xu et al., 2024), there
is increasing interest in applying causal inference
techniques to analyze the causality of the non-
robustness of the model and adjust the treatment
to resolve the challenges (Cao et al., 2022; Zhao
et al., 2022, 2023e).

LLMs face challenges of unreliability when per-
forming knowledge probing by query LLMs with
task-specific prompts (Cao et al., 2022; Xiao et al.,
2023), such as using shortcuts to complete the prob-
ing and generating different predictions for the se-
mantically equivalent prompt. By simply translat-
ing text tokens in input prompts to emoji sequences,
LLMs generated more severe hallucinations (Zhao
et al., 2023e). The main reason is that they rely on
spurious correlations to make an inference (Zhao
et al., 2022). Training LLMs to learn the causal
relationship between input x and output y is an
intuitive method of better resisting prompt attacks.
The randomized smoothing technique (Zhai et al.,
2020; Jia et al., 2019) can model the interventional
distribution p(y|do(x)) by assuming discrete ad-
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versarial perturbations as the Gaussian distribution
(Zhao et al., 2022). The method of smoothing in the
latent semantic space is more robust against known
attacks such as word substitutions, paraphrasing,
and token position change (Zhao et al., 2022).

3.4 Explainability
Explainability in LLMs refers to the capacity to elu-
cidate how these models arrive at their conclusions,
enhancing transparency and trustworthiness in AI
decision-making processes (Guidotti et al., 2018;
Lipton, 2018). Many works have tried to under-
stand the inner workings of LLMs (Hou et al., 2023;
Belrose et al., 2023; Gurnee et al., 2023; Zhao et al.,
2023a; Liu et al., 2023b; Li et al., 2023d). We sum-
marize research efforts that probe the causal mech-
anism in LLMs from the following three directions:
intervening the inputs or prompts, intervening inner
components of LLMs, and abstracting the working
mechanism into a causal graph.

Inputs or Prompt Intervention Input interven-
tion, as a data-centric method, is to create counter-
factual input text by changing the treated feature
in the text, and then observe the model behaviors
on the original and counterfactual texts. LLMs
can first identify the features in input texts causally
associated with the predictions and are capable
of changing the identified features to create the
counterfactual texts (Bhattacharjee et al., 2023; Gat
et al., 2023). These counterfactual texts can be uti-
lized to investigate the causality of the LLM and
can serve as a training dataset to learn a match-
ing model, where the matched counterfactual pairs
have similar embeddings (Gat et al., 2023).

Various works have developed different prompt-
ing methods and found whether the prompting
methods are causally associated with the final out-
put of LLMs (Schick and Schütze, 2020; Zhou
et al., 2023b; Wei et al., 2022b). However, the
causal effect of prompting methods, such as chain-
of-thought (CoT), on the final output is ambiguous.
Prompt intervention, which alters only one partic-
ular aspect of prompts, is proposed to understand
the contributions of each component of prompts on
model behavior (Madaan et al., 2023; Ji et al., 2023;
Tan, 2023). These findings suggest that LLMs rely
on the causal model suggested by their CoTs to a
high extent, but LLMs also learn spurious correla-
tions such as sentence length to generate responses.

Inner Component Intervention Input or prompt
interventions help understand model behavior, but

inner component intervention is needed to uncover
the information cascade within LLMs. Existing
works mainly focus on the essential components
in SoTA LLMs: attention mechanism and MLP.
Stolfo et al. (2023) exchanged the activation values
in MLP and attention layers of different inputs to
probe the function of MLPs and attention mecha-
nism. While Stolfo et al. (2023) focuses only on
math word problems with four fundamental arith-
metic operators, it is an interesting direction to
generalize the component intervention to other ap-
plications. Vig et al. (2020) used causal mediation
analysis to interpret which components of neural
models are causally implicated in their behaviors
and applies this approach to uncover how gender
bias is mediated in GPT2.

Causal Graph Abstraction An intuitive way to
characterize causality within LLMs is to abstract
the working mechanism of LLMs into a causal
graph. Boundless Distributed Alignment Search
(DAS) (Wu et al., 2023), by replacing brute-force
searching the original DAS (Geiger et al., 2023)
with learnable parameters, has been effective on the
Alpaca model (Taori et al., 2023). Given four pre-
defined causal models, Boundless DAS extracts
two of them as the accurate hypotheses as the ab-
stracted causal graph of the Alpaca model. How-
ever, the Boundless DAS method is restricted by
the given causal hypothesis, and the future direc-
tion can explore how to abstract the causal graph
in LLMs without prior causal graphs.

3.5 Multi-modality

Large vision-language models have been popu-
lar in many applications (Maaz et al., 2023; Li
et al., 2023a; Liu et al., 2023c; Guan et al., 2024).
How to conduct causal reasoning on both images
and texts can be crucial in correctly answer multi-
modal questions (Niu et al., 2021). Pawlowski et al.
(2023) examined LLMs’ causal reasoning abilities
and showed that the causal knowledge in the lan-
guage models can be too strong a prior which often
causes the model to neglect visual evidence. Si
et al. (2022) highlighted how VQA models tend to
rely on various shortcuts beyond language priors.
Ko et al. (2023) proposed to alleviate the problem
by adding self-consistent generation prediction by
checking predictions based on different parts of
the input, in which the three inputs V, Q, and A
are individually predicted based on the other two
inputs. Additionally, Li et al. (2023b) proposed an
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image generation framework with causal reasoning
and created a novel VQA dataset whose questions
require causal explanations. Chen et al. (2024a)
curated a multi-hop VQA dataset, assessed uni-
modal biases in LVLMs, and proposed a causality-
enhanced agent framework to mitigate them.

Another important question is to understand the
spatial-temporal causal relationship of the visual
elements within the images and videos. Su et al.
(2023) proposed CaKe-LM to use pretrained causal
knowledge for video understanding while Tai et al.
(2023); Zhao et al. (2023c) designed specific struc-
ture and prompting method to capture and interpret
the underlying causal relationship for VQA.

3.6 Evaluation and Benchmark

In this section, we list existing LLM benchmarks
built from a causal perspective.

Reference MU CR CF FD Text MM

ECHo (Xie et al., 2023) ✓ ✓ ✓
CREPE (Zhang et al., 2023b) ✓ ✓
CLOMO (Huang et al., 2023) ✓ ✓
IfQA (Yu et al., 2023) ✓ ✓
Cladder (Jin et al., 2023a) ✓ ✓ ✓
MoCa (Nie et al., 2023) ✓ ✓
Jin et al. (2023b) ✓ ✓
CVidQA (Su et al., 2023) ✓ ✓
VQAI (Li et al., 2023b) ✓ ✓
Chen et al. (2023b) ✓ ✓
Gao et al. (2023) ✓ ✓
CRAB (Romanou et al., 2023) ✓ ✓
HELM (Liang et al., 2022) ✓ ✓
Fair-Prism (Fleisig et al., 2023) ✓ ✓
Biasasker (Wan et al., 2023) ✓ ✓
CaLM (Chen et al., 2024b) ✓ ✓ ✓ ✓
MORE (Chen et al., 2024a) ✓ ✓

Table 1: Existing evaluation benchmarks. Based on
the evaluation tasks, we categorize the benchmarks into
three categories: Model Understanding (MU), Com-
monsense Reasoning (CR), Counterfactual Reasoning
(CF) and Fairness/Debias (FD). Based on the modalities
of the data samples, we identify the benchmarks with
only textual inputs (Text) and those with multimodal
inputs (MM).

The benchmarks in model understanding (MU)
focus on evaluating and understanding LLMs’
causal reasoning abilities in both natural language
(Jin et al., 2023a; Nie et al., 2023; Jin et al., 2023b;
Gao et al., 2023; Romanou et al., 2023; Chen et al.,
2024b) and vison-language (Su et al., 2023; Li
et al., 2023b; Xie et al., 2023; Chen et al., 2024a).
In addition, some benchmarks (Nie et al., 2023;
Gao et al., 2023) also provide model understanding
in comparison with human causal reasoning and
moral judgments. Commonsense reasoning bench-
marks (CR) evaluate LLMs on tasks that require ex-
tensive commonsense knowledge for both textual-

only context (Zhang et al., 2023b; Jin et al., 2023a)
and multimodal context (Xie et al., 2023). Contexts
with commonsensical and anti-commonsensical are
constructed in (Jin et al., 2023a), to further inves-
tigate whether LLMs use averaged-out causal rea-
soning. Evaluating LLMs’ counterfactual reason-
ing (CF) abilities is essential in enabling explain-
able model reasoning and calibration of the gen-
erated rationales. Huang et al. (2023) introduce a
specific task and benchmark for assessing LLMs’
logical counterfactual thinking. Yu et al. (2023)
contribute a novel dataset to challenge LLMs in
counterfactual reasoning in an open-domain QA
context. Chen et al. (2023b) investigate the ability
of LLMs to provide explanations that aid in un-
derstanding their reasoning process, particularly in
the context of counterfactual scenarios. The fair-
ness and bias (FD) evaluations are particularly in
addressing biases, fairness, and the overall trans-
parency of language models. HELM (Liang et al.,
2022) is a comprehensive evaluation benchmark
including previously neglected areas for fairness.
Fair-Prism (Fleisig et al., 2023) focuses specifi-
cally on fairness-related harms in models, which
are identified and measured by detailed human an-
notations. Biasasker (Wan et al., 2023) presents
an automated framework to identify and measure
social biases by probing the models with specially
designed questions.

4 Large Language Model for Causal
Inference

Causal inference, as a powerful tool for developing
large language models (LLMs), greatly benefits
from the extensive world knowledge that LLMs
provide. We summarize how LLMs can help causal
inference in its two important components, i.e.,
causal relationship discovery and treatment effect
estimation.

4.1 Treatment Effect Estimation

Estimating treatment effects is central to causal
inference but is hindered by the absence of coun-
terfactual data in many cases. Chen et al. (2023c)
proposed a new method for automatically generat-
ing high-quality counterfactual data at scale called
DISCO (DIStilled COunterfactual Data). In ad-
dition, Feder et al. (2023) apply treatment effect
estimation to align knowledge for generalization
towards different domains. Zhang et al. (2023a)
optimize the treatment effect estimation on unla-
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beled datasets by performing self-supervised causal
learning through LLMs.

4.2 Causal Relationships Discovery
Discovering causal relationships between variables
is fundamental in causal inference as it enables
the identification and estimation of causal effects.
Many research focus on casual relationship extrac-
tion or causality extraction which extracts causal re-
lationships between two variables from text directly.
Traditional methods rely on linguistic cues such
as causal connectives (e.g., “cause”, “because”,
and “lead to”) and grammatical patterns to iden-
tify causal pairs (Xu et al., 2020). A later work
utilizes the power of statistical machine learning
and deep learning to tackle this task in a supervised
learning setting (Yang et al., 2022). As LLMs show
promising potential with reasoning capacities as in-
troduced in Section 3.1, many works use LLMs as a
query tool to determine the edge direction between
two given variables. For example, Kıcıman et al.
(2023) show that LLMs can achieve competitive
performance in determining such pairwise causal
relationships with accuracies up to 97%. Analy-
ses in the medical domain (Naik et al., 2023; An-
tonucci et al., 2023; Arsenyan and Shahnazaryan,
2023) exhibit similar observations. However, other
studies highlight LLMs’ limitations of such pair-
wise causal relationships. For example, sensitiv-
ity to prompt design leads to inconsistent results
(Long et al., 2023); pairwise judgments can lead
to cycles in the full causal graph (Vashishtha et al.,
2023); pairwise judgments require large computa-
tional cost when applying to a large-scale dataset,
N variables would require

(
N
2

)
prompts (Ban et al.,

2023a); LLMs still provide false information de-
spite achieving strong results in many cases (Long
et al., 2023; Tu et al., 2023; Joshi et al., 2024).
Long et al. (2023) propose strategies for amend-
ing LLMs’ output based on consistency properties
in causal inference. Feng et al. (2024) found the
LLMs’ performance on causal discovery tasks de-
pends on pretraining corpora (corpora with higher
frequency of causal mentions perform better) and
provided context when making the predictions.

To alleviate the impact of erroneous causal in-
formation from LLMs, previous works have in-
tegrated LLMs with traditional causal discovery
methods. Causal discovery or causal structure
learning is the task of recovering causal graphs
from observational data whenever possible (Zanga
et al., 2022).Vashishtha et al. (2023) propose two

algorithms that combine LLMs with causal discov-
ery methods: the first uses causal order from an
LLM to orient the undirected edges outputted by
a constraint-based algorithm and the second uti-
lizes the LLM causal order as a prior for a score-
based algorithm. Similarly, Li et al. (2024) intro-
duced LLM-guided meta-initialization to extract
the meta-knowledge from textual information to
improve the quality of a temporal causal discov-
ery method. Khatibi et al. (2024) used LLMs to
refine the output of data-driven causal discovery
algorithms. Ban et al. (2023b) incorporated LLM-
driven causal statements as qualitative ancestral
constraints in the Bayesian network structure to
guide data-driven algorithms. Ban et al. (2023a)
then propose an iterative framework to validate and
finetune based on LLM feedback. For a broader
discussion on integrating LLMs into causal discov-
ery methods, we refer readers to a recent survey on
this specific topic (Wan et al., 2024).

4.3 Future Directions

LLMs can significantly contribute to overcoming
the current limitations of causal inference meth-
ods as a general expert. A common assumption
in many causal methods is the existence of corre-
sponding data points for every treatment. However,
this assumption often proves untrue, particularly
when dealing with imbalanced minority data that
may not support meaningful learning. LLMs, func-
tioning as versatile experts, have the potential to ad-
dress this challenge by aiding in data augmentation
for minority data. Through their comprehensive
understanding of language and context, LLMs can
enhance the availability of diverse data points, facil-
itating more robust and effective causal inference in
situations where traditional methods may struggle
due to data imbalances. Similarly, many methods
operate under a strong assumption of unconfound-
edness within the potential outcome framework
Historically, this assumption has been accepted due
to a lack of domain knowledge regarding the un-
derlying causal graph or identification of potential
confounders. However, LLMs offer an opportunity
to alleviate the limitation.

5 Conclusion

At its core, a large language model (LLM) is like
a vast library of knowledge. One of the ongoing
challenges is figuring out how to extract and use
this knowledge effectively. The key to improving
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LLMs lies in enhancing their ability to understand
cause and effect – essentially, how things are con-
nected. Causal reasoning is crucial for making
LLMs smarter. Looking at it from a causal infer-
ence perspective, we find a valuable framework that
helps boost the effectiveness of LLMs. Meanwhile,
as keepers of human knowledge, LLMs can even
help overcome limitations in causal inference by
providing broad expertise that goes beyond existing
constraints, reshaping our understanding in this im-
portant area and bringing new vitality to this area.
In this survey, we offer a thorough examination of
both directions and concise summaries of the meth-
ods scrutinized, offering a comprehensive overview
of the current state of research at this intersection.

Limitations

With the increasing popularity of large language
models (LLMs), understanding their reasoning
abilities becomes ever more crucial. Many tasks
performed by LLMs require an understanding of
causality, making the evaluation and enhancement
of their reasoning and causal inference abilities a
key focus. This is where causal inference plays a
critical role. At the same time, causal inference
itself relies on a certain level of world knowledge,
which LLMs are well-suited to provide. In this
survey paper, we aim to provide a comprehensive
review of how LLMs contribute to causal inference
and, in turn, how causal inference can improve
LLMs. However, the intersection of causal infer-
ence and LLMs represents a rapidly evolving re-
search frontier where significant developments ap-
pear across NLP/ML venues and preprints. Given
this field’s dynamic nature, our selection method-
ology prioritizes comprehensive coverage of key
developments over exhaustive enumeration. For
preprints, the authors of this paper manually re-
viewed them to assess their quality and relevance
to the topic. There are several possible ways to or-
ganize this paper, particularly for Section 3. We fol-
low the framework proposed by Feder et al. (2022)
on how causal inference can enhance NLP models,
focusing on performance, robustness, fairness, and
interpretability. While Feder et al. (2022) focuses
on embedding-based methods, our survey reflects
the transformative impact of LLMs with strong
generative capabilities. We supplement the cate-
gorization with additional discussions on LLM’s
reasoning capacity and multi-modality, capturing
research trends driven by the enhanced capacities

of LLMs. It’s worth noting that some papers may fit
into multiple sections, and we grouped them based
on our judgment of the papers’ main contributions.
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A Brief Introduction of Causal Inference

In this section, we present the background knowl-
edge of causal inference, including task descrip-
tions, basic concepts and notations, and general
solutions.

Generally speaking, the task of causal inference
is to estimate the causal relationship among vari-
ables. The variables of interest are referred to as
treatment, naturally, the effects of treatments are re-
ferred to as treatment effects. For example, suppose
two treatments can be applied to patients: Treat-
ment Plan A and B. When A is applied to a certain
patient cohort, the recovery rate is 70% while when
B is applied to the same cohort, the recovery rate
is 80%. The change of recovery rate is the effect
of that treatment assets on the recovery rate.

Ideally, the treatment effect can be measured as
follows: applying different treatments to the same
cohort, and then the difference in the effect is the
treatment effect. However, in real-world scenarios,
this ideal situation because it is impracticable for
perfectly controlled experiments in most cases. For
example, in the above case, you can only apply
one treatment to the same cohort at the same time.
In reality, an alternative is to conduct random con-
trolled trials, in which the treatment assignment
is controlled, such as a completely random assign-
ment. In this way, the groups receiving different
treatments can be used to measure the difference in
effect. Unfortunately, even performing randomized
experiments is expensive, time-consuming, and
may cause ethical concerns in some cases. There-
fore, estimating the treatment effect from obser-
vational data has attracted growing attention due
to the wide availability of observational data, and
methods are developed for the investigation of the
causal effect of a certain treatment without perform-
ing randomized experiments.

A.1 Potential Outcome Framework

One of the most influential frameworks in identify-
ing and quantifying causal effects in observational
data is the potential outcomes framework (Rubin,
1974). The potential outcomes approach associates
causality with manipulation applied to units, and
compares causal effects of different treatments via
their corresponding potential outcomes. Follow-
ing (Rubin, 1974), we state basic concepts in the
potential outcome framework.
Unit. A unit is the atomic research object in the
treatment effect study. A unit can be a physical

object, a firm, a patient, a person, or a collection of
objects or persons, such as a classroom or a market,
at a particular time point (Rubin, 1974). Under the
potential outcome framework, the atomic research
objects at different time points are different units.
Treatment. Treatment refers to the action that ap-
plies (exposes, or subjects) to a unit. For each unit-
treatment pair, the outcome of that treatment when
applied to that unit is the potential outcome.With
N treatments T = {1, 2, 3, ..., N}, the potential
outcome of applying treatment Ti is denoted as
Y (T = Ti). The observed outcome is the out-
come of the treatment that is actually applied. And
the counterfactual outcome is the outcome if the
unit had taken another treatment.
Treatment Effect The treatment effect can be quan-
titatively defined using the above definitions. The
treatment effect can be measured at the population,
treated group, subgroup, and individual levels. At
the population level, the treatment effect is esti-
mated as the Average Treatment Effect (ATE). At
the subgroup level, the treatment effect is called
the Conditional Average Treatment Effect (CATE).

Definition A.1 (Binary Average Treatment Ef-
fect(ATE)). Suppose we want to measure the treat-
ment effect of a treatment T = 1. Then the average
treatment effect is defined as:

E[Y (T = 1)− Y (T = 0)] (4)

where Y (T = 1) and Y (T = 0) denote the po-
tential treated and control outcome of the whole
population respectively.

Definition A.2 (Conditional Average Treatment
Effect (CATE)).

E[Y (T = 1)|X = x]−E[Y (T = 0)|X = x] (5)

where E[Y (T = 1)|X = x], E[Y (T = 0)|X = x]
are the potential treated and control outcome of the
subgroup with X = x.

At the individual level, the treatment effect is
defined as Individual Treatment Effect (ITE). In
some literature, ITE is treated as the same as
CATE (Pearl, 2009).

A.2 Causal Graphical Models
The potential outcome framework is powerful in
recovering the effect of causes. In a potential
outcome framework, causal effects are answered
by specific manipulation of treatments. However,
when it comes to identifying the causal pathway
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or visualizing causal networks, the potential out-
come model has its limitations. In the front of the
challenge, causal graphical models utilize directed
edges to represent causalities and encode condi-
tional independence among variables in the graphs.

A.2.1 Structural Equation Models (SEMs)
One of the most widely-spread formulations is the
Structural Equation Model (Wright, 1934; Pearl,
1998), where linear structural equation models are
used to present causal relationships by directed
edges, which differentiate correlation from causa-
tion when the graph structure is given. The lin-
earity assumption was later been relaxed by (Pearl,
1998) and it formalized causal graphical models for
presenting causal relations using Directed Acyclic
Graphs (DAGs).

Specifically, consider the random variable X ∈
RD×N = [X1, X2, ..., XN ], the linear SEM con-
sists of a set of equations of the form:

Xi = β0i+
∑

j∈pa(Xi)

βjiXj+ϵi, i = 1, 2, 3, ..., N

(6)
where pa(Xi) denotes the set of variables that are
direct parents of Xi. ϵ1, ϵ2, ..., ϵN are mutually
independent noise terms with zero mean, βji are
coefficients that quantify the causal effect of Xj on
Xi.

While the non-parametric SEM takes the form:

Xi = fi(Xpa(i), ϵi), i = 1, 2, 3, ..., N (7)

The random variables X that satisfies the model
structure of the form in Equation (6) or Equation (7)
can be represented by a directed acyclic graph
(DAG) G = (V,E), where V is the set of asso-
ciated vertices, each corresponding to one of a vari-
able of interest Xi, and E is the corresponding
edge set.

With pre-specified DAG and assumptions on the
latent variables, the coefficients between the latent
variables are identifiable(Kuroki and Pearl, 2014).

A.2.2 Bayesian Network
Causal inference can be naturally embedded in
graphical model frameworks since the dependen-
cies and interactions between variables can be pre-
sented by graphs with probabilistic distributions, in
which nodes correspond to variables of interest and
edges represent associations. One general solution
except for SEMs is to use a Bayesian Network to
represent the causal relationship.

In Bayesian networks, causalities among vari-
ables are represented in the form of DAGs with
directed edges carrying causal information.

A joint probability distribution P factorizes with
respect to a DAG G if it satisfies:

f(X1, X2, ..., XN ) =
∏

i

f(Xi|Xpa(i)) (8)

In the next section, we show a comprehensive
survey of how existing works help with the tasks
and challenges in LLMs in detail.
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