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Abstract

Document-level multi-event extraction aims to
identify a list of event types and corresponding
arguments from the document. However, most
of the current methods neglect the fine-grained
difference among events in multi-event docu-
ments, which leads to event confusion and miss-
ing. This is also one of the reasons why the re-
call and F1-score of multi-event recognition are
lower compared to single-event recognition. In
this paper, we propose an event-specific probe-
based method to sniff multiple events by query-
ing each corresponding argument library, which
uses a novel probe-label alignment method for
differential optimization. In addition, the role
contrastive loss and probe consistent loss are de-
signed to fine-tune the fine-grained role differ-
ences and probe differences in each event. The
experimental results on two general datasets
show that our method outperforms the state-of-
the-art method in the F1-score, especially in
the recall of multi-events.

1 Introduction

The purpose of event extraction is to identify event
triggers with specific types from unstructured text
and extract arguments related to events. In prac-
tice, multiple events are often described in one
document, and some common arguments and trig-
gers are shared. These events may not have obvi-
ous triggers and their arguments are scattered in
multiple sentences. Therefore, the document-level
multi-event extraction without event triggers has
been widely concerned by scholars (Xu et al., 2022;
Zhang et al., 2022).

Existing methods (Wang et al., 2023; Yang et al.,
2021; Zhu et al., 2021a; Zheng et al., 2019) work
well when there is only one event in the document.
When there are multiple events in one document,
they cannot accurately find all the events. An im-
portant reason for this phenomenon is that most
event records in a document tend to describe sev-

Figure 1: An example of three event records in one
document. Each event record is divided into three parts:
event type, private arguments, and public arguments.
Black bold font is the type of event, and black nor-
mal font is the role name of the event record. Private
and public arguments are marked green and blue, re-
spectively. The missing role of the event framework is
marked yellow.

eral events of the same type, and they have simi-
lar arguments (further discussion in Appendix A).
We define these event records as homogeneous
events, which have only fine-grained differences.
As shown in Fig. 1, we show three homogeneous
event records in a multi-event document, which are
all events of "EquityPledge" and have mostly the
same arguments.

Unlike the shared events proposed by Gao et al.
(2022), it focuses on event-level features for con-
trastive learning and ignores the fine-grained ar-
gument level. Some previous works (Sheng et al.,
2021; Wang et al., 2023) have noticed a similar
problem of overlapping arguments, but they mainly
focus on the problem of one argument playing dif-
ferent roles, which does not solve the event confu-
sion caused by one argument playing the same role
in multiple events in homogeneous events. Other
methods (Liang et al., 2022; Wang et al., 2023; Xu
et al., 2021) often failed to pay attention to the fine-
grained differences between multiple events in the
document, resulting in these homogeneous events
being recognized as one event record or causing
confusion in event roles.

To identify multiple events in documents more
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accurately, we propose a method based on event-
specific probes and argument libraries to extract
multi-events from documents differentially. When
the model makes inferences, the probe is regarded
as a query of the corresponding role library, using
the filling-in method based on the role framework
to map the argument and role detected by the probe.
During training, to distinguish arguments in homo-
geneous events at a finer granularity, the arguments
that appear in only one event record are defined
as private arguments of this event, and those that
appear in multiple event records of the same event
type are defined as public arguments (as shown
in Fig. 1). Obviously, private arguments are the
source of fine-grained differences between differ-
ent event records. Based on the characteristics of
private and public arguments, we propose a probe-
label alignment optimization algorithm to refine the
probe group corresponding to each ground-truth
event label or group. By applying differential op-
timization algorithms to jointly learn probes and
libraries, the event confusion caused by the con-
stant change of probe-label correspondence in the
training process is effectively reduced. The probe
embedding centered on private argument can also
better notice the fine-grained differences between
event records.

In addition to the main training objectives, we
add two auxiliary loss functions to fine-tune the pa-
rameters of the model during training, which makes
the model learn the differences in event records
detected by different probes. These two loss func-
tions fine-tune the model’s understanding of differ-
ent granularity differences from the perspective of
probe and role library respectively. Specifically, at
the probe level, we use the probe consistent loss to
ensure the consistency of probes in terms of privacy
and publicity and to distinguish the macro differ-
ence between probes in label correspondence. At
the role library level, we design the role contrastive
loss to help the model understand the microscopic
differences of arguments corresponding to the same
role of different events.

To sum up, the contributions of this paper mainly
include the following three aspects:

• We propose a document-level multi-event ex-
traction framework and optimization algo-
rithm based on event-specific probe and argu-
ment library to make the model better extract
multiple events from documents.

• We design probe consistent loss and role con-

trastive loss to help the model understand the
differences between multiple event records
from both macro and micro perspectives.

• The experimental results on two general
datasets show that the comprehensive perfor-
mance of our model is higher than previous
state-of-the-art methods, especially on the re-
call of multiple events.

2 Related Work

To solve document-level event extraction, a large
number of methods have been proposed recently,
which can be divided into generative model-based
methods and discriminant model-based methods.

Based on generative models, this task is mod-
eled as a question-answering system (Huang and
Jia, 2021), reading comprehension (Liu et al., 2021)
sequence conversion (Huang et al., 2021), etc. As a
classic method, Lu et al. (2021); Hsu et al. (2022);
Lin et al. (2022) proposed a sequence-to-structure
generation paradigm. Another major strategy of the
generative method is to introduce external knowl-
edge(Zhou et al., 2022), which includes AMR infor-
mation (Li et al., 2022), external knowledge base
(Hsu et al., 2023), knowledge of different datasets
(Zhang et al., 2023), etc.

Based on discriminant models, this task can be
understood as a table-filling task (Zhu et al., 2021b;
Wan et al., 2023a; Wang et al., 2022), in which
each event is represented as a combination of an
argument list and event type. Formally, the event
extraction problem can be modeled as link predic-
tion (Yang et al., 2023), subgraph division (Wan
et al., 2023b), role classification (Liu et al., 2023b),
etc. Most of these methods (Van Nguyen et al.,
2022; Ren et al., 2022a; Cao et al., 2022) can per-
form well in documents with a small number of
events, but they cannot extract multiple events dif-
ferently. To face this challenge, some approaches
(Yang et al., 2021; Wang et al., 2023; Liang et al.,
2022) proposed event query and role query to ex-
tract events in parallel, but they lack fine-grained
difference optimization on roles. Ren et al. (2022b)
uses comparative learning of roles and arguments
to augment the information about the roles corre-
sponding to the arguments, while we distinguish ho-
mogeneous events by performing contrastive learn-
ing between arguments of multiple events. In sum-
mary, we pay more attention to the modeling of
the difference between multiple events in the same
document.

715



3 Methodology

3.1 Problem Definition

T and R (|R| = k) are defined as the type set
and role set of events, respectively. Therefore, an
event record e is mathematically defined as a com-
bination of an event type t ∈ T and a series of
roles {ri} ∈ R, with each role corresponding to
a specific argument aj . Formally, given a docu-
ment D, our goal is to detect every event record
e = (t, {(ri, aj)}) in D without event trigger. If
ri is not mentioned in D, then the argument corre-
sponding to ri is None. The set of all event records
in D is recorded as E = {e}. The overview of our
method is shown in Fig. 2.

3.2 Entity Recognition

Our first step is to identify entities from D that can
be viewed as candidate arguments. This step is
framed as a traditional BIO (Beginning and Inside
of an entity span, and Other tokens) sequence la-
beling problem. BERT is used as an encoder for
sentences in D and the token embedding of BERT
output is passed through a MLP to compute the
loss function Lbio of the BIO sequence annotation.
We employ average pooling for all token embed-
dings that make up an entity ai to obtain the hidden
representation of entities.

With this step, the model gets the set {ai}ni=1 of
all entities and the set C = {ci}mi=1 of all CLS to-
kens at the beginning of each segment in D, where
n is the number of entities and m is the number
of CLS tokens. Since the same entity appearing at
different locations in a document may be related
to different events, we attach position embedding
to that hidden representation and input it into Feed
Forward Network (FFN) to obtain hai ∈ R1×d. In
the same way, we get the embedding of CLS to-
ken hci . This position embedding is the absolute
position of the entity throughout the document.

3.3 Joint Learning Event Representation

In this section, we use event-specific probes {qi}
and argument libraries {Ai} to joint learning event
representations in documents.

Event-specific Probe To optimize a dedicated
probe for each event record, context information
associated with each entity is captured by the en-
tity globalization encoder. The globalized entity
embeddings are represented as generic probes of
the document D. Based on the definition of event

record, the number of entities is usually greater
than the number of event records described in D.
As a result, the number of probes is usually much
larger than the number of events. The probe can
fully discover all events in D without a fixed upper
limit. Each entity may be a potential private ar-
gument, which determines the difference between
each event and other events, so each event can
correspond to a specific probe in the optimization
process.

Specifically, the Multi-Head Attention (MHA)
mechanism is employed to implement this entity
globalization encoder. The query, key, and value
of MHA are defined as Qai = hai , Kc = Vc =
{hc}c∈C . Based on different attention coefficients,
MHA can compute different global context infor-
mation for entities, which are included in CLS em-
beddings. The globalized embedding of entity in-
formation is calculated as:

ĥai = MHA(Qai ,Kc, Vc) (1)

The global and individual entity embedding are
concatenated and then fed into an FFN. We then
get the initialized representation of the probe:

hqi = FFN([ĥai ;hai ]) (2)

The total number of probes in a document is equal
to the total number of entities, which can make
the model tend to discover more event records in a
document.

Event-specific Argument Library Each entity
may play a different role in different events. To dif-
ferentially encode the same entities across events,
we build a library of arguments for each probe.
Specifically, we use probes as queries and entity
mentions as keys and values to encode entities in
event-specific argument libraries.

hqi,āj = MHA(hqi , {ha}a∈āj , {ha}a∈āj ) (3)

where āj denotes the set of mentions for entity aj .
In practice, there are often missing roles for event
objects described in documents. For the identifica-
tion of missing roles in the event framework, we
add a virtual argument to each library. Specifically,
the virtual argument is implemented based on CLS
embedding from each segment. When a role is pop-
ulated with CLS, it means that the probe has not
explored the role’s argument after scanning all the
arguments in the document. The virtual argument
in library Ai is computed as follows:

hqi,cls = MHA(hqi , {hc}c∈C , {hc}c∈C) (4)
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Figure 2: The framework of our method. The black dotted line represents the correspondence between the probe
groups and ground-truth labels obtained by the probe-label alignment algorithm. G3 is aligned with None because
the probes in G3 correspond to a public argument or useless argument. Since probes q4 and qn correspond to a
private argument of Event-1, G1 is aligned with Event-1. And the alignment between G2 and Event-2 is the same
as G1. The red dotted line represents the argument for calculating role contrastive loss, where the corresponding
argument pairs are positive if they are the same and negative if they are different. Each row of arguments in the
Event Role Schema represents one complete event record.

We take [hqi ;hqi,āj ] and [hqi ;hqi,cls] as the atomic
element constituting the event-specific argument
library Ai ∈ R(n+1)×2d.

Event Inference After obtaining qi and Ai , we
use a MLP layer to identify the types of events:

pt,qi = softmax(MLP (hqi)) (5)

where pt,qi is the event type probability distribution
of qi. The None label is added to indicate that
this probe did not detect any events. To identify
the role-argument pairs of events, we use MLP on
Ai corresponding to qi and transpose the resulting
matrix. Then the softmax function is computed on
the row vectors of hr,qi ∈ Rk×(n+1):

hr,qi = MLP (Ai)
T

prj ,qi = softmax(hrj ,qi)
(6)

where hrj ,qi is the row vector of hr,qi with respect
to rj . If the event type detected by qi is not None,
prj ,qi indicates the probability distribution of role
rj in the event detected by qi. Each step of the
above event representation learning can be done in
a single matrix operation. Therefore, increasing the
number of probes within a certain range will not
unduly increase the model inference and training
time.

3.4 Differential Optimization

In this section, we present the optimization algo-
rithms for probes and argument libraries.

3.4.1 Probe-Label Alignment Optimization
Recent optimization algorithms for multi-event ex-
traction learn event representations by minimizing
the Hausdorff distance between the set of predicted
events and gold events. Since the mapping is done
from full set to full set, this will lead to instability
of the optimization objective during the training
process. To constrain this instability and optimize
the sniffing ability of probes, the probe-label align-
ment algorithm is designed, which differentially
optimizes the embedding of probes and arguments
corresponding to events.

Before discussing the probe-label alignment al-
gorithm, we define the distance between probe ql
and ground-truth event label ei as:

d(ql, ei) = CE(pt,ql , t) +
1

k

k∑

j=1

CE(prj ,ql , arj )

(7)
where t is the ground-truth event type of ei and
arj is the ground-truth argument of role rj in ei,
CE(·) denotes the cross-entropy loss. The smaller

717



d(ql, ei) is, the more accurately probe ql sniffs the
entire event record ei.

We add the definition of useless argument: the
entities that have not appeared in all event records.
Then, The arguments are divided into three cat-
egories: private, public, and useless. Obviously,
private arguments are the key to distinguishing
an event record from other homogeneous event
records in one document, i.e., each group of private
arguments corresponds to one event record. Since
probes originate from entity embeddings, we can
partition the group of probes based on the different
types of arguments.

Based on the above definition, all probes are
divided into subgroups that correspond to differ-
ent gold event records. Specifically, the group of
probes corresponding to all private arguments of an
event is mapped to the record of that event. If there
are no private arguments in an event, the group of
probes corresponding to the arguments with the
least number of occurrences in other events is cho-
sen as the mapping source for that event. This
allows each gold event record to have a correspond-
ing probe during training. For useless arguments
and unused public arguments, we classify their cor-
responding probes into another group, which is
labeled None. From this, we generate multiple
probe subgroups G = {Gei}

|E|
i=1 ∪GNone , where

|E| is the number of events in D, Gei and GNone

is the probe subgroup corresponding to the gold
event record ei and None event record respectively.

After obtaining the correspondence between sub-
groups and gold event records, we minimize the
distance between each pair based on Eq.(7), which
allows the probes to learn the ability to extract the
corresponding event in the document. Specifically,
we first determine the correspondence within each
probe subgroup Gj to the gold event record ei:

QGei
= {(ql, ei)|min(d(ql, ei)), ql ∈ Gei} (8)

where each ql can only have one corresponding
ei, which can prevent confusion caused by multi-
objective optimisation of ql. For other probes
in this subgroup, we denote them as OGei

=
{ql|(ql, ·) /∈ QGei

∩ ql ∈ Gei} and correspond
to the event record eNone. The event loss function

is computed as:

LGei
=

∑

(ql,ei)∈QGei

d(ql, ei) +
∑

ql∈OGei

d(ql, eNone)

Le =

|E|∑

i=1

LGei
+

∑

ql∈GNone

d(ql, eNone)

(9)

where LGei
denotes the loss of all probes in sub-

group Gei sniffing the gold event record ei. If mul-
tiple ground-truth labels correspond to the same
probe groups, we combine these labels into one
set ē and calculate the correspondence QGē =
{(ql, ei)|min(d(ql, ei)), ql ∈ Gj}ei∈ē. Then use
the above formula to calculate LGē .

3.4.2 Role Contrastive Loss
For the model to notice role differences between
these homogeneous events, the role contrastive loss
is designed between multiple events of the same
document. Specifically, for the same role of two
events with the same type, it is viewed as a pos-
itive pair if the arguments filling the role are the
same, and a negative pair if the arguments are dif-
ferent. The contrastive loss is computed only for
roles included in the role framework. Since Vir-
tual arguments are employed to populate the event
frame when the document does not describe the
corresponding argument for a role, two events with
missing arguments for the same role are considered
to be a positive pair. In summary, the contrastive
loss is calculated as:

f(ei, ej) =
k∑

u=1,Ai,u=Aj,u

exp(
sim(Ai,u, Aj,u)

τ
)

g(ei, ej) =
k∑

u=1,Ai,u ̸=Aj,u

exp(
sim(Ai,u, Aj,u)

τ
)

Lrc = − 1

N

∑

ei,ej∈E
log

f(ei, ej)

f(ei, ej) + g(ei, ej)

(10)

where N is the number of event pairs in E, τ de-
notes temperature coefficient, Ai,u is the embed-
ding of the argument corresponding to role ru in Ai,
sim(·, ·) denotes the cosine similarity. Through
the constraint of Lrc, if one argument corresponds
to the same roles in ei and ej , the corresponding
embedding in Ai and Aj will be more and more
similar, otherwise, the similarity will be lower and
lower. This allows the model to better recognize
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differences in role granularity for homogeneous
events.

3.4.3 Probe Consistent Loss
According to the above definition, each probe cor-
responds to a private, public, or useless argument.
Therefore, the probes in the model can also be di-
vided into these three categories. Different types of
probes represent different corresponding ground-
truth event labels in the probe-label alignment algo-
rithm. If the probe representation of the same type
is inconsistent, it may cause frequent changes in
label alignment and instability of the optimization
target during training.

To make the model learn the type of probes from
embedding and maintain consistency of the same
type, the probe consistency loss is introduced to
assist the model training, where probe representa-
tions will be updated during learning. Specifically,
it is a three-classification task, and an MLP network
is employed to map the probe embedding:

Lpc =

n∑

i=1

CE(MLP (qi), yi) (11)

where yi is the label of probe category.

3.4.4 Objective Function
The final loss is a weighted sum of the above loss
functions:

L = λbioLbio + λeLe + λrcLrc + λpcLpc (12)

The settings of each hyperparameter in the loss
function are detailed in Appendix B.

4 Experiments

4.1 Experimental Setup

Datasets Consistent with previous work (Wang
et al., 2023), our experiment will be conducted on
two common datasets and be compared to the state-
of-the-art approaches. (1) ChFinAnn (Zheng et al.,
2019) 1 is a document-level event extraction dataset
that includes 32,040 documents. And 71% of these
documents contain only one event and 29% contain
multiple events. (2) DuEE-Fin (Han et al., 2022)
2 has 11,900 documents. There are 67% of single-
event samples and 33% of multi-event samples.

1https://github.com/dolphin-
zs/Doc2EDAG/blob/master/Data.zip

2https://aistudio.baidu.com/aistudio/competition/detail/46/0/
task-definition

Evaluation Metrics The evaluation metrics we
employed are the same as (Zheng et al., 2019).
The micro-average role precision, recall, and F1-
score between the predicted event and the selected
ground-truth event are used to test the effectiveness
of the models. During code copying, we discov-
ered that the measurement code for Wang et al.
(2023) ignores the case where the same argument
occurs multiple times in one event. This bug has
been fixed and we retested its performance on each
dataset. The training method and hyper-parameters
are given in Appendix B.

Baselines Six baselines are introduced to com-
pare our method (EPAL). Doc2EDAG (Zheng et al.,
2019) proposes an end-to-end model that can gen-
erate entity-based directed acyclic graphs to imple-
ment document-level event extraction. DE-PPN
(Yang et al., 2021) introduces a multi-granular,
non-autoregressive decoder to extract structured
events from the document in a parallel way. To
reduce computational resource consumption, PT-
PCG (Zhu et al., 2021a) combines the event ar-
guments in a non-autoregressive decoding method
with pruned complete graphs. GIT (Xu et al., 2021)
is an improvement on Doc2EDAG, which adds ad-
ditional path information to assist the classifica-
tion task when generating graphs. ReDEE (Liang
et al., 2022) considers that the relation informa-
tion of event arguments is important for solving
the cross-sentence multi-event problem, and pro-
poses a relation-augmented attention transformer
to capture relation dependence. ProCNet (Wang
et al., 2023) proposes the proxy nodes to extract
the events in the document and uses the Hausdorff
distance to optimize the difference between the
ground-truth events and the events identified by the
proxy node.

4.2 Main Results

Table 1 shows the comparison between our model
and baselines on the ChFinAnn and DuEE-Fin
datasets, respectively. In addition, the evaluation re-
sults for each event type are discussed in Appendix
C. The results of the baselines in the table are either
from paper (Wang et al., 2023) or from open-source
code. Based on the experimental results, we can
intuitively find that all models perform better on
single-event documents than on multi-event doc-
uments, which shows that it is more challenging
for the model to accurately extract multiple events
from documents.
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Model P. R. F1 F1(S.) F1(M.)

ChFinAnn

Doc2EDAG 82.7 75.2 78.8 83.9 67.3
DE-PPN 83.7 76.4 79.9 85.9 68.4
PTPCG 83.7 75.4 79.4 88.2 −
GIT 82.3 78.4 80.3 87.6 72.3
ReDEE 83.9 79.9 81.9 88.7 74.1
ProCNet 83.6 78.1 80.8 87.5 73.5

EPAL (Ours) 83.1 83.5 83.4 89.7 76.6

DuEE-Fin

Doc2EDAG 67.1 60.1 63.4 69.1 58.7
DE-PPN 69.0 33.5 45.1 54.2 21.8
PTPCG 71.0 61.7 66.0 − −
GIT 69.8 65.9 67.8 73.7 63.8
ReDEE 77.0 72.0 74.4 78.9 70.6
ProCNet 79.3 71.4 75.1 80.1 71.0

EPAL (Ours) 77.3 75.5 76.4 81.2 72.7

Table 1: Overall precision (P.), recall (R.), and F1-
score (F1) on ChFinAnn and DuEE-Fin. F1(S.) and
F1(M.) denote scores under Single-event(S.) and Multi-
event(M.) sets.

As an early method, Doc2EDAG only uses a
directed acyclic graph to detect events, which has
limited performance and high time complexity in
the training process. Although parallel coding is
employed in DE-PPN to greatly reduce the train-
ing time, when faced with more complex datasets
(such as DuEE-Fin), the recall decreases by about
30%. Through the performance of GIT, it can be
found that the improvement of Doc2EDAG by path
expansion method mainly increases recall by 3-5%.
ReDEE extends the coding method of the trans-
former to achieve better results on precision, but
it does not notice the differences between events,
resulting in a relatively conservative exploration
of new events. ProCNet uses randomly initialized
proxy nodes for global matching learning, which
makes the correspondence between proxy and la-
bel unstable during training and finally leads to
the decline of the F1-score. It can also observed
that EPAL gives the best overall F1-score, outper-
forming the best baseline by 1-3% on ChFinAnn
and DuEE-Fin. It is worth noting that the recall
of EPAL is 4-5% higher than that of the model in
the same period, which indicates that EPAL has
a stronger event discovery ability. Because the la-
beled events in the event extraction dataset tend
to have high precision and low recall, it means
that some ground-truth events in the dataset are
not marked (Zheng et al., 2019). EPAL may have

Figure 3: Precision, recall and F1-score of multi-event
documents on ChFinAnn.

found some unmarked events in the dataset, result-
ing in a slightly lower precision of EPAL compared
with other models. We will analyze the multi-event
extraction capability of EPAL in detail in section
4.3.

4.3 Multi-event Extraction Capability
To validate EPAL’s ability to extract multiple events
from a document, the precision, recall, and F1-
score of the models for multiple events on ChFi-
nAnn are shown in Fig. 3. Obviously, EPAL has
the highest Recall and F1-score on multi-event doc-
uments, which suggests that it can discover more
events and their arguments in a document. Com-
pared to the increase in recall, precision has de-
creased by only 1.2%, so EPAL has a higher F1-
score than previous models on multi-event docu-
ments.

As shown in Fig. 3, the improvement of F1-
scores of the previous models on multiple events is
mainly due to the improvement of precision, while
the improvement of recall is small. These methods
are more concerned with accurately identifying one
single event record in a document and therefore can
have significant improvements on single-event doc-
uments. But in reality, a document tends to describe
multiple events, which makes them have lower re-
call in multi-event documents. Because they do not
notice the differences between different events in
multi-event documents, baselines tend to extract
homogeneous events as one event. EPAL detects
homogeneous events by different probes and finely
distinguishes them through the event-specific argu-
ment Library, which improves the recall of multiple
events by 4-8%. Compared with the model of the
same period, the precision and recall of EPAL are
more balanced, which means that the model has
reached a relatively stable level in predicting the
number of events aggressively and conservatively.
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Appendix D makes a qualitative error analysis and
specifically shows the ability of our model to dis-
tinguish homogeneous events.

4.4 Training Time

We compared the training time of EPAL and
the five baselines, using GeForce RTX 4060Ti
16GB. The average training time for each model is
recorded in Table 2. DuEEFin contains less data
than ChFinANN, so all models are faster to train
on DuEEFin. From the point of view of the decod-
ing strategy of the method, the non-autoregressive
method has a significant time advantage over the
autoregressive method.

EPAL tends to extract multiple events in one
document synchronously using a multi-probe strat-
egy without additional computational cost from the
graph structure, which makes it possible for the
model to accurately extract multiple events with
a short training time. In summary, EPAL has a
similar training time to the SOAT method in terms
of time complexity, which suggests that the extrac-
tion strategy of multiple probes and the probe-label
alignment algorithm have less impact on the com-
putational time of the model.

Model ChFinAnn DuEE-Fin

Doc2EDAG 3 : 36 0 : 43
DE-PPN 1 : 26 0 : 12
PTPCG 0 : 21 0 : 05
GIT 3 : 34 1 : 03
ReDEE 6 : 42 5 : 53
ProCNet 0 : 46 0 : 09

EPAL (Ours) 0 : 43 0 : 08

Table 2: The GPU time (hh:mm) of each epoch in
average.

4.5 Ablation Study

-Lrc and -Lpc We remove the two auxiliary
losses Lrc and Lpc in the objective function. It
can be observed from Table 3 that they mainly af-
fect the precision part of the F1-score. And Lrc has
a greater impact on precision, mainly because the
loss of role contrast can help the model understand
the differences of arguments in different events. In
contrast, since the model can learn the consistency
information of probes through the classification of
event types, which is low-level information com-
pared with argument classification, Lpc has less
impact than Lrc.

-Alignment The probe-label alignment optimiza-
tion is replaced by Hausdorff distance minimiza-
tion, which is equivalent to viewing all probes as
a group to align with the ground-truth labels dur-
ing training. The non-specific alignment method
is easy to lead to the instability of the correspond-
ing relationship during optimization and the chaos
of multiple events learned by the model, we can
observe that the optimization method has a great
impact on recall. See Appendix D for a detailed
discussion of specific examples.

-Role filling We replace the method of taking
arguments from the library to fill the role frame-
work with the method of directly classifying the
arguments in each library according to the number
of roles. The experimental results show that this
replacement will lead to a large degree of perfor-
mance degradation, especially the multi-event pre-
cision and recall. The reason for this phenomenon
is that the role-filling method can better model the
dependencies between arguments corresponding to
the same role. Directly classifying the arguments
in the library will not be able to model this de-
pendency, and will cause multiple arguments to be
assigned to the same role.

Model P. R. F1 F1(S.) F1(M.)

EPAL 83.1 83.5 83.4 89.7 76.6

-Lrc 80.9 83.8 82.3 88.4 76.0
-Lpc 82.2 83.4 82.8 88.7 76.8
-Alignment 82.3 79.0 80.6 88.1 72.6
-Role filling 80.1 73.7 76.6 89.4 61.7

Table 3: Ablation study on ChFinAnn.

5 Conclusion

In this paper, we first define the concepts of private
and public arguments in multi-event documents
and focus on the extraction strategy of homoge-
neous events. A document-level multi-event ex-
traction method and optimization strategy are pro-
posed based on event-specific probes and argument
libraries, which can learn multiple events differ-
ently and notice their fine-grained differences in
arguments. In our experiments, EPAL outperforms
the state-of-the-art method and has a relatively high
multi-event recall.
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Limitations

In each document, the number of event-specific
probes is equal to the number of entities in the
document. Most of these probes may be redundant,
meaning that the detected event type is None. To
further optimize the computational efficiency of the
model, it may be necessary to screen the entities
used to initialize the probe. Using probes selected
by some filtering algorithms for event sniffing can
further improve the precision of EPAL.

Due to using only CLS embeddings for interac-
tion between sentence segments, EPAL has lim-
ited cross-paragraph learning ability. One possible
improvement approach is to model segments and
tokens using heterogeneous graphs and use graph
neural networks to aggregate information from ad-
jacent segments. However, this will result in sig-
nificant computational overhead, which needs a
trade-off between efficiency and accuracy.
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A Private Argument Distribution

Figure 4: The distribution of private argument in Ch-
FinAnn and DuEE-Fin. The abscissa represents the
number of private arguments in an event. The ordinate
represents the proportion of events with x private argu-
ments in all events.

The number distribution of private arguments
contained in multi-event documents of ChFinAnn
and DuEE-Fin is shown in Fig. 4, respectively.
Through the histogram, we can find that most of
the multiple event records described in one docu-
ment are homogeneous, that is, their event types
and arguments tend to be consistent. Especially
in DuEE-Fin, the number of events with only one
different argument from other events in the same
document accounts for about 15%.

B Implementation Detail

The BERT-base (Devlin et al., 2018) in Roberta set-
ting (Liu et al., 2019) is used as the sequence label-
ing model. We set the maximum length of the sen-
tence to 512, beyond which it is divided into multi-
ple paragraphs, and attached CLS tokens at the be-
ginning of each paragraph. The embedding size of
BERT is 768 and the output size of FFN is 512, i.e.
d = 512. The head of the attention mechanism is
set to 8. GELU (Hendrycks, 2022) is employed as
the activation function in our model. The optimizer
we chose is Adam (Kingma and Ba, 2014) with a
learning rate of 1e − 5 and a batch size of 32. In
the role contrastive loss, we set the temperature co-
efficient τ = 0.5. And the weights in the total loss
L is set to λe = 1 and λbio = λrc = λpc = 0.01,
which is the optimal result obtained from many
experiments in [0.001, 0.01, 0.1, 1, 10]. Theoreti-
cally, Le is the main loss for event recognition and
the rest are auxiliary task losses. Therefore Le has
the highest weight in the whole loss function. We
run the model 3 times with training epoch 100 on
one NVIDIA 4060Ti GPU and selecting the best
checkpoint.

Model EF ER EU EO EP

Doc2EDAG 70.2 87.3 71.8 75.0 77.3
DE-PPN 73.5 87.4 74.4 75.8 78.4
GIT 73.4 90.8 74.3 76.3 77.7
ReDEE 74.1 90.7 75.3 78.1 80.1
ProCNet 71.4 92.5 67.3 66.7 79.8

EPAL (Ours) 74.8 93.4 76.3 77.3 81.5

Table 4: F1-score of 5 event types on ChFinAnn.

C Per-Event-Type Results

Table 4 and Table 5 show the evaluation results of
5 and 13 event types on ChFinAnn and DuEE-Fin,
respectively. EPAL performs better than baseline
methods in most classes, but the results in EO, CF,
SI, and EC classes are slightly lower than those of
other methods. Based on data analysis, we identify
two main reasons for this phenomenon:

(1) The samples in these classes tend to have
long contexts. EPAL only employs the CLS tokens
of each paragraph and the attention mechanism of
the entities to interact with each other but does not
specifically encode the overall context, resulting
in poor performance of the model on these classes.
However, ProCNet uses a graph neural network to
mine the overall entity information, and GIT mod-
els long path information for embeddings, which
makes them have a higher F1-score for these sam-
ples.

(2) The role information of unrecognized sam-
ples in these classes is severely missing and some
samples even have only one argument. EPAL infers
that these events are none or identifies some unnec-
essary arguments. For these samples, ReDEE intro-
duces the relation-enhanced attention mechanism,
so that the model can filter out some unnecessary
tokens and has higher recognition efficiency.

D Case Study

Figure 5 shows an error case for EPAL. We at-
tach ProCNet and EPAL without probe-label align-
ment optimization as a comparison. We find that
ProCNet recognizes only two of the four event
records, which is because it cannot adequately de-
tect the fine-grained differences between all the
event records in a document. In contrast, EPAL
can more accurately discover all the event records
in a document, where the probes for discovering
the event records are also derived from the private
arguments of the corresponding events. If we re-
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Model WB FL BA BB CF CL SD SI SR RT PR PL EC

Doc2EDAG 60.0 78.3 50.6 40.1 63.2 51.5 50.7 52.9 83.7 51.2 64.8 61.7 51.2
DE-PPN 50.7 62.7 41.3 21.4 36.3 23.0 32.9 31.3 67.8 25.8 42.1 36.3 23.4
GIT 58.8 77.6 56.6 44.7 68.5 55.1 58.8 71.2 86.4 45.0 66.4 71.3 53.8
ReDEE 72.2 81.2 58.9 53.4 76.7 56.7 68.2 56.6 90.6 49.9 75.0 77.8 56.6
ProCNet 75.9 85.1 67.5 61.2 77.0 49.6 69.5 60.5 90.0 60.3 75.5 77.1 62.0

EPAL (Ours) 76.3 86.1 68.3 69.3 76.1 59.1 74.5 57.5 91.3 71.1 76.8 78.2 61.2

Table 5: F1-score of 13 event types on DuEE-Fin.

Figure 5: Error case study with incorrect arguments colored in red. The first line represents the gold event record
of the document. The second row represents the event records inferred by ProCNet. The third and fourth rows
represent the event records inferred by EPAL and EPAL without probe-label alignment optimization, respectively.

move the probe-label alignment optimization in
EPAL, we can notice a clear misalignment of the
probes corresponding to the detected event records
and more errors in the event arguments they ex-
tract. This suggests that EPAL can more accurately
detect multiple events in a document through the
optimization of the alignment algorithm and the
auxiliary loss function.

For the errors in EPAL, we found that EPAL
tends to confuse numerical types of arguments.
This may be because there are more numerical ar-
guments in financial news. Numerical information
about different events without special handling may
cause errors in the model’s computation of contex-
tual numerical information dependence. In the fu-
ture, we will focus our work on the differentiation
of different event-recorded numerical information
in documents.
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