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Abstract

Medical Visual Question Answering (Med-
VQA), which offers language responses to
image-based medical inquiries, represents a
challenging task and significant advancement
in healthcare. It assists medical experts to
swiftly interpret medical images, thereby en-
abling faster and more accurate diagnoses.
However, the model interpretability and trans-
parency of existing Med-VQA solutions are
often limited, posing challenges in understand-
ing their decision-making processes. To ad-
dress this issue, we devise a semi-automated
annotation process to streamline data prepa-
ration and build new benchmark Med-VQA
datasets R-RAD, R-SLAKE and R-Path. These
datasets provide intermediate medical decision-
making rationales generated by multimodal
large language models and human annotations
for question-answering pairs in existing Med-
VQA datasets, i.e., VQA-RAD, SLAKE and
PathVQA. Moreover, we design a novel frame-
work, MedThink, which finetunes lightweight
pretrained generative models by incorporat-
ing medical decision-making rationales. Med-
Think includes three distinct strategies to
generate decision outcomes and correspond-
ing rationales, clearly showcasing the med-
ical decision-making process during reason-
ing. Our comprehensive experiments show
that our method achieves an accuracy of 83.5%
on R-RAD, 86.3% on R-SLAKE and 87.2%
on R-Path. These results significantly ex-
ceed those of existing state-of-the-art models
with comparable parameters. Datasets and
code are available at https://github.com/
Tang-xiaoxiao/Medthink.

1 Introduction

The Medical Visual Question Answering (Med-
VQA) task is designed to take medical images and
specialized clinical queries as inputs, and provide

*Equal contribution.
†Correspondence author.

accurate answers with texts. Since the inception
of the Med-VQA challenge in 2018(Hasan et al.,
2018), there has been a significant surge in interest
in exploring the capabilities of Med-VQA. Med-
VQA not only holds the potential to enhance patient
engagement, thereby alleviating patient stress, but
also assists physicians in clinical diagnosis, thus
conserving valuable medical resources and reduc-
ing the risk of misdiagnosis (Zhan et al., 2020; Liu
et al., 2023b).

The challenges to resolve the Med-VQA tasks
are two-fold. On one hand, though there exist a
wealth of datasets composed of medical images and
text annotations (Porwal et al., 2018), the decision-
making process between the question and answer
pairs are usually missing, impeding reliable eval-
uation of model interpretability. While some re-
cent datasets already incorporated images, special-
ized medical queries, and answer texts (Lau et al.,
2018; Liu et al., 2021b), the corresponding reason-
ing process to reach certain diagnostic decisions
remain unclear, resulting in black-box and clini-
cally inapplicable inference (Lu et al., 2022; Liu
et al., 2023c). A straightfoward solution is to in-
tegrate expert-level reasoning rationales in these
datasets to unravel the underlying reasoning pro-
cesses. However, manual annotation of such ra-
tionales is time-consuming and requires in-depth
understanding of medical knowledge (Liu et al.,
2025, 2024), while a fast and reliable rationale
annotation framework is still missing (Liu et al.,
2023a). On the other hand, models which can
resolve the Med-VQA tasks in a fast, accurate and
interpretable manner is of high necessity in real-
world applications. Current Med-VQA methods
often model this problem by retrieval and train
Med-VQA models with contrastive or classification
objectives. For instance, Nguyen et al. (Nguyen
et al., 2019) employed a combination of unsuper-
vised convolutional denoising autoencoders and
the meta-learning method to learn domain specific
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weight initialization of Med-VQA model on ex-
ternal medical datasets. Moreover, Zhang et al.
(Zhang et al., 2022) first implemented contrastive
learning in the medical domain, presenting Con-
VIRT, a methodology that utilizes medical text-
image contrastive loss for pretraining medical vi-
sual representations. Further, Liu et al. (Liu et al.,
2021a) proposed CPRD, a two-stage pre-training
framework, leveraging representation distillation
and contrastive learning to train visual encoder for
Med-VQA system on a large corpus of unlabeled ra-
diological images. The recent PubMedCLIP model
(Eslami et al., 2023) pioneers the incorporation
of the Contrastive Language-Image Pre-Training
(Radford et al., 2021) into the Med-VQA tasks by
conducting pre-training.

In contrast, the remarkable performance of large
language models (LLMs) across various natural lan-
guage processing (NLP) tasks has been extended
to text question-answering in healthcare(Nori et al.,
2023) Building upon this, multimodal large lan-
guage models (MLLMs) (OpenAI, 2023; Team
et al., 2023) accept both text and image inputs to
generate responses, presenting a novel approach
to tackling the Med-VQA tasks. However, apply-
ing MLLMs directly to Med-VQA tasks in real
medical scenarios is challenging due to their high
operational costs and lack of interpretability.

In this paper, we aim to address the aforemen-
tioned challenges by providing new benchmark
datasets and novel Med-VQA solutions. We design
a semi-automated annotation method that lever-
ages the powerful inference capabilities of MLLMs
to assist experts during annotation, significantly
improving the efficiency. Through our method,
we develop the R-RAD, R-SLAKE and R-Path
datasets. These datasets provide the intermedi-
ate reasoning steps critical for medical decision-
making, including necessary medical background
knowledge and descriptions of medical images,
which we term Medical Decision-Making Ratio-
nales (MDMRs). Moreover, we design a novel
framework, MedThink, to finetune the pretrained
generative models, specifically selecting the T5-
base architecture (Raffel et al., 2020) as our base ar-
chitecture due to its practicality in real-world appli-
cations. With only 223M parameters, the architec-
ture adeptly performs generative tasks, balancing
cost-effectiveness and practical value. By incorpo-
rating MDMRs into the training process, our model
outputs not only decision outcomes but also corre-
sponding rationales, thereby clearly showcasing the

medical decision-making process during inference.
Based on different inputs for MDMRs during train-
ing, we further propose three distinct generative
modes: “Explanation", “Reasoning", and “Two-
Stage Reasoning", as shown in Figure 1.

Extensive experimental results demonstrate that
our method achieves an accuracy of 83.5% on R-
RAD, 86.3% on R-SLAKE and 87.2% on R-Path.
These results show significant enhancements over
the existing state-of-the-art models with compara-
ble parameters. Our contributions are as follows:

• We develop a semi-automated process for an-
notating Med-VQA data with decision-making
rationale. To the best of our knowledge, the
R-RAD, R-SLAKE and R-Path datasets repre-
sent the first Med-VQA benchmark datasets that
encompass rationales for answers.

• We propose MedThink, a lightweight frame-
work with three answering strategies, which en-
ables faster and more accurate Med-VQA with
interpretability. This has been demonstrated
through extensive experiments.

2 Related Work

2.1 Med-VQA
VQA represents a cutting-edge, multimodal task
at the intersection of computer vision and natural
language processing, drawing significant attention
in both domains. Med-VQA applies the princi-
ples of VQA to interpret and respond to complex
inquiries about medical imagery. A Med-VQA sys-
tem usually consists of three key components for
feature extraction, feature fusion and answer rea-
soning, which aims to generate answers in text by
processing given medical images.

Previous Med-VQA solutions (Nguyen et al.,
2019; Zhang et al., 2022) have relied on the CNNs,
such as those pretrained on ImageNet like VGGs or
ResNets, to extract visual features. Meanwhile, the
RNNs are employed to process textual information.
With the development of large-scale pretraining,
recent works (Liu et al., 2023b; van Sonsbeek et al.,
2023; Eslami et al., 2023) have shifted towards
the transformer-based models to enhance feature
extraction capabilities for both textual and visual
modalities. In terms of content, these works still
treat the Med-VQA as the classification problem.
However, this approach is misaligned with the re-
alities of medical practice, where clinicians rarely
face scenarios that can be addressed with prede-
fined answer options.
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Figure 1: Overview of the Data Preparation, Model Architecture and Methods for Answering Med-VQA Questions.
(a) outlines the dataset cleaning and annotation process, where raw data undergoes refinement and annotation to
formulate a new dataset with accurate MDMRs. (b) displays the model architecture, which incorporates a textual
encoder for processing the medical question, a visual encoder for analyzing medical images, and a cross-attention
network with a gated fusion mechanism that synergistically combines textual and visual features to generate
informed responses for the Med-VQA task. (Carion et al., 2020; Khashabi et al., 2020; Zhang et al., 2023b) (c) is
the illustration of various strategies for answering Med-VQA questions. These strategies show how the inclusion
and arrangement of MDMRs can influence the model’s output. The training process involves three steps. First, the
training sets are annotated by the MLLM. Next, we use the training sets to train our models. Third, trained models
generate MDMRs for the test sets.

This incongruity underscores the necessity for
a Med-VQA approach that is more adaptive and
reflective of the complexities inherent in medical di-
agnostics and decision-making. Our work redefines
Med-VQA as the generative task. Within actual
medical environment, when faced with open-ended
queries, our proposed Med-VQA model can still
generate informed responses based on the medical
knowledge it has learned.

2.2 The Chain of Thought

Recently, NLP has been significantly transformed
by language models (Raffel et al., 2020; Chowd-
hery et al., 2023). To further enhance the reason-
ing capabilities of language models, prior works
(Cobbe et al., 2021; Wei et al., 2022) have incorpo-
rated reasoning rationales during training or infer-
ence phases, which guide models to generate the
final prediction. On the other hand, in the realm of
VQA, it is crucial for VQA systems to understand
multimodal information from diverse sources and
reason about domain-specific questions. To achieve
this goal, several works (Lu et al., 2022; Zhang
et al., 2023b) have proposed multimodal reason-

ing methods for VQA. These methods, commonly
referred to as “Chain of Thought", introduces in-
termediate steps to assist the model in reasoning.
In this paper, we present the “Medical Decision-
Making Rationale" (MDMR) and apply it to the
Med-VQA tasks. We anticipate that Med-VQA
systems, equipped with the MDMR, will not only
offer support in medical decision-making but also
elucidate the underlying rationales behind these
decisions.

3 Methodology

3.1 Problem Formulation
In this paper, We denote the medical dataset as
D = {(Im, Tm, Am, Rm)}Mm=1 where M is the
number of data samples. And the goal of the Med-
VQA tasks is to develop a mapping function f(·)
that can generate textual answers in response to the
medical questions, represented as:

{A,R} = f(I, T ), (1)

Here, I denotes the medical image sourced from
modalities such as X-ray, CT, or MRI. T repre-
sents the natural language question pertaining to
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the medical image I . The output of the model
f(·), represented as {A,R}, comprises two com-
ponents. A is the predicted textual answer, directly
addressing the query posed in T . R, termed as
“medical decision-making rationale", offers a de-
tailed justification for the answer A, elucidating an
interpretative insight into how the model processes
I and T .

3.2 Model Architecture
The model architecture comprises five components,
shown in Figure 1 (b): TextualEncoder, VisualEn-
coder, Cross Attention Network, Gated Fusion Net-
work, and TextualDecoder. Notably, the TextualEn-
coder, VisualEncoder and TextualDecoder are all
based on the Transformer architecture, renowned
for its powerful learning and representational capa-
bilities.

The TextualEncoder vectorizes the input ques-
tion T into the textual feature space, represented
as FT ∈ Rn×d, while the VisualEncoder trans-
forms the input medical image I into vision fea-
tures FI ∈ Rm×d. This can be expressed as: FT =
TextualEncoder(T ) and FI = VisualEncoder(I),
where n denotes the length of the input text, and d
indicates the hidden dimension, m represents the
number of image patches.

Upon acquiring the textual representation FT

and visual representation FI , our model employs
the Cross-Attention Network to facilitate interac-
tion between these two modalities. The Cross-
Attention Network computes the attention-guided
visual feature HI

attn ∈ Rn×d, which captures the
relevant visual features corresponding to the textual
query through the following operation:

H I
attn = Softmax

(
QKT

√
d

)
V, (2)

where Q, K, V correspond to the query, key, and
value, derived from FT , FI , FI , respectively.

Subsequently, the Gated Fusion Mechanism is
utilized to dynamically combine the textual repre-
sentation FT and the attention-guided visual fea-
ture HI

attn. It determines the fusion coefficient λ
through a sigmoid-activated linear combination of
the two modalities:

λ = Sigmoid(WlFT +WvH
I
attn), (3)

The fused output Ffuse ∈ Rn×d is computed as a
weighted sum of FT and H I

attn, moderated by λ:

Ffuse = (1− λ) · FT + λ ·H I
attn, (4)

Here, Wl and Wv are the model parameters that
are learned during training to optimize the fusion
of information between textual and visual streams.
Finally, the fused output Ffuse is fed into the Textu-
alDecoder to generate the output {A,R}:

{A,R} = TextualDecoder(Ffuse), (5)

3.3 Loss Function

Given the input X = {I, T}, the model f is trained
by maximizing the likelihood of accurately predict-
ing the target output Y = {A,R}. The training
involves a loss function, primarily the negative log-
likelihood of correctly predicting subsequent to-
kens in the sequence Y , accumulated over all time
steps. This is mathematically formulated as:

L = −
N∑

n=1

log p(Yn|X,Y 1:n−1), (6)

In this context, N represents the total number of to-
kens in the target answer Y , and p(Yn|X,Y 1:n−1)
denotes the conditional probability of correctly pre-
dicting the n-th token in Y , given the input X and
all preceding tokens Y 1:n−1 in the sequence. This
loss function significantly improves the model’s
capability to accurately forecast each token in the
target output, thereby enhancing its overall predic-
tive performance.

3.4 Three Generation Strategies

To investigate the impact of MDMRs on the model
performance in the Med-VQA tasks, we present
three different generation strategies. These strate-
gies are designed to guide the model in generating
various forms of outputs, corresponding to different
orders of MDMR in the process of generation. The
methods are categorized as “Explanation", “Rea-
soning" and “Two-Stage Reasoning", as shown in
Figure 1 (c).

In the “Explanation" method, the answer A is
generated first, followed by the MDMR R. In con-
trast, the “Reasoning" method reverses this order,
generating R before A. The “Two-Stage Reason-
ing" method follows a phased strategy, where two
independent models are trained in distinct stages.
The first stage focuses on using the medical ques-
tion T and the medical image I to generate the
intermediate result R. In the second stage, a differ-
ent model takes R, along with T and I , to derive
the final answer A.
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Table 1: Details of Datasets: Distribution of Images
and Questions in the R-RAD, R-SLAKE and R-Path
Datasets.

Dataset Images Training set Test set
R-RAD(closed-end) 300 1823 272
R-RAD(open-end) 267 1241 179

R-SLAKE(closed-end) 545 1943 416
R-SLAKE(open-end) 545 2976 645
R-Path(closed-end) 3361 9806 3391
R-Path(open-end) 3425 9933 3364

4 Dataset Creation

4.1 Dataset Collection

We establish three benchmark datasets R-RAD,
R-SLAKE and R-Path based on the VQA-RAD
dataset (Lau et al., 2018), the SLAKE dataset (Liu
et al., 2021b) and the PathVQA (He et al., 2020),
respectively.

Relevant statistics for the R-RAD, R-SLAKE
and R-Path datasets are detailed in Table 1. Details
about these datasets and their specific splits can be
found in the Appendix A.1.

4.2 Dataset Cleaning

We identify noticeable inconsistencies within raw
datasets. Specifically, the answers to similar ques-
tions about the same medical image are not always
consistent. For instance, given a chest X-ray imag-
ing, the response to the question “Is/Are the right
hemidiaphragm normal?" is “No", while the an-
swer to “Is this image normal?" is “Yes". This
apparent contradiction prompted us to seek further
expert medical review for such cases, ensuring the
reliability of our dataset.

In light of advancements of MLLMs, we inte-
grate the MLLM into our data cleaning and annota-
tion process, aiming to streamline the workflows.
This integration can not only expedite data pro-
cessing but also unearth subtleties often missed in
manual cleaning and annotation practices. To ad-
dress inconsistencies, we first use the MLLM to
systematically review all question-answer pairs for
each medical image. After identifying inconsisten-
cies, domain experts revise the answers, ensuring
consistency across all questions related to the same
medical image.

4.3 Dataset Annotation

After data cleaning, we utilize the MLLM for
data annotation, specifically in generating MDMRs
for the items within the VQA-RAD, SLAKE and
PathVQA datasets, as shown in Figure 1 (a). This

involves furnishing the MLLM with the datasets’
images, questions, and correct answers. Therefore,
we design a fixed prompt to guide the generation
process of the MLLM. To ensure the quality of
MDMRs, domain experts check MDMRs’ valid-
ity and applicability. MDMRs not meeting criteria
will be regenerated by the MLLM. If a MDMR
generated by the MLLM remains below standard
even after three attempts, domain experts will per-
sonally create an acceptable version, adhering to
predefined criteria.

We enlist experienced physicians as domain ex-
perts to ensure the professional and accurate anno-
tation of our data. To account for the diversity of
medical opinions, we establish rigorous review cri-
teria to guide the annotation process. The criteria
are as follows:

(1) Coherence: The MDMR must be logically
coherent, with no errors in grammar or spelling.

(2) Relevance: The MDMR must be directly
related to the question and pertinent to the clinical
context.

(3) Accuracy: The MDMR should be free from
common sense and medical knowledge errors.

Only when all three conditions are met will the
MDMR be included in our datasets.

5 Experiments

5.1 Training Details

During the datasets construction phase, we select
GPT-4V (OpenAI, 2023) from among MLLMs
to handle data cleaning and annotation. In our
framework, the encoder and decoder from Uni-
fiedQA (Khashabi et al., 2020) are integrated as
TextualEncoder(·) and TextualDecoder(·), respec-
tively. Additionally, DETR (Carion et al., 2020) is
employed as VisualEncoder(·).

In our experiments, the learning rate is uniformly
set at 5e−4 for the R-SLAKE, R-RAD and R-Path
datasets. The number of epochs during fine-tuning
varies by dataset: 300 epochs for the R-SLAKE
dataset, 150 epochs for the R-RAD dataset and
50 epochs for the R-Path dataset. It is important
to note that our “Two-Stage Reasoning" strategy
requires a phased fine-tuning process involving two
separate models. In the first phase, we follow the
parameters mentioned above. In the second phase,
we fine-tune with a learning rate of 5e-5 for 20
epochs across all three datasets. The batch size is
set to 32.

All experiments reported in this paper are
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Table 2: Accuracy (%) Comparison of Methods on Closed-End Questions in the R-RAD, R-SLAKE and R-Path.

Methods MLLM-Based R-RAD R-SLAKE R-Path Parameters
Zero-shot results

Med-MoE(StableLM)(Jiang et al., 2024) ✓ 66.9 52.6 69.1 2B
LLaVA-Med(From LLaVA) (Li et al., 2024) ✓ 60.2 47.6 59.8 7B

Gemini Pro(Team et al., 2023) ✓ 73.5 69.0 64.8 -
Gemini Pro (w/ Reasoning)(Team et al., 2023) ✓ 77.2 77.4 70.9 -

Gemini Pro (w/ Two-Stage Reasoning)(Team et al., 2023) ✓ 79.4 77.9 72.3 -
Gemini Pro (w/ Explanation)(Team et al., 2023) ✓ 79.8 78.1 72.6 -

Representative & SOTA methods (Supervised finetuning results)
MFB(Yu et al., 2017) 74.3 75.0 - -

SAN(Yang et al., 2016) 69.5 79.1 - -
BAN(Kim et al., 2018) 72.1 79.1 - -

MEVF+SAN(Nguyen et al., 2019) 73.9 78.4 - -
MEVF+BAN(Nguyen et al., 2019) 77.2 79.8 - -

MMBERT(Tiong et al., 2022) - 77.9 - -
PubMedCLIP(Eslami et al., 2023) 79.5 82.5 - -

Prefix T. Medical LM(GPT2-XL)(van Sonsbeek et al., 2023) ✓ - 82.1 87.0 1.5B
LLaVA (Li et al., 2024) ✓ 65.1 63.2 63.2 7B

Med-Flamingo (Moor et al., 2023) ✓ 65.1 63.2 63.2 7B
LLaVA-Med (From LLaVA) (Li et al., 2024) ✓ 84.2 85.3 91.2 7B
LLaVA-Med (From Vicuna) (Li et al., 2024) ✓ 82.0 83.2 91.7 7B

Med-MoE(StableLM) (Jiang et al., 2024) ✓ 80.1 83.4 91.3 2B
Med-Gemini (Yang et al., 2024) ✓ - 84.8 83.3 -

MedThink (w/o R) 79.0 82.5 86.0 0.2B
MedThink (w/ Reasoning) 73.9 (-5.1) 80.8 (-1.7) 83.1 (-2.9) 0.2B

MedThink (w/ Two-Stage Reasoning) 80.5 (+1.5) 79.1 (-3.4) 87.2 (+1.2) 0.2B
MedThink (w/ Explanation) 83.5 (+4.5) 86.3 (+3.8) 87.0 (+1.0) 0.2B

*Red and blue numbers indicate increases and decreases in accuracy compared to the MedThink (w/o R) results respectively.

conducted using PyTorch on an Ubuntu server
equipped with four NVIDIA RTX 3090 GPUs.
Training on the R-RAD dataset takes about 2.5
hours. In comparison, training on the R-SLAKE
dataset requires approximately 5.5 hours, while
the R-Path dataset takes around 14 hours. During
inference, processing each sample takes about 6
seconds.

5.2 Evaluation Metrics

Our performance evaluation is divided into two
parts, focusing on closed-end and open-end ques-
tions separately. For closed-end questions, which
are formatted as multiple-choice with a single cor-
rect answer, we assess performance using accuracy
as the metric. For open-end questions, in contrast
to previous works (Yang et al., 2016; Kim et al.,
2018; Yu et al., 2017; Nguyen et al., 2019; Tiong
et al., 2022; Eslami et al., 2023) that often empha-
size scoring all possible answers in open-ended
Med-VQA datasets to gauge classification accu-
racy, our work on generative Med-VQA prioritizes
clinical utility. Following established studies (Li
et al., 2023; Zhang et al., 2023a), we employ BLEU
and ROUGE to assess the quality of our method’s
outputs. The BLEU scores, akin to the “Precision",
evaluates the overlap of k-grams between generated
and reference sentences, while the ROUGE scores,

similar to the “Recall", measures the similarity in
word sequences.

5.3 Main Results

In facing closed-end questions, we evaluate the
performance of MedThink under various genera-
tion strategies, and compare them against several
baseline methods on the R-RAD, R-SLAKE, and
R-Path datasets. The results are shown in Table 2.
MedThink demonstrates varying levels of perfor-
mance across different generation strategies. To be
specific, MedThink with the “Explanation" strategy
achieves the highest accuracy on the R-RAD and
R-SLAKE datasets, recording 83.5% and 86.3% re-
spectively. Meanwhile, MedThink with the “Two-
Stage Reasoning" strategy achieves the best perfor-
mance on R-Path with an accuracy of 87.2%.

In contrast, the state-of-the-art classification
model, PubMedCLIP, achieves accuracies of 79.5%
on the R-RAD dataset and 82.5% on the R-SLAKE
dataset, which is significantly lower than Med-
Think’s results. This underscores the superior
performance of MedThink. Compared to other
generative models based on MLLM, MedThink
outperforms models such as LLaVA (Li et al.,
2024), Med-Flamingo (Moor et al., 2023), and
Med-Gemini (Yang et al., 2024), achieving overall
accuracies that are on par with the more parameter-
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Table 3: Score (%) Comparison of Medthink on Open-End Questions in the R-RAD, R-SLAKE and R-Path Datasets.

Dataset Strategy Rouge-1 Rouge-2 Rouge-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

R-RAD
Reasoning 49.8 20.3 29.3 37.8 22.7 14.0 8.9

Two-Stage Reasoning 49.1 19.9 28.7 37.7 22.5 13.9 8.8
Explanation 50.2 20.2 29.5 38.3 22.9 14.0 8.8

R-SLAKE
Reasoning 53.5 22.8 32.1 39.5 24.3 15.5 10.0

Two-Stage Reasoning 53.2 23.1 32.0 39.5 24.5 15.8 10.3
Explanation 53.1 22.7 31.7 39.2 24.1 15.4 9.9

R-Path
Reasoning 41.5 13.0 24.8 31.8 17.0 9.6 5.7

Two-Stage Reasoning 41.7 13.2 24.9 32.1 17.1 9.7 5.8
Explanation 41.9 13.2 25.0 32.1 17.1 9.7 5.8

Figure 2: Impact of MLLMs Selection and Expert Par-
ticipation in Dataset Creation on the Med-VQA Tasks
Accuracy (%) on Closed-End Questions in the R-RAD.

heavy LLaVA-Med (Li et al., 2024) and Med-
MoE (Jiang et al., 2024) models. Notably, Med-
Think accomplishes this with a parameter count
that is less than one-tenth of these models, demon-
strating both its efficiency and effectiveness. Us-
ing open-end questions, we conduct a comprehen-
sive evaluation of MedThink’s three strategies on
the R-RAD, R-SLAKE, and R-Path datasets. The
results are summarized in Table 3. For the R-RAD
dataset, the "Explanation" strategy outperforms
other strategies, achieving the highest scores in five
out of seven metrics. It records 50.2% in Rouge-1,
29.5% in Rouge-L, 38.3% in BLEU-1, 22.9% in
BLEU-2, and 14.0% in BLEU-3. On the R-SLAKE
dataset, the "Two-Stage Reasoning" strategy leads
in performance, securing the top scores in five out
of seven metrics, with 23.1% in Rouge-2, 39.5%
in BLEU-1, 24.5% in BLEU-2, 15.8% in BLEU-
3, and 10.3% in BLEU-4. Regarding the R-Path
dataset, the "Explanation" strategy once again de-
livers the highest overall performance, achieving
41.9% in Rouge-1, 13.2% in Rouge-2, 25.0% in
Rouge-L, 32.1% in BLEU-1, 17.1% in BLEU-2,
9.7% in BLEU-3, and 5.8% in BLEU-4. These
results collectively highlight the importance of se-
lecting appropriate generation strategies tailored
to addressing various medical scenarios, ensuring

the model generates comprehensive and detailed
responses.

5.4 Ablation Study
To explore the influence of various components
in MedThink, we conduct a series of ablation ex-
periments. First, we evaluate the effect of differ-
ent MLLMs used during dataset creation and the
contribution of domain experts to data annotation.
We implement three variations for annotating the
closed-end questions in the R-RAD dataset: us-
ing Gemini Pro (Team et al., 2023) without ex-
pert involvement, using GPT-4V without expert in-
volvement, and using GPT-4V with expert involve-
ment. As shown in Figure 2, when GPT-4V is used
with expert involvement in dataset creation, the
“Explanation" and “Two-Stage Reasoning" strate-
gies achieved their highest accuracies of 83.5%
and 80.5%, respectively. In contrast, the “Rea-
soning" strategy performed best with Gemini Pro
without expert involvement, reaching an accuracy
of 79.4%, which is only slightly above the base-
line accuracy of 79.0% when MDMRs are not ap-
plied. We attribute this to the instability of the
“Reasoning" strategy, which hinders its ability to
consistently benefit from MDMRs, aligning with
previous research (Lu et al., 2022). Overall, expert
involvement enhances the quality of MDMRs, pos-
itively impacting MedThink. Additionally, GPT-
4V’s stronger reasoning ability compared to Gem-
ini Pro (Fu et al., 2023) further suggests that using
a more advanced MLLM during data annotation is
beneficial. Next, we examine how the introduc-
ing of MDMRs impacted results. We introduce a
control experiment, MedThink without MDMRs,
where the models are trained and inferred without
incorporating MDMRs (MedThink w/o R). The
“Explanation", “Reasoning" and “Two-Stage Rea-
soning" strategies are compared with the control
experiment. As indicated in Table 2, compared to
“MedThink w/o R", the “Explanation", “Two-Stage
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Figure 3: Illustration of MDMRs Enhancing Model Re-
sponses in the Med-VQA Tasks. The green highlighted
text represents medically relevant knowledge that aids
in answering the question, while the red highlighted
text indicates information that could lead to incorrect
conclusions. The red boxes in the images correspond
to the described anatomical features, underscoring the
alignment between the rationale and the visual evidence.

Reasoning", and “Reasoning" strategies improve
accuracy by 4.5%, 1.5%, and -5.1% on the R-RAD
dataset, 3.8%, -3.4%, and -1.7% on the R-SLAKE
dataset, and 1.0%, 1.2% and -2.9% on the R-Path
dataset, respectively.

Finally, we assess the practicality of MDMRs
generated by MedThink using different strategies.
Initially, Gemini Pro is provided with only medical
queries and related imagery. Subsequently, we in-
incorporate MDMRs generated by MedThink with
the “Explanation", “Reasoning" and “Two-Stage
Reasoning" strategies to assist Gemini Pro in an-
swering. The results, presented in Table 2, indicate
an initial accuracy of 73.5% on the R-RAD dataset,
69.0% on the R-SLAKE dataset and 64.8% on the
R-Path dataset for Gemini Pro. The integration
of MDMRs has led to significant improvements.
Among three strategies, the “Explanation" strategy
stands out, enhancing the accuracy by 6.3% on the
R-RAD dataset, 9.1% on the R-SLAKE dataset and
7.8% on the R-Path dataset.

5.5 Case Study

To assess the specific impact of MDMRs on the
Med-VQA task, Figure 3 shows several exam-
ples where MedThink applies the “Explanation"
strategy to answer questions from the R-SLAKE
datasets.

Table 4: The error rate for each region (Lower values
are better)

Anatomical Regions (Number) w/o Rationale ↓ Explanation ↓
Lung (N=141) 12.06% 9.93%

Abdomen (N=141) 24.11% 19.15%
Head (N=91) 18.68% 13.18%
Neck (N=16) 18.75% 6.25%
Chest (N=5) 20.00% 0.00%

Pelvic Cavity (N=22) 4.55% 13.64%

When the generated MDMR is accurate, Med-
Think can effectively and precisely answer the re-
lated medical question. If the MDMR contains
errors, however, it misguides MedThink, leading to
a phenomenon known as hallucination, which is a
common issue in vision-language models. To inves-
tigate the causes of hallucinations in MedThink, we
analyze the number of incorrect answers it provided
on the R-SLAKE dataset. The R-SLAKE dataset is
chosen because it covers medical questions about
six anatomical regions, offering a complex and rep-
resentative challenge.

We perform the analysis through the following
steps. First, we categorize the test set questions by
the anatomical regions associated with the medical
images. Next, we tally the number of incorrectly
predicted questions for each anatomical region. Fi-
nally, we calculate the proportion of incorrect pre-
dictions for each region, as shown in Table 4. The
results indicate that MedThink significantly aids in
addressing medical issues related to the chest and
abdomen. However, these areas still account for
the majority of prediction errors. We attribute this
to the greater complexity of chest and abdomen
images, which contain more organs than other re-
gions, presenting a considerable challenge for the
model.

6 Conclusion

In this paper, we present a medical chain of thought
method for Med-VQA and construct the R-RAD,
R-SLAKE, and R-Path datasets. These datasets
include intermediate reasoning steps to address the
challenge of black-box decision-making processes
in Med-VQA models. Extensive experimental re-
sults show that our proposed framework not only
elucidates the medical decision-making process
of Med-VQA models with clarity but also signifi-
cantly enhances their performance. Future research
will further explore generative models tailored for
real clinical settings and how to better evaluate the
performance of Med-VQA models in open-ended
scenarios.

7460



Acknowledgments

This work is supported by the National Nat-
ural Science Foundation of China (Grant No.
62476241), the Natural Science Foundation of Zhe-
jiang Province, China (Grant No. LZ23F020008),
and the Zhejiang University-Angelalign Inc. R&D
Center for Intelligent Healthcare.

Limitations

Data Security and Privacy: While we use open-
source and desensitized datasets like VQA-RAD
and SLAKE, there are still concerns about data se-
curity with external LLMs. Ensuring encryption,
anonymization, and compliance with privacy stan-
dards is crucial, especially for private datasets or
sensitive medical data.
Trust and Reliability: Our work aims to improve
medical decision-making accuracy and model in-
terpretability. However, the extent to which our
method can be trusted remains a challenge. The
reliability of AI outputs depends on the clinician’s
expertise, and inexperienced doctors might struggle
to identify unreliable outputs. This issue requires
further research and collaboration to establish com-
mon standards for AI in clinical practice.
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Figure 4: An Example of the Question Reformulation
Process Using GPT-4V. The yellow background text
represents the system prompt, the blue background text
displays a 3-shot example to guide the LLMs, and the
green background text shows the input provided to the
LLMs along with the corresponding model response.

Figure 5: An Example of the Process for Identifying
Inconsistent Questions.

question_845: Is this patient female? answer: yes.

Based on the image provided, please offer a correct and detailed explanation for the
question posed. Only explain the reasoning behind the answer without restating the
given answer. Furthermore, include the question index in your response.
**Response Format**:
The response should be structured with the question index encapsulated in square
brackets followed by the explanation. For example:
[question_XX] 'Explanation of question_XX'

[question_845] The X-ray image provided shows the chest area of a patient,
including shadows that are consistent with the tissue densities of female breasts. 
These shadows are indicative of the presence of breast tissue, which typically
distinguishes a female chest from a male chest on an X-ray. Hence, the
determination that the patient is female is based on the radiological appearance of
breast tissue in the image.

[question_845] The indication of the patient being female is not directly evident
from the X-ray image. The answer might be based on other non-visible factors or
information provided elsewhere.

[question_845] I'm sorry, but I can't assist with that request.

Figure 6: An Example of Annotation Process. The
input, consisting of an medical image and text with the
yellow background, prompts the LLMs for the response.
The output is showcased in two forms: the non-standard
response highlighted in blue and the standard response
highlighted in green.

A Appendix

A.1 Dataset Details

The VQA-RAD dataset sources its radiographic
images from MedPix®, an open-access radiology
database. In this dataset, clinicians formulate peri-
nent medical questions based on the radiographic
images, and provide corresponding answers. The
VQA-RAD dataset comprises a collection of 315
images and 3,515 questions-answer pairs.

The SLAKE dataset derives its data from three
distinct sources: the ChestX-ray8 (Wang et al.,
2017), the CHAOS Challenge (Kavur et al., 2021),
and the Medical Segmentation Decathlon (MSD)
(Simpson et al., 2019). After screening and anno-
tation by clinicians, it yields a bilingual (English-
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Figure 7: An Example of Rationale Validation Using Gemini Pro. The red background text represents the incorrect
answer, while the green background text represents the correct answer.

Table 5: Detailed Information Regarding the Qualifications and Expertise of the Professionals

Category Details
Number of Annotators 12

Age Range 30–50 years
Gender Distribution Male: 50%, Female: 50%

Number of Publications Minimum: 1; Average: 4
Years of Experience Minimum: 5 years; Average: 8 years

Professional Background Certified Clinical Practitioners (50%), Medical Educators (50%)

Chinese) Med-VQA dataset, including 642 medical
images and approximately 14,000 medical ques-
tions. For our work, we utilize only the “English"
component of the dataset.

The PathVQA dataset, specifically designed for
visual question answering in the medical domain,
compiles its pathology images and corresponding
captions from a range of textbooks and online digi-
tal libraries. The dataset consists of 4,289 pathol-
ogy images and 32,632 question-answer pairs, each
pair is meticulously reviewed for accuracy.

These questions of three datasets are classified as
“closed-end" if they have limited answer choices,
and “open-end" otherwise. For our work, We ad-
here to the official dataset split for evaluation. After
completing the data cleaning and annotation, the
R-RAD dataset includes a total of 3,515 medical
questions and 314 medical images, the R-SLAKE
dataset comprises 5,980 medical questions and 546
medical images and the R-Path dataset contains
4,012 images and 26,494 question-answer pairs.

A.2 Details of Dataset Cleaning

In this section, we detail the data cleaning pro-
cess. We discover that within the raw datasets,
some closed-end questions are similar in form to
open-end questions. To preserve the original cat-
egorization of the dataset while enhancing clarity,
we employ GPT-4V to alter the presentation format
of these questions, while keeping their categoriza-
tion unchanged, as shown in Figure 4. After the
GPT-4V modification, for instance, the question
“How would you describe the stomach wall thick-
ening?" is reformulated to “Is the stomach thicken-

ing asymmetric?". This modification ensures the
preservation of the original intent of the question,
while aligning its presentation more closely with
the defining characteristics of the closed-end ques-
tion.

Additionally, to address inconsistencies within
same medical image, we firstly use GPT-4V to as-
sist in manually identifying inconsistent questions
within each medical image, as shown in Figure 5,
while systematically traversing the entire dataset
of medical images. Subsequently, after aggregat-
ing all identified inconsistencies, experts revised
the answers to these question, ensuring consistency
across all questions pertaining to the same medical
image.

A.3 Details of Dataset Annotation

In this section, we demonstrate what constitutes
standard medical decision-making rationales dur-
ing the annotation process. As shown in Figure 6,
for the question “Is this patient female?", the initial
response from GPT-4V is “I’m sorry, but I can’t
assist with that request", signifying a refusal to an-
swer the question. During the annotation process,
the issue is observed in approximately 2% of the
samples. The subsequent response from GPT-4V
does not meet the criteria, as the answer could not
be inferred from the rationale provided. The third
response from GPT-4V meets the criteria, not only
explaining the contents of the X-ray image (“The
X-ray image provided shows the chest area of a
patient, including shadows that are consistent with
the tissue densities of female breasts"), but also
highlighting the medical background knowledge
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Figure 8: More Cases. The figure showcases four examples where the “Explanation" strategy facilitates the
diagnostic process of the model. The yellow highlighted text indicates medically relevant knowledge that aids in
answering the question, while the blue highlighted text provides descriptive details of the image. The red boxes in
the images correspond to the described anatomical features, underscoring the alignment between the rationale and
the visual evidence.

necessary to correctly answer the question (“These
shadows are indicative of the presence of breast
tissue, which typically distinguishes a female chest
from a male chest on an X-ray").

A.4 Details of Rationale Quality Assessment

In this section, we show how to use Gemini Pro
to validate the medical decision-making rationales
generated by our methods. To further enhance the
capabilities of Gemini Pro, we use “Let’s think
step by step" as part of the prompt word. As shown
in Figure 7, Gemini Pro answers the question cor-
rectly after receiving the rationale generated by our
methods.

A.5 Details of the Criteria

In this study, the criteria for the annotation process
are established and validated by professionals with
extensive experience in the medical field, specifi-
cally including:

(1) Annotator qualifications: As shown in Ta-
ble 5, the annotation team consists of certified clini-
cal practitioners and medical educators with at least

5 years of clinical experience and a track record
of publishing in relevant professional fields. This
ensures the accuracy and scientific validity of the
generated content.

(2) Quality assurance: To maintain high quality,
we implement cross-expert validation. Each ratio-
nale is evaluated by three different experts based
on the review criteria. A voting system is used,
with “reliable" scored as 0 and “unreliable" as 1.
A rationale’s evaluation result is determined by a
majority vote of two or more.

A.6 More Cases
To observe the assistance of medical decision-
making rationales in Med-VQA tasks specifically,
Figure 8 shows more examples where the model
employs the “Explanation" strategy.
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