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Abstract

For centuries, writers have hidden messages as
acrostics, in which initial letters of consecutive
lines or paragraphs form meaningful words or
phrases. Scholars searching for acrostics manu-
ally can only focus on a few authors at a time
and often favor qualitative arguments about
whether a given acrostic is accidental or inten-
tional. Here we describe AcrosticSleuth, a first-
of-its-kind approach to identify acrostics auto-
matically and rank them by the probability that
the corresponding sequence of characters does
not occur by chance. Since acrostics are rare,
we formalize the problem as a binary classifica-
tion task in the presence of extreme class imbal-
ance. To evaluate AcrosticSleuth, we present
the Acrostic Identification Dataset (AcrostID),
a collection of acrostics from the WikiSource
online database. Despite the class imbalance,
AcrosticSleuth achieves F1 scores of 0.39, 0.59,
and 0.66 on the French, English, and Russian
subdomains of WikiSource, respectively. We
further demonstrate that AcrosticSleuth can
identify previously unknown instances of word-
play in high-profile literary contexts, including
the English philosopher Thomas Hobbes’ signa-
ture in the opening paragraphs of The Elements
of Law.

1 Introduction

If you put together the initial letters of the 14
opening paragraphs of Thomas Hobbes’ The El-
ements of Law, you will discover that they spell
THOMAS[OF]HOBBES. Such hidden messages, in
which initial letters of lines or paragraphs form
a meaningful word or phrase, are called acrostics.
Acrostics are easy to find if you know where to

look—some authors even draw attention to them—
but can otherwise be difficult to notice. For exam-
ple, to the best of our knowledge we are the first
to identify the Hobbes acrostic, despite its appear-
ance at the beginning of an important, well-studied
text by a famous author. The subtle, often playful
nature of acrostics has kept the literary device in
regular if infrequent use throughout the centuries.
More recently, Russian dissidents have inserted
anti-government messages as acrostics into main-
stream publications.1

In contrast to these unambiguous examples,
scholars have also argued for the intentionality of
much shorter acrostics, such as the supposed acros-
tic MARS in the middle of Vergil’s Aeneid (Fowler,
1983). Critics have seen the use of two regular
Latin terms for war within the passage (“Martem,”
“bellum”) as validating the acrostic. Such discus-
sions, however, have not considered the probability
of encountering the four-letter sequence.

In this paper, we introduce AcrosticSleuth, a tool
that can identify putative acrostics in large corpora
and rank them by the probability that the sequence
of initial characters does not occur by chance (and
therefore may have been inserted intentionally by
the author). AcrosticSleuth is a command line tool
available on GitHub under the MIT license.2 From

1To cite two examples, politically persecuted film director
and LGBT activist Kirill Serebrennikov (2020) encoded a mes-
sage in his final speech to the court that spells НИОЧЕМНЕ-
ЖАЛЕЮСОЧУВСТВУЮВАМ (“I have no regrets. I
am sorry for you.”), and scholar Ilya Lemeshkin (Медиазона,
2023) published a paper in a government-funded journal with
an acrostic СДОХНИПУТЛЕРНЕТВОЙНЕИЛ (“Die
Putler. No to war. I.L.”).

2https://github.com/acrostics/acrostic-sleuth
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a statistical perspective, the acrostic identification
problem presents a challenge in the form of ex-
treme class imbalance: acrostics are very rare. In
Section 3, we discuss how we identify and rank
acrostics, as well as the implementation details that
allow for efficient search.

To evaluate AcrosticSleuth, we create the Acros-
tic Identification Dataset (AcrostID), a collection
of labeled acrostics from the English, French, and
Russian subdomains of the WikiSource database
of texts. The dataset is available under the MIT
license and includes all acrostics that have been
explicitly referred to or formatted as such on
WikiSource.3 We show that AcrosticSleuth suc-
cessfully identifies acrostic poems and achieves F1
scores of 0.39, 0.59, and 0.66 on French, English,
and Russian corpora, respectively. In Section 4,
we present these results, provide a comparison of
the tool’s performance across languages, and dis-
cuss acrostics found by AcrosticSleuth that have
not been recognized previously.

2 Background

Some prior work has applied quantitative meth-
ods to investigate the intentionality of acrostics in
Shakespeare (Eckler, 1985) and Horace (Morgan,
1993), among other authors. Such studies typically
consider the probabilities of individual acrostics in
isolation (Morgan, 1993), instead of ranking them
in comparison to other candidates. The basic limita-
tion of this approach, as noted by Robinson (2019),
is that, while the probability of any given acrostic
is indeed very low, one is nevertheless almost guar-
anteed to stumble upon some accidental acrostic in
a sufficiently long text. The lottery offers a good
analogy: the chances of winning are extremely low
for any one person, but someone still takes home
the jackpot.

Our work falls under the broader category of
automated analysis of wordplay and puzzles, with
AcrosticSleuth similar in several respects to cross-
word solving tools (Kulshreshtha et al., 2022).
On the generative side, there has been substantial
work on language models that can compose acros-
tic poems (Agarwal and Kann, 2020; Shen et al.,
2019), paraphrase existing texts to introduce acros-
tics (Stein et al., 2014), produce anagrams (Jordan
and Monteiro, 2003), or synthesize other types of
wordplay (Liu et al., 2020). The wide availability

3https://github.com/acrostics/
acrostic-identification-dataset

of such tools, and the drive for creative language
encodings intended to avoid censorship in online
communication (Ji and Knight, 2018), suggest that
acrostics may become even more widespread in the
future.

3 Methods

In this section, we outline our approach for enumer-
ating and ranking candidate acrostics. We define
the problem as follows: given a sequence of line-
initial characters in a text, rank all possible subse-
quences based on the probability that they come
from natural speech and have not been selected at
random from the distribution of initial letters. Our
hypothesis is that this probability should reflect in-
tentionality: the higher the probability, the more
likely it is that the corresponding characters have
been deliberately made to form meaningful words
or phrases by the author.

Consider the binary classification problem of la-
beling a sequence of characters as “acrostic” or
“not an acrostic.” This problem suffers from ex-
treme class imbalance: most sequences of char-
acters will not be acrostics. Since we do not
know the a priori probability P (a) of encountering
an acrostic, we cannot directly compute P (a|s),
the probability that a given sequence of charac-
ters s is an acrostic. To rank candidate acrostics,
however, it is sufficient to estimate P (a|s1)

P (a|s2) , the
ratio of two such probabilities for two different
strings s1 and s2. By Bayes’ theorem, this ra-
tio is equal to P (s1|a)P (a)P (s2)

P (s1)P (s2|a)P (a) = P (s1|a)P (s2)
P (s1)P (s2|a) =

P (s1|a)(P (s2|a)P (a)+P (s2|¬a)P (¬a))
P (s2|a)(P (s1|a)P (a)+P (s1|¬a)P (¬a)) . We now posit
that P (a), the a priori probability of encounter-
ing an acrostic, must be very small. As P (a) ap-
proaches zero, the ratio we need to estimate ap-
proaches P (s1|a)P (s2|¬a)

P (s1|¬a)P (s2|a) . In other words, comput-

ing P (s|a)
P (s|¬a) for every string s gives us a metric by

which we can rank all candidate acrostics.
Of the two probabilities involved in computing

the rank, estimating P (s|¬a) for some s is trivial—
it is the conditional probability of first letters in
each line forming the sequence of characters s un-
der the assumption that the poem contains no acros-
tics. When there are no acrostics, each character
in s is drawn independently at random from the
overall distribution of line-initial characters in the
target language, so that P (s|¬a) is a product of
such probabilities for individual characters. On the
other hand, P (s|a), the probability of encountering
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Figure 1: Workflow schematic for AcrosticSleuth.

a sequence of characters in an acrostic, is more
difficult to estimate.

In this study, we assume that acrostics are sim-
ilar to regular text, which allows us to use pre-
trained language models. AcrosticSleuth relies on
unigram language models produced by Sentence-
Piece (Kudo and Richardson, 2018) to estimate
the probability that an acrostic spells some given
sequence of characters. SentencePiece is an unsu-
pervised text tokenizer, in which subword-level to-
kens are chosen to fit the vocabulary size specified
by the user. SentencePiece has several advantages
for the present application: it is fully unsupervised
and can be adapted to multiple languages; it uses
subword tokens and therefore can handle out-of-
vocabulary words, such as names, which often fea-
ture in acrostics; and it requires minimal compute.
We found that AcrosticSleuth achieves best per-
formance when using language models with large
numbers of tokens (see Appendix).

Figure 1 illustrates the workflow of Acrostic-
Sleuth, using Hobbes’ The Elements of Law as an
example. AcrosticSleuth first converts the source
text into a string of initial letters. This step in-
volves minimal language-specific preprocessing,
such as removing all non-alphabetic characters.
Next, AcrosticSleuth considers every possible sub-
string of initial letters up to some fixed length and,
for each substring, every possible way to tokenize
it. For each resulting list of tokens, AcrosticSleuth
computes the rank using dynamic programming;
we process substrings that end earlier in the text
first and store the highest ranking tokenization of
previously encountered substrings. Note that the
use of a unigram model simplifies the dynamic pro-
gramming setup substantially, since the probability
assigned to the next token is independent from the
previous ones. We further boost performance by
supporting multithreading and maintaining a cache
of commonly occurring substrings.

AcrosticSleuth uses a min-heap data structure to
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Figure 2: Categorization of the methods by which the
acrostics in AcrostID were identified. Acrostics first
found using AcrosticSleuth are excluded when comput-
ing recall discussed below.

keep track of the highest ranking candidate acros-
tics it has encountered so far. The size of the heap
is fixed and can be specified by the user. When
reporting the results, AcrosticSleuth aggregates
candidate acrostics that overlap into one result
and uses the top candidate to rank the whole clus-
ter. For example, in Figure 1 both THOMASOF and
THOMASOFHOBBES end up in the min-heap as high-
ranking candidate acrostics, but AcrosticSleuth re-
ports them as a single cluster because they overlap.

4 Results and Evaluation

4.1 Acrostic Identification Dataset
To evaluate AcrosticSleuth’s performance, we cre-
ate the Acrostic Identification Dataset (AcrostID),
which is comprised of acrostics found on
WikiSource, a Wikipedia-affiliated online library
of literature, parliamentary proceedings, and other
texts. We chose Wikisource for several reasons, in-
cluding its multilingual and cross-genre coverage,
as well as the availability of partial annotations
(many texts are explicitly labeled or formatted as
acrostics). To obtain a set of “true” acrostics on
which we can evaluate our tool, we perform the
following two tasks. First, we manually inspect all
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Acrostic WikiSource Page
TOJOSEPHKNIGHT Page:Notes by the Way.djvu/61

IESUCHRISTSONNEOFGODTHESAVIOR Page:Whole prophecies of Scotland, England, Ireland, France & Denmark.pdf/46
PRINCECHARLIE Page:Carroll - Three Sunsets.djvu/83
CORNELIABASSET Ben King’s Verse/Asphodel
KATHLEENBRUCE Page:Clouds without Water (Crowley, 1909).djvu/24

AMAZING Page:Amazing Stories Volume 17 Number 06.djvu/6
PERHAPS Page:Love’s trilogy.djvu/79

ALICEPLEASANCELIDDELL Page:Complete Works of Lewis Carroll.djvu/292
THOMAS[OF]HOBBES The Elements of Law/Part I/Chapter 1

MARYSTOKES Page:Notes and Queries - Series 12 - Volume 4.djvu/257
SURVIVAL United States Army Field Manual 7-93 Long-Range Surveillance Unit Operations

Table 1: English acrostics that were not labeled or formatted as such on WikiSource as of April 20, 2024.

uses of the word “acrostic” on WikiSource (“акро-
стих” in Russian, “acrostiche” in French). In cases
in which the word refers to specific lines, we mark
these as acrostics. Using this method, we identify
33 acrostics in English WikiSource, 109 in Russian,
and 38 in French.

We also include acrostics based on formatting:
initial letters of an acrostic are often highlighted
in bold or in red or are rotated by 90 degrees. We
look at all sequences of five or more consecutive
lines in which initial letters are specially format-
ted and identify cases in which the initial letters
form one or more words in the source language.
Finally, we manually inspect the corresponding
WikiSource pages to confirm that the formatting
is not accidental. This method allows us to iden-
tify a further six English acrostics, as well as one
Russian and 10 French. Figure 2 summarizes the
sources of acrostics in AcrostID, as well as the num-
ber of new acrostics identified by AcrosticSleuth,
for each language. When reporting the number of
acrostics above, we count some acrostics together
as one entry (e.g., when a single acrostic is split
between two WikiSource pages or reproduced mul-
tiple times), so as to enable fairer evaluation of tool
performance.

4.2 Experiments

We perform all experiments on an M3 MacBook
Pro with 48 GB RAM and 16 CPU cores. All
experiments can be reproduced in under an hour
using comparable resources. Figure 3 summarizes
the performance of AcrosticSleuth on AcrostID. In
each subplot, the y-axis shows the tool’s perfor-
mance, and the x-axis (logarithmic scale) indicates
the number of first-ranking results for which the
corresponding metric is calculated. Despite the
extreme class imbalance, AcrosticSleuth achieves
top F1 scores of 0.39, 0.59, and 0.66 on French,
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Figure 3: Recall, precision, and F1 score of Acrostic-
Sleuth.

English, and Russian corpora, respectively, sug-
gesting that AcrosticSleuth can be used for quick
identification of most acrostics in a given corpus.

Figure 3 also shows that AcrosticSleuth achieves
the best performance on the Russian corpus and
the worst on the French; this difference may be
due to the composition of the datasets themselves.
In particular, Russian WikiSource contains a large
number of acrostics from 17th and 18th century
texts, which tend to span dozens of lines and are
thus easier to identify, whereas many acrostics in
French WikiSource are split across multiple pages
or are otherwise more difficult to find due to for-
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matting issues.
When calculating recall, we only consider as

acrostics those instances that were identified manu-
ally, as described above. When calculating preci-
sion, however, we also take into account acrostics
that the tool identifies but that are not labeled or
formatted as such on WikiSource. To this end,
we manually inspect the top 1000 results Acrostic-
Sleuth returns for each language and note those we
believe to be acrostics beyond any reasonable doubt
(Figure 2). Table 1 lists all unlabeled and unfor-
matted acrostics found in the English subdomain of
WikiSource. Some acrostics in Table 1 have been
identified before, such as the one by Lewis Carroll,
although the corresponding page on WikiSource
contains no reference to the acrostic (as of April
20, 2024). Other acrostics, however, are new dis-
coveries, such as the THOMAS[OF]HOBBES example
discussed in the Introduction.

To explore the capabilities of AcrosticSleuth for
multilingual and diachronic analysis, we also run
it on Musisque Deoque and Poeti D’Italia, two
databases of Latin poetry. Among the results is
the acrostic ARSPOETICA in a 14th century poem by
Albertino Mussato, which was only noticed for the
first time in 2022 (Hosle, 2022). The poem laments
that the Italy of Mussato’s time is not safe for poets,
and the acrostic identifies the female subject of the
opening sentence, suggesting that she (the art of
poetry) is not at ease.

5 Discussion and Future Work

Throughout this paper, we discuss the acrostics that
our tool identifies only insofar as they are relevant
for the tool’s evaluation. A direction for future qual-
itative research is the analysis of acrostics in their
own right. A preliminary scan of our dataset reveals
two tendencies that are worth discussing. First, the
majority of acrostics we find encode names, usu-
ally as a form of dedication. Second, the majority
of acrostics we find appear at the very beginning
of their respective texts. These observations have
implications for the future development of Acros-
ticSleuth and the study of acrostics in general.

The abundance of names in acrostics compli-
cates their detection because many names are
transliterations from another language, and a lan-
guage model is naturally biased towards most com-
monly occurring names and syllables. For instance,
compare the log probability of −20 that our En-
glish model assigns to “Walter Scott” to the −44

log probability that it assigns to “Amos Tutuola,”
despite both names being the same length. This dif-
ference is not due simply to the Yoruba name “Tu-
tuola” being an out-of-vocabulary word—it persists
even if we use a smaller 900-token model, which
does not have any of the four names in the vocabu-
lary but instead splits them into subtokens (a-mo-s
t-ut-u-o-la and w-al-ter sc-ot-t). In the fu-
ture, we may experiment with biasing Acrostic-
Sleuth toward the vocabulary of the specific text
under analysis.

The tendency of acrostics to appear in the open-
ing lines of a text is not surprising—this is where
readers are most likely to look for them—but it
does highlight the idiosyncrasy of examples such
as the MARS acrostic we mention in the Introduction,
which appears in the middle of the Aeneid. We have
run AcrosticSleuth on Musisque Deoque and Poeti
D’Italia, two databases of Latin poetry, and find
that the tool ranks this acrostic very low—you can
locate comparable examples in virtually any text
that is a few hundred lines long. Coupled with its
position in the middle of the poem, rather than at
the very beginning, this finding gives little reason
to consider the acrostic intentional from a statistical
perspective. Our point here, however, is not nec-
essarily to argue against the intentionality of this
specific instance, but rather to emphasize the com-
plementary nature of qualitative and quantitative
analysis. The results returned by AcrosticSleuth
should be carefully examined by a specialist, and,
conversely, every conjecture should be reviewed
from a statistical point of view.

6 Conclusion

This paper presents AcrosticSleuth, a tool for iden-
tifying and ranking acrostics in large corpora of
texts. Using a new benchmark dataset (AcrostID),
we show that the tool can identify known acros-
tics in French, English, and Russian corpora with
high recall. In addition, we use AcrosticSleuth
to uncover important acrostics that have not been
discussed previously by literary scholars, such as
Hobbes’ THOMAS[OF]HOBBES.
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Limitations

The present implementation and evaluation of
AcrosticSleuth has several limitations, which rep-
resent promising avenues for future work. First,
we use only a single language model, a unigram
model from SentencePiece. Although well-justified
and effective for our application, future work on
acrostic detection should characterize potential per-
formance gains from using a large language model
in place of SentencePiece. Second, while we per-
form a multilingual evaluation of AcrosticSleuth
involving three languages (French, English, and
Russian), it would be valuable to extend the cover-
age of AcrostID more broadly, especially in light
of the language-specific performance differences
we observe. Finally, as suggested by our case study
with Mussato, Latin literature presents an interest-
ing object for further study. Roman authors com-
posed not only regular acrostics but also telestics
(formed by combining the final letters of each line),
mesostics (formed by every n-th letter), and di-
agonal acrostics. In addition to completing a sys-
tematic study of conventional Latin acrostics, in
future work we also plan to extend the capabilities
of AcrosticSleuth to handle such alternative forms
of wordplay.

Ethical Considerations

In the Introduction, we discuss how acrostics have
been used by dissidents to insert anti-war messages
into mainstream media. In theory, one can imagine
a malicious actor using a tool such as Acrostic-
Sleuth to screen incoming publications for “un-
desirable” acrostics. In practice, however, Acros-
ticSleuth can only identify one specific kind of
acrostic—those formed by initial letters of each
line or paragraph. Other kinds of acrostics, such
as those formed by initial letters of each word or
sentence, would remain undetected. Even if the
tool’s functionality were further extended to cover
these cases as well, one could always come up with
a new way to encode a hidden message into the
text. The point of acrostics by Lemeshkin and Sere-
brennikov, for instance, is precisely that there is
no way to silence or prevent such artistic expres-
sions of opinion, regardless of how much effort one
spends on censorship. These types of examples,
moreover, are not hidden in the sense of wishing
to evade all notice—they are calculated to provoke
or amuse, with Lemeshkin publicly revealing his
acrostic right after publication. Hence, in the un-

likely event that AcrosticSleuth were to be used
for censorship purposes, we believe that the effort
would prove futile.
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Appendix

Effect of Model Size on Performance
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(a) English
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(b) Russian
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(c) French

Figure 4: Effect of language model size on Acrostic-
Sleuth’s recall for English, Russian, and French corpora.

In Section 3, we write that AcrosticSleuth
reaches peak performance when using Sentence-
Piece language models with the largest number of
tokens. Figure 4 illustrates this point further by
showing the recall that AcrosticSleuth achieves for
different languages with models of different sizes.
Note that the performance of the largest two models
(72900 and 24300 tokens, respectively) is very sim-
ilar, suggesting that further increases to the model’s
size would yield diminishing returns.
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