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Abstract

Since the release of ChatGPT, large language
models (LLMs) have demonstrated remarkable
capabilities across various domains. A key chal-
lenge in developing these general capabilities is
efficiently sourcing diverse, high-quality data.
This becomes especially critical in reasoning-
related tasks with sandbox checkers, such as
math or code, where the goal is to generate cor-
rect solutions to specific problems with higher
probability. In this work, we introduce Flaming-
hot Initiation with Regular Execution (FIRE)
sampling, a simple yet highly effective method
to efficiently find good responses. Our em-
pirical findings show that FIRE sampling en-
hances inference-time generation quality and
also benefits training in the alignment stage.
Furthermore, we explore how FIRE sampling
improves performance by promoting diversity
and analyze the impact of employing FIRE at
different positions within a response.

1 Introduction

Large language models (LLMs) have achieved re-
markable success in a wide range of tasks since
the release of ChatGPT (OpenAI, 2022). In ad-
dition to traditional natural language processing
tasks such as summarization and sentiment analy-
sis, LLMs have demonstrated effectiveness in many
new domains, including code generation (Chen
et al., 2023; Roziere et al., 2023), human-computer
interaction (Li et al., 2023), and math problem-
solving (Wei et al., 2022; Yu et al., 2024). Al-
though standalone LLMs have limited reasoning
capabilities (Sun et al., 2023; Valmeekam et al.,
2023; Chen et al., 2024b), researchers have tried to
enhance them by incorporating tool-use and devel-
oping integrated systems known as LLM agents (Xi
et al., 2023; Wang et al., 2024), which expands the
applications of LLMs to more general domains like
robot control (Wang et al., 2023a) and autonomous
driving (Mao* et al., 2023).

To develop general capabilities, LLMs are typ-
ically trained through a three-stage process: pre-
training, supervised fine-tuning (SFT), and align-
ment (Bai et al., 2022; Ouyang et al., 2022). Dur-
ing pretraining, the model learns from a vast array
of data gathered from publicly available sources.
Then, in the SFT and alignment stages, the model’s
abilities are further refined, allowing it to increase
reasoning abilities and better follow users’ instruc-
tions. In order to enhance reasoning tasks, a sand-
box checker — a tool used to verify the correctness
of solutions — is often used during training (Liu
et al., 2023b). Therefore, one of the key challenges
in achieving effective and efficient training is de-
termining how to obtain more successful samples
within a fixed number of trials, particularly when
addressing complex problems.

In this paper, we introduce Flaming-hot Initia-
tion with Regular Execution (FIRE), a simple yet
effective sampling method for training large lan-
guage models. Inspired by recent findings on atten-
tion sink (Xiao et al., 2023), our approach begins
by sampling the initial token at a very high tem-
perature and proceeds with the regular sampling
process for the remaining sequence. Our algorithm
can be viewed as a simplified and more general
version of CoT-decoding (Wang and Zhou, 2024),
especially with a focus on training in math and cod-
ing domains where a sandbox checker is available
at a relatively cheap cost.

We first show that our method, at inference time,
can improve the pass rate within N trials (pass@n),
also known as the best-of-N (BoN) when only the
correctness of the final answer is considered. To
demonstrate its effectiveness in training, we show
that it can be directly integrated into the reinforce-
ment learning process of large language models.
Our approach proves to be effective across multiple
open-source models and various LLM capabilities,
including mathematical reasoning and coding. We
highlight how our method promotes diversity in
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generated samples, a key factor linked to perfor-
mance improvements in pass rate. Importantly, this
diversity is maintained even after training with our
sampling method, indicating room for further en-
hancement. We also discuss the effects of simple
variations of our method, where the temperature
change occurs mid-process rather than at the start,
on performance outcomes.

2 Related Works

Researchers have been exploring two primary direc-
tions to efficiently improve response quality under a
frozen pre-trained LLM. The first direction focuses
on prompting techniques such as Chain-of-Thought
(Wei et al., 2022) and Tree-of-Thought (Yao et al.,
2023a). The second direction involves letting
LLMs fix their own mistakes (Wang et al., 2023b;
Yao et al., 2023b; Shinn et al., 2023; Madaan et al.,
2023; Chen et al., 2024a). In line with these two
directions, there has been increasing focus on con-
trolled decoding in LLMs to enhance reasoning
capabilities during inference, ranging from search-
based approaches applied to policy models (Mud-
gal et al., 2023; Huang et al., 2024) to utilizing
value models trained in the alignment phase (Liu
et al., 2023a; Feng et al., 2023).

In this paper, we also focus on inference time;
however, our approach extends to the sampling
processes used during the training of large lan-
guage models, as commonly practiced in Instruct-
GPT (Ouyang et al., 2022). This process consists
of three key stages: pretraining, supervised fine-
tuning (SFT), and alignment, also known as rein-
forcement learning with human feedback (RLHF).
For large language models trained in this paradigm,
there could be some helpful properties that, without
strong theoretical guarantees, are empirically true
and thus helpful for LLMs. Our work is related to
attention sink (Xiao et al., 2023). An attention sink
refers to a token or set of tokens that dispropor-
tionately receive attention from other tokens during
the attention mechanism within transformer archi-
tectures. In their study, they found that one of the
most identifiable tokens was shown to be the initial
token. While there are no theoretical guarantees,
they propose an intuition that initial tokens are vis-
ible and used in all later token generations, making
them more readily trained to be attention sinks.

Our work is closely related to CoT-
decoding (Wang and Zhou, 2024), which
uncovers the CoT-paths by enumerating over

the top-k alternative tokens and aggregating
the responses by scoring the decoded responses
with confidence on the final answer. However,
our approach differs in three key aspects: (1)
we introduce a differentiable sampling method
that can be directly integrated with existing
inference and training frameworks, (2) we focus
on improving model performance in scenarios with
a sandbox checker, where aggregating responses
is less data-efficient, and (3) our method operates
without assumptions about the prompts, even when
a chain of thought (CoT) is included, extending
beyond the scope of CoT-decoding. Prior work has
explored dynamic temperature allocation during
processing (Chang et al., 2023; Zhu et al., 2023;
Zhang et al., 2024). However, these approaches
restrict the temperature values to the range of
[0, 1], which contrasts sharply with the extreme
temperature settings employed in our algorithm.

Orthogonal to our work, numerous efforts in
the NLP domain have proposed prompt-based al-
gorithms to enhance the diversity of generated re-
sponses (Naik et al., 2023; Huang et al., 2023; Wu
et al., 2023; Zhou et al., 2024). In contrast, our
method focuses on scenarios where the prompt
remains fixed, improving generation diversity by
controlling the sampling process without relying
on domain-specific modifications to the prompt.
Notably, our approach is complementary to these
works and can be combined with prompt-based
methods to further enhance diversity, particularly
in cases where generating a larger number of di-
verse samples for the same question is required.

3 Flaming-hot Initiation Regular
Execution

3.1 Method

In this work, we propose a sampling method,
Flaming-hot Initiation with Regular Execution
(FIRE), inspired by the attention sink phe-
nomenon (Xiao et al., 2023) that demonstrates the
importance of initial tokens.

FIRE first samples the initial token at a very high
temperature p ≫ 1, combined with top-k filtering
to make the candidate tokens more controllable. At
higher temperatures, the candidate tokens are sam-
pled from a probability distribution that approaches
uniform sampling. After the initial token is sam-
pled, FIRE proceeds with the decoding stage using
a regular temperature setting.

Our approach FIRE is similar to CoT-
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Regular FIRE
Model Pass% #EA Pass% #EA

DeepSeek 97.57 2.26 98.71 2.76
GSM8K Gemma-2 86.81 3.87 87.57 4.01

Qwen2 95.90 2.58 98.25 3.17
Qwen2-RL 96.90 2.63 97.90 3.26

DeepSeek 76.16 5.63 78.16 7.89
MATH Gemma-2 49.20 9.24 51.48 10.39

Qwen2 76.60 7.44 79.08 9.03
Qwen2.5-72B 79.30 2.39 80.40 2.60

Table 1: Inference results for different models on dif-
ferent datasets with best hyperparameters combinations.
Specifically, Qwen2-RL is a fine-tuned model trained by
ourselves. We show the pass rate (%) with 40 samples,
and the effective answers (EA) among the 40 samples.

decoding (Wang and Zhou, 2024) that enumerates
the top-k candidates of the initial token. However,
while CoT-decoding focuses more on the decod-
ing stage and extracting Chain-of-Thought without
prompt, our approach FIRE serves as a general
differentiable sampling method, which can be com-
bined with existing sampling frameworks and can
be more efficient in the training stage where a sand-
box checker that judges whether a specific answer
is correct or not is available with a cheap cost.

While FIRE can be applied to any token in the
decoding stage, we restrict its application to the
initial token to prevent the generation of random
tokens that are wrong in the context. For example,
if we apply FIRE after the prefix "1+2=", it would
sample, in addition to the token "3", other tokens
like "4" or "5", which are very likely to be wrong.
In contrast, since FIRE is only applied to the initial
token, it would unlikely lead to broken sentences
or code with syntax errors. In our empirical exper-
iments, we found that the initial token frequently
consists of words like "Let’s", "Sure", "So", and
"The", which do not directly convey any informa-
tion. But what these initial tokens affect is the
reasoning steps afterward, with the same intuition
as StreamingLLM (Xiao et al., 2023).

3.2 Experiments

In this section, we evaluate our algorithm, FIRE,
by addressing several key research questions that
guide our experiments.

How effective is FIRE during inference? We
first showcase the effectiveness of FIRE sampling
in inference-only scenarios. We tested four open-
source models: Qwen2-7B-Instruct (Qwen2) (Yang
et al., 2024), Qwen2.5-72B-Instruct (Qwen2.5-

Regular FIRE
Pass@1 Pass@10 Pass@1 Pass@10

MBPP 61.2 82.8 50.6 86.6
MBPP+ 52.7 74.2 44.1 77.0

Table 2: Pass rate (%) with different number of samples
from Qwen2-7B-Instruct on MBPP and MBPP+.

Regular FIRE
p k min-p n=10 n=40 n=10 n=40

0.7
16 0.01 66.4 75.8 70.0 78.9

0 66.4 75.8 70.0 78.9

32 0.01 66.2 75.3 70.1 78.9
0 66.2 75.2 70.1 78.9

0.9
16 0.01 66.1 76.6 69.5 78.9

0 66.2 76.6 69.5 78.9

32 0.01 66.7 76.4 69.5 79.1
0 66.8 74.4 69.1 79.0

Table 3: Pass rate (%) for Qwen2-7B-Instruct on MATH
dataset with different hyperparameter combinations. p:
nucleus sampling parameter, k: top-k sampling parame-
ter, min-p: minimum probability threshold (0 indicates
min-p is not used). n=10 and n=40 represent the number
of samples for calculating the pass rate.

72B) (Yang et al., 2024), DeepSeek-coder-v2-
Instruct (DeepSeek)(Zhu et al., 2024), and Gemma-
2-2b-it (Gemma-2)(Team et al., 2024), on a di-
verse set of datasets, including GSM8K (Cobbe
et al., 2021), MATH (Hendrycks et al., 2021), and
MBPP(+) (Austin et al., 2021; Liu et al., 2023c). In
GSM8K and MATH, we extend the prompts with
phrase "Please reason step-by-step" to ensure CoT
reasoning in models’ responses, a setting where the
original motivation of CoT-decoding becomes less
meaningful as CoT paths would naturally occur.
For the regular sampling settings, we use a com-
bination of nucleus sampling and top-k sampling.
To ensure a fair comparison, we conducted a thor-
ough enumeration over hyperparameters, including
p, k, and min-p (Huggingface, 2023). Table 1 and
Table 2 present the aggregated results, where the
reported numbers represent the best outcomes from
the enumeration. We observe that FIRE consis-
tently improves the pass rate compared to regular
settings across all models on different benchmarks.
To further demonstrate the consistent improvement
over different hyperparameters, we provide an ex-
ample result of Qwen2-7B-Instruct on the MATH
dataset in Table 3. Full results for all models and
datasets are provided in the appendix. Table 3 re-
veals that although FIRE may alter the hyperparam-
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(a) Deepseek-Code-v2-Lite-Instruct (b) Qwen2-7B-Instruct

Figure 1: Curves for pass rate and number of effective answers with different numbers of samples on GSM8K.

Dataset Model PPO PPO+FIRE

Deepseek 80.64 82.16
GSM8K Qwen2 80.16 82.02

Gemma 40.39 42.91
Gemma-2 58.07 61.20

MATH Qwen2 53.50 55.07

Table 4: Pass@1 on GSM8K and Math for Different
models trained with PPO with different sampling.

eter combination that yields optimal performance,
it consistently outperforms regular sampling across
all hyperparameter combinations.

Why is FIRE effective? FIRE introduces more
diversity to the initial token that is generated at a
high temperature, and due to the strong attention
scores towards initial tokens (Xiao et al., 2023),
this diversity benefits the entire subsequent gen-
eration. To measure diversity quantitatively, we
use the number of unique answers (effective an-
swers) within a set of responses as our metric.
We choose not to use some popular metrics like
n-grams since we only control the initial token,
and in tasks with long reasoning paths, such as
math and coding, similar n-grams will likely al-
ways appear, making it unsuitable for measuring
diversity. As shown in Figure 1, Table 1 (#EA),
FIRE demonstrates increased diversity across vari-
ous models and datasets, which contributes to en-
hanced pass@n performance. As anticipated, FIRE
does not improve Pass@1 performance due to its
focus on promoting diversity. However, it consis-
tently delivers improvements when more samples
are considered.

Is FIRE helpful when integrated into train-
ing? Having established that our method im-
proves pass@n by improving diversity, we directly
apply FIRE to boost language model training. To

1st-line 2nd-line 3rd-line PRM-line

Regular 66.40 74.36 74.77 75.73
FIRE 69.98 74.96 75.92 78.21

Table 5: Pass@10 Results from Qwen2-7B-Instruct on
the training set of MATH dataset for FIRE variants with
different sampling points, compared to regular sampling
method that does not change the temperature.

test this, we use Proximal Policy Optimization
(PPO) (Schulman et al., 2017) to finetune several
models using the GSM8K and MATH datasets, and
assess their performance through the final pass rate
for single samples (Pass@1). As shown in Ta-
ble 4, integrating FIRE into the training process
leads to an improvement in Pass@1. Notably, even
though each data point is sampled only once during
PPO training following common practice (Ouyang
et al., 2022; Sheng et al., 2024), our method still
yields improvements. The results also show that
the improvements are consistent for different mod-
els. Furthermore, after our RL training, the model
still exhibits diversity and continues to benefit
from inference-time pass rate improvements, as
evidenced by Qwen2-RL in Table 1. Consequently,
FIRE can be applied iteratively to refine the model,
leading to an even bigger improvement margin.

Can FIRE sampling work in mid-sequence?
Finally, we explore the effect of applying FIRE
sampling midway through a response. We first
construct a dataset that ensures the correctness of
the initial sentences, by utilizing a Process Re-
ward Model (PRM) to identify the first sentences
at which the response becomes incorrect. We then
evaluate the effect of applying FIRE sampling at
the beginning of different sentences (1st, 2nd, and
3rd-line) or at the first token deemed incorrect by
the PRM ("PRM-line"). We refer the reader to the
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Dataset Model Sampling Pass@1 Pass@5 Pass@10 Pass@20

GSM8K Qwen Reg 66.95± 0.09 89.33± 0.06 92.58± 0.04 94.48± 0.03
FIRE 65.65± 0.12 92.92± 0.04 95.58± 0.03 97.20± 0.02

Deepseek Reg 87.02± 0.06 93.64± 0.03 95.06± 0.03 96.02± 0.02
FIRE 85.85± 0.07 94.86± 0.03 96.76± 0.02 97.60± 0.02

MATH Qwen Reg 35.94± 0.05 59.32± 0.03 66.04± 0.03 71.19± 0.02
FIRE 39.64± 0.05 63.34± 0.03 69.75± 0.03 74.77± 0.02

Deepseek Reg 51.03± 0.04 64.45± 0.03 68.58± 0.02 71.80± 0.01
FIRE 48.79± 0.05 65.39± 0.02 70.25± 0.02 73.99± 0.02

Table 6: Average and standard deviation of pass rate results for different models on different datasets.

appendix for a more detailed description of the con-
struction of this dataset. As shown in Table 5, while
FIRE sampling offers benefits throughout different
settings, its advantages diminish for tokens beyond
the initial ones, despite an overall increase in accu-
racy due to the prefix guaranteed to be correct.

Is the improvement stable? In previous sections
and the appendix, we demonstrated that FIRE con-
sistently enhances performance across various mod-
els, datasets, and hyperparameter configurations.
Here, we further substantiate these findings by eval-
uating their statistical significance. Specifically,
for each question, we leverage a pool of 40 pre-
collected samples and randomly select different
subsets of n samples, repeating this process 10
times. The results, summarized in Table 6, reveal
minimal standard deviations across the datasets,
underscoring the robustness and statistical stability
of the improvements.

4 Conclusion

In this paper, we introduced a novel sampling
method called Flaming-hot Initiation with Regular
Execution (FIRE). Through empirical analysis, we
demonstrated that FIRE enhances both inference-
time performance and reinforcement learning, par-
ticularly when a chain of thought is integrated into
the prompt. We showed that FIRE improves gen-
eration diversity, and we believe that this diversity
contributes to its overall effectiveness. Addition-
ally, we explored several variants of FIRE that mod-
ify the sampling process not only immediately after
the question but also during the middle of the gen-
eration, further showcasing its versatility.

5 Limitations

While this work focuses on improving the effi-
ciency of LLM training through better sampling
methods, there are two limitations. First, our ap-
proach lacks a strong theoretical guarantee, mean-

ing that there is a possibility that future models,
especially ones that are with different model archi-
tectures, may not benefit from it. Second, although
our method is designed for training LLMs, the
inference-time algorithm could potentially bypass
safety measures by sampling out-of-distribution
data. However, we argue that this concern can be
inherently mitigated in models trained with our
proposed sampling technique.
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A Implementation Details

In the paper, we proposed FIRE sampling, which is
similar to CoT-decoding, and removed the need to
calculate the confidence score. One of the biggest
benefits of simplifying the method is getting an
extremely easy implementation. For inference,
we use vLLM (Kwon et al., 2023) and do a two-
stage sampling, with the first stage sampling only
one token with high temperature and the second
stage continuing the sampling with regular sam-
pling. For training, we implement based on Hybrid-
Flow(Sheng et al., 2024), a newly released RLHF
code base, which supports sampling with vLLM.
Thus, we only changed the sampling part of the
code in the RLHF framework. As shared in all
experiments, the temperature used for the initial
token is set at 30.

In our experiment, we enumerate the parame-
ters of top-p sampling, top-k sampling, and min-
p sampling. We list all the parameters we have
tried in the next section. Due to computation
costs, some of the models are not enumerated in
the same number as others. However, our con-
clusion that FIRE outperforms regular sampling
is consistent, as we will show later. Specifically
for MBPP(+), and for Qwen-RL, the model after
our fine-tuning, we test on a single hyperparame-
ter combination of top − p = 0.9, top − k = 16,
which follows the best configuration from previous
trials. For Qwen2.5-72b-Instruct, we follow the
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recommended hyperparameters of top− p = 0.8,
top − k = 16. For reinforcement learning prob-
lems, we use the default parameters in HybridFlow,
specifically, top − k = 16, top − p = 1.0. For
training with FIRE sampling, to enable PPO to ac-
cept the relatively out-of-distribution samples, we
change the clipping ratio for PPO from 0.2 to 0.5.
We observe that for PPO+FIRE to use the original
clip rate, it will generally match the original per-
formance, while pure PPO with a higher clip ratio
will lead the training to a failure and converge to a
pass rate close to 0.

In the paper, we use three different datasets:
GSM8K, MATH, and MBPP(+). GSM8K is a
dataset with 8.5K total instances of math prob-
lem, of which 7.5K is in the training set and 1.3K
is in the test set. MATH is a math dataset that
is slightly more difficult and more comprehen-
sive than GSM8K, with 7.5K training data and
5K test data. MBPP is a benchmark consisting
of around 1,000 crowd-sourced Python program-
ming problems, and MBPP+ is a benchmark that
enlarges MBPP with some harder problems, reach-
ing around 35K total test problems. While MBPP+
is still under regular update, we use version 0.1.0
in our paper.

For the final part of the experiment about gen-
eration in the middle sequence, we use a dataset
that guarantees a certain number of sentences of
prefixes to be correct. Here, the sentences are de-
fined based on ’.’ in the answer. This dataset is
generated on the training set of the MATH dataset,
for which we first use Qwen2-7b-Instruct to sample
10 responses for each question. Then, for each re-
sponse, we enumerate the sentences and sample 20
times using different numbers of sentences as the
prefix. Thus, we obtained an approximation of the
point at which the original samples became wrong.
Specifically, if one response is wrong before the
number of lines we enumerate in Table 5, we use
all the prefix up to the point that is still correct
for that response, i.e., if for a specific sample, the
correct sentences are less than 2, 3rd-line pass rate
will be calculated in the same way as PRM-line.

B Extra Experiment Results

We provide our full inference experiment table in
Table 7, Table 8, and Table 9. We observe that
among all hyperparameter combinations, FIRE
stably outperforms regular sampling, starting at
Pass@10 to Pass@20 and Pass@40. In most set-

tings, FIRE is superior to regular sampling at
Pass@5, and for certain settings in the MATH
dataset, FIRE could even show an advantage in
Pass@1.
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Dataset top-p top-k min-p Sampling Pass@1 Pass@5 Pass@10 Pass@20 Pass@30 Pass@40 EA@40

GSM8K

0.7 16 0.01 Reg 87.19 93.40 95.07 95.53 95.98 96.29 1.96
0.7 16 0.01 FIRE 85.75 94.62 96.21 97.42 97.95 98.18 2.58
0.7 16 0.0 Reg 87.19 93.40 95.07 95.53 95.98 96.29 1.96
0.7 16 0.0 FIRE 85.75 94.62 96.21 97.42 97.95 98.18 2.58
0.7 32 0.01 Reg 87.72 93.63 94.77 95.45 96.13 96.36 1.97
0.7 32 0.01 FIRE 85.06 95.07 96.74 97.73 98.18 98.26 2.64
0.7 32 0.0 Reg 86.58 93.40 94.84 96.06 96.36 96.82 1.97
0.7 32 0.0 FIRE 85.67 94.84 96.66 97.57 98.10 98.26 2.63
0.9 16 0.0 Reg 87.41 94.16 95.68 96.66 97.35 97.57 2.26
0.9 16 0.0 FIRE 84.46 95.83 96.89 97.88 98.26 98.71 2.76
0.9 32 0.01 Reg 86.05 94.31 95.83 96.74 97.04 97.27 2.28
0.9 32 0.01 FIRE 84.76 94.84 96.59 97.88 98.33 98.41 2.86
0.9 32 0.0 Reg 86.43 94.01 95.53 96.66 97.19 97.35 2.29
0.9 32 0.0 FIRE 84.76 94.84 96.59 97.88 98.33 98.41 2.86

MATH

0.7 16 0.01 Reg 51.04 64.66 69.20 72.36 73.86 74.82 5.08
0.7 16 0.01 FIRE 49.68 64.94 70.16 73.52 75.58 76.68 6.33
0.7 16 0.0 Reg 51.04 64.56 68.56 71.84 73.44 74.62 5.07
0.7 16 0.0 FIRE 49.58 65.48 70.22 74.34 76.02 77.16 6.34
0.7 32 0.01 Reg 51.00 64.36 68.42 71.74 73.46 74.38 5.06
0.7 32 0.01 FIRE 49.08 65.64 70.22 73.92 76.10 77.06 6.90
0.7 32 0.0 Reg 51.00 64.36 68.42 71.74 73.46 74.38 5.06
0.7 32 0.0 FIRE 49.08 65.64 70.22 73.92 76.10 77.06 6.90
0.9 16 0.01 Reg 50.42 64.98 69.44 72.98 75.00 76.08 5.66
0.9 16 0.01 FIRE 48.96 65.34 70.36 74.12 76.16 77.64 7.29
0.9 16 0.0 Reg 50.82 65.36 69.62 73.12 75.06 76.16 5.64
0.9 16 0.0 FIRE 48.26 65.00 69.98 74.42 76.18 77.64 7.26
0.9 32 0.01 Reg 50.00 65.40 69.32 72.88 74.72 75.98 5.65
0.9 32 0.01 FIRE 47.66 65.48 70.48 74.58 76.86 78.16 7.90
0.9 32 0.0 Reg 50.00 65.40 69.32 72.88 74.72 75.98 5.65
0.9 32 0.0 FIRE 47.66 65.48 70.48 74.58 76.86 78.16 7.90

Table 7: Deepseek-coder-v2-Instruct on different datasets with regular sampling (Reg) and FIRE (ours). We show
the pass rate with different number of samples (Pass@n), and the effective answers (EA) of the total 40 samples.

Dataset top-p top-k min-p Sampling Pass@1 Pass@5 Pass@10 Pass@20 Pass@30 Pass@40 EA@40

MATH

0.7 16 0.01 Reg 15.90 29.94 36.40 42.36 45.74 48.14 8.44
0.7 16 0.01 FIRE 17.20 32.28 39.22 45.30 48.52 51.18 9.82
0.7 16 0.0 Reg 15.90 29.94 36.40 42.36 45.74 48.14 8.44
0.7 16 0.0 FIRE 17.20 32.28 39.22 45.30 48.52 51.18 9.82
0.7 32 0.01 Reg 15.78 29.84 36.16 41.70 45.20 47.70 8.40
0.7 32 0.01 FIRE 16.68 32.40 38.80 45.32 48.90 51.26 9.76
0.7 32 0.0 Reg 15.78 29.84 36.16 41.70 45.20 47.70 8.40
0.7 32 0.0 FIRE 16.68 32.40 38.80 45.32 48.90 51.26 9.76
0.9 16 0.01 Reg 14.74 30.46 37.02 43.30 46.98 49.20 9.23
0.9 16 0.01 FIRE 15.12 31.48 38.30 45.48 48.90 51.48 10.39
0.9 16 0.0 Reg 14.74 30.46 37.02 43.30 46.98 49.20 9.23
0.9 16 0.0 FIRE 15.12 31.48 38.30 45.48 48.90 51.48 10.39
0.9 32 0.01 Reg 14.58 30.16 36.20 42.28 45.98 48.34 9.17
0.9 32 0.01 FIRE 15.04 31.24 37.60 44.26 47.84 50.54 10.34
0.9 32 0.0 Reg 15.02 30.06 36.48 43.12 46.52 49.08 9.15
0.9 32 0.0 FIRE 14.58 31.40 38.36 44.92 48.48 51.06 10.35

GSM8K

0.7 16 0.01 Reg 36.54 66.41 75.66 82.34 84.46 86.81 3.86
0.7 16 0.01 FIRE 32.45 66.57 76.57 83.32 85.97 87.26 3.97
0.7 16 0.0 Reg 36.54 66.41 75.66 82.34 84.46 86.81 3.86
0.7 16 0.0 FIRE 32.45 66.57 76.57 83.32 85.97 87.26 3.97
0.7 32 0.01 Reg 36.92 67.25 75.66 82.11 84.08 85.52 3.91
0.7 32 0.01 FIRE 31.24 66.79 76.27 82.87 85.97 87.57 4.01
0.7 32 0.0 Reg 36.92 67.25 75.66 82.11 84.08 85.52 3.91
0.7 32 0.0 FIRE 31.24 66.79 76.27 82.87 85.97 87.57 4.01

Table 8: Gemma-2-2b-it on different datasets with regular sampling (Reg) and FIRE (ours). We show the pass rate
with different number of samples (Pass@n), and the effective answers (EA) of the total 40 samples.
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Dataset top-p top-k min-p Sampling Pass@1 Pass@5 Pass@10 Pass@20 Pass@30 Pass@40 EA@40

GSM8K

0.7 16 0.01 Reg 66.72 89.23 92.80 94.47 95.07 95.83 2.61
0.7 16 0.01 FIRE 66.49 92.87 94.92 96.66 97.19 97.35 3.08
0.7 16 0.0 Reg 66.72 89.23 92.80 94.47 95.07 95.83 2.61
0.7 16 0.0 FIRE 66.49 92.87 94.92 96.66 97.19 97.35 3.08
0.7 32 0.0 Reg 67.02 89.16 92.27 94.31 95.30 95.91 2.58
0.7 32 0.0 FIRE 66.34 92.95 95.75 97.19 97.88 98.26 3.17
0.9 16 0.0 Reg 64.52 90.83 94.16 95.75 96.89 97.42 2.96
0.9 16 0.0 FIRE 64.22 92.27 95.07 97.04 97.65 97.95 3.33

MATH

0.7 16 0.01 Reg 35.80 59.40 66.40 71.68 74.22 75.76 6.47
0.7 16 0.01 FIRE 40.26 63.74 69.98 75.08 77.42 78.90 7.86
0.7 16 0.0 Reg 35.80 59.40 66.40 71.68 74.22 75.76 6.47
0.7 16 0.0 FIRE 40.26 63.74 69.98 75.08 77.42 78.90 7.86
0.7 32 0.01 Reg 36.42 59.42 66.22 71.10 73.52 75.26 6.47
0.7 32 0.01 FIRE 39.52 63.54 70.10 75.06 77.42 78.92 8.11
0.7 32 0.0 Reg 36.42 59.42 66.22 71.10 73.52 75.26 6.47
0.7 32 0.0 FIRE 39.52 63.54 70.10 75.06 77.42 78.92 8.11
0.9 16 0.01 Reg 35.30 59.48 66.16 71.86 74.68 76.60 7.44
0.9 16 0.01 FIRE 38.70 62.44 69.50 74.64 77.36 78.86 8.76
0.9 16 0.0 Reg 35.30 59.48 66.16 71.86 74.68 76.60 7.44
0.9 16 0.0 FIRE 38.70 62.44 69.50 74.64 77.36 78.86 8.76
0.9 32 0.01 Reg 35.82 59.84 66.70 72.02 74.64 76.38 7.40
0.9 32 0.01 FIRE 37.44 62.72 69.50 75.08 77.50 79.08 9.03
0.9 32 0.0 Reg 35.14 59.84 66.80 72.34 74.72 76.40 7.43
0.9 32 0.0 FIRE 36.70 62.52 69.12 74.54 77.10 79.04 9.04

Table 9: Qwen2-7B-Instruct on different datasets with regular sampling (Reg) and FIRE (ours). We show the pass
rate with different number of samples (Pass@n), and the effective answers (EA) of the total 40 samples.
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