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Abstract

Image editing has made incredible progress
in recent years. Early works only supported
caption-guided editing, but recently, free-form
text instructions and reference images have
been incorporated to allow for more flexibility.
However, existing methods still struggle with
complex editing instructions involving multi-
ple objects or reference images. We present
InstructAny2Pix, a novel image editing model
that leverages a multi-modal LLM to execute
intricate edit instructions. Compared with pre-
vious works, InstructAny2Pix extends the flex-
ibility of edit instructions in three key ways:
First, it can perform complex instructions in-
volving multiple object edits; second, it sup-
ports the interleaving of text instructions with
multiple reference images; and third, it sup-
ports audio and music inputs as part of the edit
prompts, unlocking creative applications such
as album cover generation and music-inspired
merchandise design. To evaluate the effec-
tiveness of InstructAny2Pix, we propose two
new benchmark datasets, MM-Inst and Dream-
booth++, consisting of human-written, multi-
modal prompts. InstructAny2Pix outperforms
baselines on these two proposed multi-modal
benchmarks, as well as on conventional image
editing benchmarks such as InstructPix2Pix.

1 Introduction

The ability to edit an existing image using free-
form text instructions vastly expands the usabil-
ity of image editing models. Compared with
early works, such as Prompt2Prompt(Hertz et al.,
2022), which require caption pairs, instruction-
based image editing methods, such as Instruct-
Pix2Pix(Brooks et al., 2023), offer users unpar-
alleled flexibility to describe edit instructions in
natural language, such as "add a dog." More recent
models, such as Kosmos-G(Pan et al., 2023), addi-
tionally accept reference images, allowing users to
add a specific dog from the reference image to the

scene. Despite these progresses, existing methods
still have limited instruction-following capabilities.
For text-guided edits, they are limited to simple
instructions on which they were trained and cannot
generalize to complex instructions involving multi-
ple objects, such as "add a wolf howling under the
moon." For image-guided edits, they often struggle
to complete complex instructions, such as "replace
the cat with [reference image]," while faithfully
respecting both the image to edit and the reference
image.

To address these limitations, we propose Instruc-
tAny2Pix, the first instruction-following image edit-
ing system capable of following a wide range of
complex, multi-modal, multi-object instructions.
Specifically, InstructAny2Pix not only supports
text instructions involving multiple objects, such as
"add a wolf howling under the moon" or "add a cat
and remove the dog," but it can also optionally ac-
cept multiple reference images of the objects (e.g.,
the wolf and the moon). Furthermore, it works with
arbitrary free-form, multi-modal instructions inter-
leaving text, image, and audio, such as "change
[image A] to the style of [image B]" or "fit [image]
to [music]," while previous multi-modal models
only support limited modalities (i.e., image) and
very basic instructions (e.g., add, remove).

InstructAny2Pix greatly enhances the flexibility
and usability of image editing models. When creat-
ing a scene with multiple objects, instead of writing
lengthy descriptions for each object, uploading ref-
erence images can be far more efficient. Music or
audio inputs, though less obvious, also unlock cre-
ative possibilities, such as designing T-shirts based
on music or dynamically adapting a background
image during live performances. While these tasks
could be done through text instructions, they would
require designers to first develop specific ideas like
"add a circle to the T-shirt" or "change the back-
ground to sunset," which demands artistic intuition
and experience. Using music as a prompt, however,
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Figure 1: Illustration of InstructAny2Pix’s ability to flexibly edit an image based on a variety of multi-modal
instructions. More examples of audio-guided editing are provided in the supplementary demo video.

simplifies this process by reducing the creative bur-
den. Even if the designer isn’t explicitly seeking
a music-inspired design, experimenting with var-
ious tracks and selecting from generated options
is quicker than manually drafting multiple design
ideas or refining text prompts. Examples of these
innovative applications are shown in Fig. 1.

Concretely, we build InstructAny2Pix by com-
bining a multi-modal encoder that "perceives" au-
diovisual inputs, a large language model that "rea-
sons" about the edit instructions, and a diffusion
model that "draws" the edited results. To achieve
flexible image editing with multi-modal prompts,
we curated a large training dataset of diverse multi-
modal editing instructions in three steps. In the first
step, we prompt a large language model (LLM) to
generate a diverse set of complex, multi-modal edit
instructions and captions of intended edit results.
Since the LLM cannot generate reference images
and audio, we ask it to generate captions of these
multi-modal prompts instead. In the second step,
we use off-the-shelf text-to-image and text-to-audio
models to create reference images and audio from
the captions generated in the previous step. In the
final step, we employ a pool of caption-based edit
methods alongside segmentation and in-painting
models to generate edit results using the input im-

ages and the captions of intended edit results.
To evaluate InstructAny2Pix on the proposed

tasks, we created two benchmark datasets: MM-
Inst and Dreambooth++. Both datasets consist
of high-quality, human-written, multi-modal edit
instructions. MM-Inst comprises complex multi-
modal edit instructions interleaving text, image,
and audio. Dreambooth++ specifically focuses on
image editing with reference images. Through ex-
tensive experiments, InstructAny2Pix outperforms
existing baselines on these two benchmarks. In-
structAny2Pix also achieves competitive perfor-
mance on simpler instruction datasets, such as In-
structPix2Pix, in a zero-shot manner, highlight-
ing InstructAny2Pix’s ability to adapt to unseen
prompts. After fine-tuning on the InstructPix2Pix
dataset, InstructAny2Pix was able to outperform
existing baselines.

2 Related Works

2.1 Instruction-Guided Image Editing

There are numerous image-editing methods based
on text-to-image diffusion models (et al, 2022;
Rombach et al., 2021; Podell et al., 2023; Kawar
et al., 2023). The earliest works required a pair
of source and target prompts to perform an edit.
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Figure 2: The InstructAny2Pix pipeline consists of three building blocks: a multi-modal encoder that "perceives"
audiovisual inputs, a large language model that "reasons" about the edit instructions, and a diffusion model that
"draws" the edited results. For improved training and generation, we include an additional refinement module to
refine the LLM outputs.

Common approaches include DDIM (Song et al.,
2020), Prompt2Prompt (P2P) (Hertz et al., 2022),
Plug-and-Play (Tumanyan et al., 2023), and Null-
text Inversion (Mokady et al., 2022). These mod-
els have very limited flexibility. To achieve good
editing results, users must provide long, detailed
captions paired in a specific way.

By contrast, instruction-guided image editing
methods only require vague text instructions,
such as "add fireworks." InstructPix2Pix (Brooks
et al., 2023) first achieved this by curating a
large machine-generated image-editing dataset us-
ing P2P and then directly fine-tuning a diffusion
model end-to-end on this dataset. MagicBrush
(Zhang et al., 2023) curated a higher-quality human-
annotated dataset by requesting humans to perform
editing operations using tools such as Photoshop.
MGIE (Fu et al., 2023) utilizes a multi-modal large
language model to process editing instructions and
input images. While it achieves better results than
pure diffusion-based methods like InstructPix2Pix
and MagicBrush, it still operates only with a single
source image and text-only instructions.

Unlike previous works in this area, our work
extends the edit instructions to multi-modal, multi-
object instructions, greatly enhancing the flexibility
of image editing models.

2.2 Multi-Modal Conditioned Generation
Parallel to these image editing methods, there have
been previous attempts to achieve image generation
with multi-modal conditioning using multi-modal

language models. BLIP-Diffusion (Li et al., 2023a)
incorporates BLIP (Li et al., 2023b) as a multi-
modal encoder that generates subject embeddings
for the diffusion model. Using this approach, it
can generate images following text prompts and
reference images. Kosmos-G (Pan et al., 2023)
directly aligns the representation space of multi-
modal language models with that of a diffusion
model. Kosmos-G allows image generation based
on multiple reference images. However, since these
works focus on generation rather than instruction-
based image editing, they support neither the re-
moval and replacement of objects nor other free-
form instructions. They also cannot faithfully re-
spect the spatial structure of input images.

Audio-guided image generation is a relatively
uncharted area. AAI (Yang et al., 2023) achieves
sound-guided generation by aligning audio repre-
sentations to reference images. This method is very
limited in that it requires retrieving 3-5 reference
images and performing gradient descent optimiza-
tion steps for each audio input at inference time.

Unlike previous works in this area, our work is
the first to support interleaved audiovisual inputs
and free-form image editing instructions.

3 Methods

3.1 Model Architecture

The architecture of InstructAny2Pix is illustrated
in Figure 2. It consists of a multi-modal encoder
that maps multi-modal inputs to a unified latent
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Figure 3: Training pipeline of InstructAny2Pix consists of four steps. 1. Pretraining of Multi-Modal LLM with text-
to-x and x-to-image tasks. 2. Pretraining of Diffusion Decoder 3. Pretraining of Refinement Module. 4.Instruction
Finetuning

space, a multi-modal LLM that generates a set of
edit tokens autoregressively, and a diffusion image
decoder that generates the edit result conditioned
on the input image and edit tokens. We initialize
the multi-modal encoder with Imagebind(Girdhar
et al., 2023), the LLM with Vicuna-7B(Team, 2023)
and the diffusion image decoder with SDXL(Podell
et al., 2023).

The input of InstructAny2Pix consists of a multi-
modal instruction (T, I, A). It includes a text in-
struction T , a set of images I and a set of au-
dio pieces A. I contains the input image and op-
tional additional reference images. It is always
non-empty. A contains optionally referece audio
pieces. It can be an empty set.

We first leverage the multi-modal encoder Enc
to encode reference images and audios into em-
beddings EI = Enc(I), EA = Enc(A). We use
the token embedding layer EmbLM of the LLM
to obtain the text embedding ET = EmbLM (T ).
We then interleave the text, image and audio em-
beddings into a sequence of instruction embed-
dings Einst. These embeddings are then passed
to the large language model, which generates a
sequence of discrete control tokens C autoregres-
sively. For each token, we also extract the cor-
responding continuous hidden state from the last
transformer block to form a sequence of control
embeddings Ec = (Ebase, Esub, Egen).

Each control token belongs to one of the follow-
ing type: [base], [gen], [sub]. The embedding of
the [base] token is used to retrieve the input image.
The embedding of [sub] tokens is used to retrieve
reference images of relevant subjects in the prompt.
Typically there is only one [base] token, but there

can be more than one [sub] tokens to account for
multiple reference images. [sub] token will only
be generated if the referenced object should appear
in the final image. For example, in instruction "re-
place [image of object A] with [image of object
B]", only the [sub] token corresponding to [image
of object B] will be generated.

The [gen] embedding Egen are further processed
by a refinement module. The output of the refine-
ment module Erefined is used to condition the dif-
fusion image decoder Dec alongside retrieved im-
ages to create the final edit result Xout. The whole
process can be summarized in the following for-
mula.

EA = Enc(A), EI = Enc(I) (1)

ET = EmbLM (T ) (2)

Einst = Interleave(ET , EA, EI) (3)

(Ebase, Esub,Egen) = LLM(Einst) (4)

Erefined = Refinement(Egen) (5)

Xout = Dec(Erefined, (6)

Retrieve(Ebase, Esub)) (7)

To account for mismatches in the dimension of
embeddings, we add MLP projectors where needed.
We provide additional details in Appendix A.1.5.

3.2 (Continued) Pretraining

3.2.1 Diffusion Image Decoder
The diffusion decoder was initialized with SDXL,
which generates images based on CLIP text em-
beddings. At inference time, we want the decoder
to generate images based on Egen, which encodes
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some global semantics, and reference images re-
trieved by Esub, which contain some objects that
should appear in the edit result. To achieve this end,
we repurposed SDXL to generate images based on
the CLIP image embedding of the whole image
Eglobal, and the CLIP image embeddings of objects
in the image Eobj . When performing an image edit,
we use Egen generated by LLM as Eglobal, and
the CLIP image embeddings of retrieved reference
images as Elocal.

To obtain object-level encodings Elocal, we em-
ploy an object detector to find the bounding boxes
of objects in the images. We crop the image using
the bounding boxes, and use the CLIP embedding
of the cropped image as Elocal. To prevent biases
and limitations of the object detector (e.g. the detec-
tor cannot detect certain classes), we also incorpo-
rate additional bounding boxes sampled randomly
from a uniform distribution. We randomly drop
Eglobal and Eobj independently during the training
to prevent the model from over-relaying on one of
the embeddings while ignoring the other.

We use a subset of LAION-Aesthetics-V2
(Schuhmann et al., 2022) dataset with 4M images
for this task. We only use the images in the dataset,
ignoring the text captions.

3.2.2 Multi-Modal LLM
We initialize the LLM with Vicuna-7B (Team,
2023). Since Vicuna was only trained for language
modeling, we continue to pretrain it on multi-modal
data consisting of images, texts, and audio. We
use text-image pairs from LAION-Aesthetics-V2,
text-audio pairs from Audioset(Gemmeke et al.,
2017), LP-MusicCaps (Doh et al., 2023), Audio-
caps(Kim et al., 2019), and audio-image pairs from
SoundNet(Aytar et al., 2016), VGGSound(Chen
et al., 2020). We compose multi-modal prompts
for 4 tasks as our pretraining objective: image cap-
tioning, audio captioning, text-to-image generation,
and audio-to-image generation. Examples of these
prompts are "describe the [image]", "generate an
image of a cute dog running in a garden", and "gen-
erate an image based on [audio]". For captioning
task, we apply autoregressive next-token prediction
loss. For generation tasks, we set the target token to
"[gen]" and apply next-token prediction loss. Addi-
tionally, we also extract the embedding Egen and
apply L2 regression loss in the embedding space.
For example, if the prompt is "generate an image
based on [audio]", we apply the next-token clas-
sification loss between the output logits and the

target sequence "[gen]", and apply the L2 regres-
sion loss between the output embedding and the
visual embedding of the target image.

3.2.3 Refinement Model
After pretraining the Diffusion Image Decoder and
Multi-Modal LLM independently, we observe that
directly use the output embedding Egen of LLM as
the conditioning embedding Eglobal of the image
decoder leads to very low-fidelity image outputs.
This occurs because most image-audio pairs in
the training data come from low-fidelity YouTube
videos (LAION Aesthetic Score < 4.5), while typ-
ical text-to-image training schemes use datasets
with high-fidelity images (LAION Aesthetic Score
> 5.0). To mitigate the effect of low quality data, we
incorporate a refinement module, which is a trans-
former that learns to improve the image quality in
the embedding space.

Concretely, the refinement module takes an im-
age embedding E and a target aesthetic score s,
and generates Erefined, which is the embedding of
an image with the same semantics but achieves the
target fidelity. Since pairs of two images that are
identical in semantics but different in fidelity are
hard to find, we make use of existing image-text
and image-audio pairs to generate (E,Erefined, s)
triples for training. Given an image-text or image-
audio pair, we use the visual embedding of the
image as Erefined, and the aesthetic score of the
image as s. We use the corresponding text or audio
embedding as E. While E is not an actual image
embedding, it is still an embedding representing
the same semantics, since the latent space of differ-
ent modalities are aligned through the multi-modal
encoder.

At inference, we use the LLM output embed-
ding Egen as E and set the target score s to a high
number (e.g. 6.0). This process is shown in Fig. 3.

3.3 Instruction Fine-tuning
3.3.1 Data
To train InstructAny2Pix for image editing tasks,
we curated a diverse dataset of 500k instructions
and corresponding image pairs, called MM-Inst.
The dataset generation pipeline consists of three
steps: text instruction generation, reference multi-
modal inputs generation, and input-output image
pair generation.

In the first step, we prompt a Large Language
Model (LLAMA2 (Touvron et al., 2023)) to gener-
ate creative instructions using 36 manually written
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examples. Since the LLM cannot generate refer-
ence images, audio and music, we ask the LLM
to generate the captions of multi-modal references
instead. To further increase the diversity of instruc-
tions, we prompt the language model to generate
instructions based on ground-truth music captions
from LP-MusicCaps and AudioCaps, as well as
ground-truth image captions from LAION. We pro-
vide further details in Appendix A.2

In the second step, we curate the corresponding
reference images and audios using the captions
created in the first step. If a caption is a ground-
truth image, audio or music caption, we directly
fetch the corresponding media. If the caption is
generated, we use SDXL(Podell et al., 2023) and
AudioLDM2(Liu et al., 2023a) to generate images
and audio respectively.

In the last step, we curate pairs of input images
and edit results using a combination of six methods:

1) Edit image using captions and
Prompt2Prompt (Hertz et al., 2022) 2) Edit
image using captions and Plug-and-Play (Tu-
manyan et al., 2023) 3) Use DDIM(Song et al.,
2020) inversion on the source image and generate a
new image using target prompt with inversed latent.
4) For object removal, we use an open-vocabulary
object detector (GroundingDINO (Liu et al.,
2023c)) to locate the object and perform inpainting
in the area of the removed object. 5) For object
addition, we first generate an image using target
prompt as the target image. Then we use the
detector to localize the added object and remove it
through inpainting. The resulting image is used
as the source image. 6) For object replacement,
we first follow the removal procedure. Then we
perform inpainting in the area of removed objects
using the replacement object as prompts.

When the detector fails to localize the object
or yields low confidence scores, we fall back to
caption-based methods. Following InstructPix2Pix
(Brooks et al., 2023) we filter the results using
CLIP scores. We additionally filter the results using
the LAION aesthetic predictor and remove low
quality images. We also provide additional details
in Appendix A.2.

3.3.2 Training
3.4 Instruction Guided Finetuning
We fine-tune the LLM using the same objective as
the continued pretraining phase, which consists of
a next-token prediction loss on the output logits
and a regression loss on the output embeddings.

Unlike the continued pretraining phase which only
includes simple generation or captioning tasks, we
use interleaved multi-modal instructions from MM-
Inst dataset as the input. We formulate the target
output sequence as "[base] [sub] .. [sub] [gen] ..
[gen]" where each [sub] corresponds to a reference
image. We only add a "[sub]" token if the refer-
enced object should appear in the desired output.
For example, in the following instructions "add [a]",
"remove [b]", "replace [c] with [d]", only [a] and
[d] will have corresponding [sub] tokens in the tar-
get sequence. L2 regression loss is applied between
the [base] embedding and the visual embedding of
the source image, between [sub] embeddings and
the visual embeddings of reference images, and
between the [gen] embedding and visual embed-
dings of the edit results. The diffusion model is not
directly used in this process.

4 Evaluation

4.1 Evaluation Dataset

Image editing following multi-modal instruction is
a novel task with no existing benchmarks. To fairly
evaluate InstructAny2Pix’s performance in real-
world settings, we curated 1500 manually written
multi-modal instructions. Unlike previous works
which perform evaluations on samples from the
same distribution as their training data, our evalua-
tion benchmark caters for diverse real-world use-
cases. We call this dataset MM-Inst-Test. We pro-
vide further details in Appendix A.3.2.

For image guided generation, Dreambooth(Ruiz
et al., 2023) is a commonly-used benchmark. How-
ever we find it inadequate to provide a holistic eval-
uation of multi-modal generative models. Firstly,
it only contains two classes of live objects (cats
and dogs), which accounts for 9 out of 30 subjects
in the dataset. Its diversity is limited. Secondly,
its task only involves changing the background
of a single subject. This setup cannot evaluate
a model’s capability of making use of multiple
image inputs. To address this gap, we propose
Dreambooth++, a Dreambooth-like dataset with
more diverse prompts. It consists of 30 subject im-
ages which are evenly distributed across humans,
animals, small objects, and large structures. We
also include 30 diverse background images with
corresponding prompts. In total, there are 900 gen-
eration tasks. We evaluate models on this dataset
using two protocols: single-image and multi-image.
The single-image setup is similar to Dreambooth,
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Figure 4: Music-Gudied Image Variation: Music
uniquely conveys emotions that are hard to describe
using other modalities such as language. We show quali-
tative results of music guided image variation and music
inspired design. InstructAny2Pix is able to understand a
diverse set of emotions embedded in music and generate
creative designs and edits. We include these examples
with audio in our supplementary video.
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Figure 5: Editing with Multi-Object Instruc-
tions. Compared with previous text-based method
(MGIE) and image-based method (Kosmos-G), Instruc-
tAny2Pix uniquely accomplish complex edit tasks.

which requires generating a given subject under
different context (background) prompts. The multi-
image task requires generating a new image by
combining a subject image and a background im-
age. We provide more details in Appendix A.3.2

Additionally, for completeness and fair compari-
son with existing models, we evaluate our model
on 1000 samples from InstructPix2Pix dataset. We
report both the zero-shot results and fine-tuned re-
sults.

4.2 Instruction guided Image Editing
We evaluate the capability of InstructAny2Pix on
MM-Inst-Test dataset described in Sec. 4.1. Be-
cause no previous methods can perform such a
task, we selected text-only instruction models as
our baseline. For fair comparison, we convert all
multi-modal instructions to text-only instructions
using the captions of referenced audio and image.
For InstructAny2Pix, we report the performance of
using multi-modal prompts and the performance
of using text-only prompts. We also report results
on 1000 randomly selected images from Instruct-
Pix2Pix dataset. We report quantitative metrics
in Table 1. CLIPdir measures the agreement be-

tween changes to captions and changes to images,
CLIPim measures the similarity between the source
and targeted images. CLIPout measures the similar-
ity between edited images and targeted captions.

We also conducted human evaluations on both
dataset and report the win rate. Human evaluators
are asked to pick a preferred edit output in a one-
to-one comparison between InstructAny2Pix and
each baseline method. For a fair comparison, we
use the text-only version of our method.

The results are shown in Table 1. Instruc-
tAny2Pix show decisive advantages in human pref-
erence and strong performances in quantitative
metrics. We compare with baseline methods In-
structPix2Pix(Brooks et al., 2023), Magicbrush
(Zhang et al., 2023) and InstructDiffusion (Geng
et al., 2023). Notably, we achieve competitive per-
formance on InstructPix2Pix dataset without ever
training on such dataset. This result showcases
the superiority of our data generation pipeline. It
incorporates a diverse range of instructions and en-
ables our model to generalize to unseen instruction
patterns. We observe that InstructAny2Pix has
slightly higher CLIPim and CLIPout when using
only text instructions. This may reflect the fact that
multi-modal image editing process are affected by
multiple reference images, rather than just an input
image and a text instruction.

4.3 Image Conditioned Generation
We evaluate InstructAny2Pix on DreamBench++
dataset described in Sec. 4.1. We conduct both
single-image and multi-image evaluation and com-
pare results with BLIP-Diffusion (Li et al., 2023a)
and Kosmos-G (Pan et al., 2023). In addition to
metrics reported in the previous section, we addi-
tionally report DINO scores, which measures the
image similarity. For multi-image benchmark, eval-
uating the DINO similarity of the entire image does
not make sense, as the subject is added to the scene
may not necessarily occupy the entire image. To ad-
dress this, we use a segmentation model (Liu et al.,
2023c) to segment the subject in generated images.
We crop the image according to the bounding box
of the object. We report the DINO similarity be-
tween the cropped image and the reference subject
image as DINOsub, and the DINO similarity be-
tween the whole result and the background input
image as DINOref . We provide quantitative met-
rics in Table 2 and more qualitative comparison in
Appendix B. InstructAny2Pix shows a clear advan-
tage in generation quality and image consistency.
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Table 1: Multi-modal image editing on MM-Inst-Test dataset and Text-based Image editing on InstructP2P dataset.
(I+T+A) and (T) refers to using multi-modal instruction and text-only instruction respectively. The best number
is bolded. We report both zero-shot and fine-tuned performance on InstructP2P. All baseline methods are trained
on InstructP2P. Win rate represents the percentage of human responses that prefer InstructAny2Pix over baseline
methods. We use the zero-shot results (Row 2) for human eval on InstructP2P dataset.

MM-Inst InstructP2P

CLIPdir CLIPim CLIPout Win. CLIPdir CLIPim CLIPout Win.
Ours(I+T+A) .099 .816 .260 -

Ours(T,Zero-Shot) .095 .856 .270 - .147 .808 .312 -
Ours(T,Finetuned) - - - - .182 .873 .323 -

InstructP2P .091 .824 .243 .712 .145 .742 .241 .646
MagicBrush .084 .807 .199 .707 .165 .760 .250 .698
InstructDiff. .066 .940 .193 .746 .126 .857 .301 .631

Table 2: Image conditioned generation on DreamBench++ dataset. Cdir, Cim, Cout is abbreviated form of CLIPdir,
CLIPim and CLIPout. For multi-image setup, numbers are reported in DINOref /DINOsub format. The best number
is bolded.

Single-Image Multi-Image

Cdir Cim Cout DINO Cdir Cim Cout DINO Recall
Ours(T+I) .147 .810 .260 .688 .154 .789 .309 .625/.471 .841

BLIP-Diffusion .089 .779 .231 .660 .091 .701 .292 .526/.422 .693
Kosmos-G .126 .843 .251 .683 .166 .740 .286 .485/.476 .812

4.4 Discussions
Does InstructAny2Pix outperforms baselines on
complex, multi-object instructions? Unlike previ-
ous works, InstructAny2Pix can perform complex
editing operations involving multiple multi-modal
inputs. In figure Fig. 5, we provide visual examples
of InstructAny2Pix performing complex instruc-
tions where existing models fail. We also visualize
the performance gap on single-object and multi-
object prompts in Fig. 6. InstructAny2Pix exhibits
a larger lead in multi-object prompts. While the
numerical performance on instructions with only
one object is similar, we still observe qualitative
differences. Additional analysis is provided in Ap-
pendix B.

1 2 >2
0.20

0.25

CLIPout vs. #Objects in Instruction
InstructA2P
InstructDiff
InstructP2P
MagicBrush

Figure 6: CLIPout with respect to number of objects
on MM-Inst-Test dataset.

Does the audio/music capabilities of Instruc-

tAny2Pix enable useful real-world applications?
InstructAny2Pix uniquely enables music guided
image editing, which can be quite useful in cases
like music-inspired designs and image variations.
We show some examples in, Fig. 4. We recog-
nize that connecting music to visual elements (e.g.
smooth music to peaceful scenes) can be a subjec-
tive process. We provide further discussion in the
appendix Appendix E. We also include an audible
demonstration video in the supplementary.

5 Conclusion

In summary, we propose InstructAny2Pix, a flex-
ible system for editing images based on multi-
modal, multi-object instructions. Compared with
previous works, it uniquely supports complex
multi-object, multi-modal instructions. It also un-
locks creative new use cases such as multi-image
synthesis and music inspired designs. We pro-
posed two novel benchmarks: MM-Inst-Test and
Dreambooth++ for image editing with multi-modal
prompts and multi-image synthesis respectively. In-
structAny2Pix outperforms existing baselines on
these benchmarks, while also achieving compet-
itive performance on conventional image-editing
benchmarks with only text instructions.
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6 Limitations

6.1 Biases

Our model makes use of a pretrained diffusion
model (Podell et al., 2023) and a pretrained LLM
(Team, 2023). Hence, it may inherit biases from the
training process of these models. For example, the
SDXL is known to have some biases towards cer-
tain skin color (Esposito et al., 2023). Our system
will inherit these biases.

6.2 Style of Output Images

Our model tends to bias towards artistic/painting
outputs instead of photorealistic ones. This is
caused by multiple factors: First, the LAION-
Aesthetic-3M (Schuhmann et al., 2022) dataset
used to pretrain the diffusion model contains a lot
of art and paintings. Additionally, the LAION Aes-
thetic score used to condition the refinement model
is biased towards high saturation and artistic out-
puts. Lastly, we use SDXL to generate images for
the MM-Inst dataset based on captions. Without
explicit style keywords in prompts, we find that
SDXL generations are biased towards artistic out-
puts as well. We will try addressing this limitation
by exploring alternative ways of curating a high-
quality dataset and explicitly adding diverse style
prompts in the generation process.

6.3 Types of Supported Edits

In this work, we explore mostly object-level ed-
its and global edits that change the semantics
of images, such as adding and removing ob-
jects, changing backgrounds, changing the image
style, and changing the overall atmosphere of the
scene. InstructAny2Pix does not currently support
Photoshop-style edits such as increase the image
brightness, zoom in on objects. Users may choose
to fine-tune InstructAny2Pixon relevant datasets.
We left that for future exploration.
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InstructAny2Pix: Image Editing with
Multi-Modal prompts

Appendix

A Technical Details

A.1 Model Architecture
A.1.1 Multi-Modal Encoder
We use ImageBind (Girdhar et al., 2023) as our
multi-modal encoder. Particularly, ImageBind uses
CLIP-ViT-L as its text and image encoder. It in-
cludes an additional audio encoder that is aligned
to the representation space of CLIP-ViT-L. We use
the pooled token as our multi-modal embedding. It
is kept frozen throughout all training stages.

A.1.2 Diffusion Model
We use the SDXL (Podell et al., 2023) as our dif-
fusion model. It was originally conditioned on
CLIP-ViT-G and CLIP-ViT-L text features. We in-
corporate an MLP projection layer following (Ye
et al., 2023) that maps the ImageBind embedding
to the dimension of cross-attention layers. During
the pretraining process, the loss is

Ldiff = Et

[
∥ϵt − pθ(zt, Ct, Cg, Cl)∥22

]
(8)

where pθ is the U-Net, ϵt is the noise at times-
tamp t, zt is the noised image latent sampled in the
forward diffusion process at time t, Ct is the CLIP
embedding of captions. Cg is the embedding of
the whole image, Cl is the embedding of a cropped
region. The cropped region is sampled from an
object detector or a uniform distribution of bound-
ing boxes at a 1:1 ratio. At each training step, Ct,
Cg, Cl are randomly dropped independently with a
probability of 0.2.

Diffusion Model is not used in the instruction
fine-tuning stage.

A.1.3 Refinement
We adopt a decoder-only transformer with 24 layers
and a hidden size of 1024. We also incorporate an
MLP projector that maps ImageBind features to
the hidden dimension of the transformer. Another
MLP projector is used to map the output of the
transformer back to the dimension of ImageBind
features.

A.1.4 Multi-Modal Large Language Model
We use Vicuna-7B (Team, 2023) as our base model.
We made no additional changes to the LLM archi-
tecture other than adding input and output projec-
tors, which are two two-layer MLPs. The input
projector maps the embedding of multi-modal en-
coder to the dimension of MLLM’s hidden states.
The output project maps the extracted hidden states
from the MLLM to the dimension of encoder em-
beddings.

A.1.5 Parameter Count
We report the total number of parameters in each
module in Table A.1. In total, our model has around
10B parameters.

Table A.1: Number of Parameters in Instruc-
tAny2Pix. We report the total number of parameters in
each module.

Params
LLM 7B
SDXL 2.5B

Refinement 71.1M
Projectors 62.9M

A.2 Training Dataset

A.2.1 Paired Training Data
We use SoundNet (Aytar et al., 2016), VGG-Sound
(Chen et al., 2020), and AudioSet (Gemmeke et al.,
2017) for image-audio pairs. These datasets consist
of videos with audio. We extract the audio and the
middle frame from the video to create audio-image
pairs. SoundNet consists of 802,724 audio-image
pairs, AudioSet consists of 2 million audio-image
pairs, and VGG-Sound consists of 197,958 pairs.
Particularly, out of 2 million videos in AudioSet, 1
million are under the music category. These videos
can be music videos, concerts, documentaries, and
other kinds of videos that use music as background,
such as news programs.

We also make use of audio captions from Mu-
sicCaps (Agostinelli et al., 2023) and AudioCaps
(Kim et al., 2019) to create text-audio pairs. These
two datasets provide text captions for subsets of
AudioSet. They do not introduce new audio files.
We use LAION-Aesthetic-3M (Schuhmann et al.,
2022) for text-image alignment, which consists of
2,209,745 valid image URLs at the time of data
fetching (Sep 2023). All these datasets are used in
the alignment process.
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Flower Dance
-DJ Okawari

Rain of Castamere
-Game of Thrones

Merry Christmas, Mr Lawrence
-Ryuichi Sakamoto

Input Guren
-DOES

Figure A.1: Additional qualitative results of music inspired designs and image variations. InstructAny2Pix was
able to make diverse image edits given a music prompt. We include these examples with audio in our supplementary
video.

A.2.2 Instruction Tuning Dataset (MM-Inst)

As described in Sec. 3.3.1 of the main paper, MM-
Inst was generated in three steps. We show this in
Fig. A.3.

In the first step, we prompt a large language
model (Llama 2) to generate creative instructions.
Each instruction contains the caption of the input
image, the caption of the output image, the text
instruction and optionally captions of reference im-
ages and audio. We also ask the model to explicitly
mark objects that need to be added to the scene.
This information is used later in stage 3 to generate
input-output image pairs.

Example instructions include adding, dropping,
removing, or replacing objects as well as other
free-form instructions. To generate a diverse set
of image editing instructions, we prompt the lan-
guage model to create editing instructions based on
captions of sampled LAION images. We use BLIP-
2(Li et al., 2023b) to generate these captions in-
stead of using the captions provided in the dataset,
because the provided captions are noisy alt text
that is not natural English. To further increase the
diversity of audio-related instructions, we further
prompt the language model to generate instruc-
tions involving ground-truth music captions from
LP-MusicCaps and AudioCaps. We observe that
without this step, the language model tends to only
generate simple audio captions such as "sound of
water" or "sound of rain" and fails to incorporate
complex descriptions of music. In total, we gener-

ate 500k instructions.

In the second step, we collect or generate ref-
erence images and audios using captions created
in the first step. There are two types of captions.
The first type appears in instructions generated by
explicitly prompting the LLM with ground truth
captions of music, sound, and images. For these
captions, the corresponding media can be directly
used. The second type is generated solely by the
LLM. We use AudioLDM2 (Liu et al., 2023b) to
generate audio and music, and use SDXL to gener-
ate images. We generate 5 samples for each caption
and use CLAP (Wu* et al., 2023) and CLIP (Rad-
ford et al., 2021) to find the samples that align best
with the caption.

In the last step, we employ a diverse set of meth-
ods mentioned in Sec. 3.3.1 to create input-output
image pairs.

Compared with the InstructPix2Pix dataset, MM-
Inst has the following advantages. First, it uses
BLIP-generated captions which are grounded with
real images instead of the raw caption from LAION,
which can be very noisy. Second, it uses a variety
of techniques to generate paired data instead of
solely relying on Prompt2Prompt. In particular, we
observe that the segmentation+inpainting pipeline
generates high-quality results for object removal
when the segmentation model can correctly local-
ize the target object. Third, we filter the data using
both CLIP and Aesthetic score and consider both
prompt alignment and generation quality. In con-
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Piece 1 Piece 2 Piece 3 Piece 4

The low quality 
recording features a 
simple melody. It 
sounds mellow, soft 
and emotional. The 
recording is noisy and 
in mono.

The tempo is slow. The 
music is intense, serious, 
grim, spooky, eerie, 
terrifying and 
suspenseful.

The low quality recording 
features a resonating 
mellow bell playing. It 
sounds relaxing, 
calming, soft, mellow, 
haunting and hypnotic

The tempo is slow. The 
music is soft, rich, fuzzy, 
droning, melancholic 
and nostalgic.

Improvised live performance

Edit Results and Generated Captions

Figure A.2: Qualitative results of live performance visuals. We use InstructAny2Pix to generate a set of visuals
corresponding to an improvised performance involving four pieces. We also prompt the model to generate the
captions of each music to understand its reasoning process. We mark attributes that are reasonable interpretations of
the music with blue, and unreasonable interpretations with red. To maximize creativity, we use a low CFG for this
task for better image diversity.

trast, InstructPix2Pix only uses CLIP score as the
filtering mechanism. Lastly, MM-Inst incorporates
multi-modal inputs, which makes it uniquely suit-
able for our multi-modal editing tasks. We show-
case these differences in Table A.2. We provide
examples from both datasets in Table A.3.

A.3 Evaluation Dataset

A.3.1 MM-Inst-Test

To generate a diverse set of prompts, we ask
the MTurk workers to generate creative edit in-
structions using different captions sampled from
LAION. We also require the MTurk workers to
generate different types of edits for the same cap-
tion. We do not generate ground truth target images.
For reference images and audio pieces used in the
instructions, we use SDXL (Podell et al., 2023)
to generate images and AudioLDM2 to generate

(Liu et al., 2023a) audio. Results are filtered by
CLIP(Radford et al., 2021) score for images and
CLAP(Wu* et al., 2023) score for audios.

One of the challenges in generating the test
dataset is that there are instances of bad format and
low quality. We prompt each MTurk worker to gen-
erate five different edit prompts for each caption.
After a batch is collected, we manually identify
the problematic instructions and redistribute them
to a new set of workers. In order to reach 1,500
valid instructions, we collect a total of 1795 instruc-
tions. We show the distribution of different types
of instructions in Fig. A.4.

A.3.2 Dreambooth++
Dreambooth is commonly used to evaluate genera-
tive models that support image prompts. However,
its evaluation protocol consists of only a single ref-
erence image and a text prompt. It is not suitable
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Change style

Add/Remove  objects

Scene alternation

Image Captions

Music Captions

Audio Captions
LLM

Edit Target Caption
In-Context Examples

1. Add [an image of cat] to [An image of a dog]
2. Fit [an image of city skyline] to [sound of rain]
…

add /remove/replace/style/…

Multi-Modal Instructions:
1

3

Source Image Caption 

Edit Target Caption
(added/removed objects)

(added/removed objects)

DDIM

P2P

PnP

Seg+Inpaint

…..

Sample n policies from pool

chosen

Filter

…..

Pair A

Pair B

4

an image of a dog

sound of rain

2
an image of a dog
sound of rain

Fetch 
Dataset

GT caption Generated caption

an image of cat
an image of city skyline

Generative
Model

Figure A.3: Data generation Pipeline. 1. We prompt LLM with sampled captions and examples to generate a diverse
set of instructions. 2. We obtain reference music, audio, and images by either generating them using SDXL and
AudioLDM2. If the caption corresponding to a ground truth caption, we directly fetch the corresponding media. 3.
We employ a mixture of methods to generate candidate image pairs for each instruction and filter them using CLIP
score. 4. We show some example image pairs in the filtered dataset on the right.
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Figure A.4: Distribution of Instructions in MM-Inst-
Test dataset. We show the number of instructions. "Fit"
refers to combining music and image, fitting an image
to the style of another image, or other organic ways
of combining different modalities together. "Others"
include all instructions that cannot be classified as other
categories, such as "transform [image] into a night scene
with the sound of [sound]".

to evaluate models that can take multiple reference
images, such as Kosmos-G (Pan et al., 2023) and
InstructAny2Pix. Moreover, the classes have lim-
ited diversity and only have two live subjects (cats
and dogs). These two live subjects accounts for 9
out of 30 subjects. All other objects are small, still
objects, such as backpacks. There are no medium-
to-large objects such as trees or bicycles. To pro-
vide a diverse and fair comparison, we propose
Dreambooth++, which contains 30 subjects and 30
prompts. In total, there are 900 combinations. We
use SDXL to generate all subject images. For each
prompt, we also generate a background.

We conduct evaluation on two benchmarks: The
single-image setup is similar to Dreambooth, which
requires generating a given subject under different
context prompts. The multi-image task requires
generating a new image by combining a subject im-
age and a background image. For the multi-image
task, we use a segmentation model to localize the
edited objects in the new image. We report DINO
similarity of the cropped subject with the reference
subject image as DINOsub and the DINO similarity
of the generated image with the reference back-
ground image as DINOref . We also report the re-
call rate of the segmentation model. These results
are listed in the main paper Table 2.

We show the full list of subjects in Table A.4
and compare it with Dreambooth. DreamBooth++
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offers a more diverse range of subjects ranging
from animals, humans, large structures, and small
items.

A.4 Compute

We use AdamW optimizer with a learning rate of
1e-6. We use 8 Nvidia A6000 GPU for our experi-
ments. We train the model for 2 epoch, which takes
around two days. The diffusion model is trained on
8 A5000 GPU with AdamW optimizer, a learning
rate of 1e-6 for 4 days (40000 steps).

B Additional Comparisons with Baseline
Methods.

B.1 Text-Guided Image Editing

We provide a qualitative comparison with methods
using text instructions. We compare our results
against InstructPix2Pix (Brooks et al., 2023), Mag-
icBrush (Zhang et al., 2023), Instruct Diffusion
(Geng et al., 2023) and MGIE (Fu et al., 2023) in
Fig. A.5. For fairness, we incorporate instructions
from both the InstructPix2Pix dataset and the MM-
Inst-Test dataset. For MM-Inst-Test, we convert
the multimodal instructions to text by replacing
the multimodal token with captions of the referred
image and audio. For InstructAny2Pix, we use the
checkpoint that is not trained on InstructPix2Pix
dataset for these results.

InstructAny2Pix shows better editing results on
both datasets. Particularly, on some tricky exam-
ples, such as changing a sea turtle into an elephant
and adding water to the glass, InstructAny2Pixis
the only model that can successful perform the
edits. These results are exceptionally impressive,
considering that InstructAny2Pix is not trained on
the InstructPix2Pix dataset, unlike other methods.

B.2 Image-Guided Synthesis

We provide a qualitative comparison with multi-
modal generation methods that use reference im-
ages as prompts. We compare our results against
BLIP-Diffusion (Mangalam et al., 2022) and
Kosmos-G (Pan et al., 2023) in Fig. A.6. Visual re-
sults show that InstructAny2Pix outperforms these
two baselines both in terms of generation quality
and image consistency. We also conducted human
evaluation using Amazon Mechanical Turk. We
asked users to pick the best result in a side-by-side
comparison of InstructAny2Pix and baseline meth-
ods using generations of Dreambooth++ dataset.

We achieved a win rate of 79.0% against BLIP-
Diffusion and 86.2% against Kosmos-G.

B.3 Comparison with MGIE
We attempted to compare against MGIE (Fu et al.,
2023), another image editing method based on
Multi-Modal Language Model, on text-based edit-
ing. However, we are unable to reproduce the re-
sults using the official checkpoint in the Github
repo. As our best efforts, we provide qualitative
comparisons in Fig. 5 and Fig. A.5 using the online
inference demo hosted by Apple. We use the de-
fault parameters provided by the website for these
results. InstructAny2Pix outperforms MGIE on
both complex instructions involving multiple ob-
jects, such as "Remove a man and woman running
across a bridge", as well as simple ones such as
"turn the forest into a desert".

We further analyze the failure cases of MGIE
in Fig. A.7 by making use of the "expressive in-
struction" generated by the online demo. These
outputs reveal the underlying reasoning process
of the MGIE. We observe two failure modes. For
simple instructions, the model can generate the cor-
rect reasoning based on instructions, but failed to
apply these edits to the image. For example, for
the instruction "turn the forest into a desert", the
text output of MGIE identifies relevant concepts:
"little to no vegetation", "dry, lifeless branches".
However, the generated image fails to respect these
concepts. For more complex instructions such as
"remove man and woman running across a bridge",
the model fails to understand the intent, and be-
lieves the output image should "depict a man and
a woman running together, likely as a couple, on a
bridge", which is contrary to the instruction.

This limitation can be caused by a variety of rea-
sons: MGIE only uses InstructPix2Pix as its pre-
training dataset, whose edit instructions are less di-
verse than those in MM-Inst. MGIE uses a MLLM
to model the expressive edit instructions, which
contains what should be done to achieve desired ed-
its. By contrast, InstructAny2Pix directly models
the semantics of the intended output image, which
contains what the output should look like. The ob-
jective of InstructAny2Pix is more straightforward.
Lastly, MLLM freezes the language model itself
and only trains its adaptors and edit-heads, which
may limit its capabilities.

Additionally, we note that while MGIE also
make use of a Multi-Modal Language Model, they
do not support "multi-modal editing" in that they
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Table A.2: Comparison of MM-Inst dataset and Instruct Pix2Pix dataset.

MM-Inst MM-Inst-Test InstructPix2Pix
Caption Source LAION-Aesthetics LAION-Aesthetics LAION-Aesthetics

Input Caption Generation BLIP2 BLIP2 Noisy WebData
Instruction Generation Llama 2 Human GPT-3

Paired Data Generation

DDIM -

Prompt2Prompt
Prompt2Prompt -
Plug-and-Play -

Segmentation+Inpaint -
Filtering Multiple Metrics Human CLIP
Modality Image,Text,Audio Image,Text,Audio Text

Size 500,000 1,500 313,010

Table A.3: Examples of Instructions from MM-Inst dataset and Instruct Pix2Pix dataset. Captions are marked
by [.]. MM-Inst offers a better set of captions and instructions.

MM-Inst
Instruction Output
Please incorporate [an image of cannon
fire] into [an image of a pirate ship sail-
ing on the high sea]

An image of a pirate ship firing at a
British Navy warship, fire burning on
the ship

Remove [sound of car accelerating]
from [an image of people driving in the
countryside road]

An image of a quiet countryside road

Replace [sound of dog barking] with
[sound of a cute cat] for [an image of a
dog at the beach]

An image of a cat at the beach

Change [an image of a woman wearing
sunglasses in Paris] to the style of [an
image of a Renaissance painting of a
noble lady]

A Renaissance painting of a woman
wearing sunglasses in Paris

Make [an image of a cute girl in a school
uniform] fit the atmosphere of [a piece
of music of stellar constellations]

An image of a cute girl in a school uni-
form under the night sky

InstructPix2Pix
[misurina XIII... by roblfc1892] have it
be a stamp

Stamp... misurina XIII... by roblfc1892

[Manarola during sunrise - Cinque
Terre] it is foggy

Manarola during foggy sunrise - Cinque
Terre
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InstructAny2Pix InstructPix2Pix MagicBrush Instruct Diffusion

Have the 
boat house 
be a manor

Input

Turn it into 
an elephant

Turn the 
forest into a 
desert

Add water

Remove man and 
woman running 
across a bridge

Add heavenly 
light

MGIE

Figure A.5: Qualitative Comparison Against Text-based Editing Methods. We show editing results of different
models using diverse editing instructions. The top three rows are sampled from the InstructPix2Pix dataset, and the
bottom three rows are sampled from the MM-Inst-Test dataset.
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InstructAny2Pix Blip Diffusion Kosmos-G

Add [image]

Input

Add [image]

[image] 
before neon 
lights and 
buildings

[image] in a 
winter forest

Add [image]

[image] 
under the 
night sky

Figure A.6: Qualitative Comparison Against Image-based Generation Methods. We present generation results
of different models under both single-image and multi-image setups. We employ multi-modal prompts from the
Dreambooth++ dataset.
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Turn it into 
an elephant

Turn the 
forest into a 
desert

Add water

Remove man and 
woman running 
across a bridge

Add heavenly 
light

MGIE (Output Image)

If the forest in the image were to be transformed into a barren 
desert, the scene would lose its lush greenery and become a 
barred landscape with little to no vegetation.The trees would 
wither and die, leaving behind only dry, lifeless branches.

Add water to the transparent glass.The transparent glass 
would be filled with water, creating a reflective surface that 
would enhance the visual appeal of the scene.

The image would depict a man and a woman running together, 
likely as a couple, on a bridge.The scene would be captured in 
motion, with the man and the woman running in opposite 
directions, creating a sense of energy and activity.

Add a heavenly element to the image.The image of an angel or 
a woman with wings would be a suitable addition to the scene, 
and would be suitable for a religious or spiritual context.

If we were to "turn it into a elephantly elephants," we 
would see a group of sea turtles swimming in the ocean, 
with one of them being a juvenile sea.

MGIE (Output "Expressive Instruction")InstructAny2PixInput

Figure A.7: Analysis of failures of MGIE. We show "expressive instructions" generated by MGIE alongside
image outputs. These samples reveal the underlying reasoning process of the MGIE. We observe two failure
modes. For simple instructions, MGIE can generate the correct reasoning based on instructions, but failed to
apply these edits to the image. We mark these examples as blue. For more complex or abstract edits, MGIE
fails to understand the instructions and generates wrong reasoning. We mark these examples as red. By contruct,
InstructAny2Pix consistent perform the intended edits successfully.
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Remove  
[image]

Add [clock]

[clock]

Replace people 
with [image]

Fit the style of
 [image]

Fit to [music]

[mysterious lofi
 ambient music]

Input                   InstructAny2Pix Input                 InstructAny2Pix

Fit the style of
 [image]

Add [wolf] and  [moon]

Replace [image] with [image]

Fit to  [music]

[jazz music]

Remove  [sound]

[rain]

Figure A.8: Additional Results of Multi-Modal Editing. We showcase qualitative results of multi-modal editing.
InstructAny2Pix can handle a diverse set of instructions involving multiple modalities.
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Table A.4: Subjects of DreamBooth++ and DreamBooth Dataset. DreamBooth++ offers a more diverse range of
subjects ranging from animals, humans, large structures, and small items.

DreamBooth++ Dataset Subjects DreamBooth Subjects
a cute cat backpack
a cute dog backpack_dog

a colorful butterfly bear_plushie
a colorful bird flying low over a body of water berry_bowl

spotted horse can
an image of a squirrel candle

an african elephant walking through a grassy field cat
an image of cute anime girl cat2

an anime princess with long blonde hair and two swords clock
the woman in a black dress holding a fan colorful_sneaker

a man standing at a podium dog
a cyberpunk style dog2

an image of a scientist dog3
an image of an astronaut dog5

an artistic painting of a woman with blonde hair dog6
a wooden bridge dog7

car dog8
traffic lights duck_toy

train fancy_boot
tree grey_sloth_plushie

bicycle monster_toy
an image of a robot pink_sunglasses

tablet poop_emoji
telescope rc_car
the skull red_cartoon

vase robot_toy
wand shiny_sneaker

an image of chair teapot
an image of empty glass vase

a cowboy hat wolf_plushie

only accept text-only instructions. The vision en-
coder of MGIE is used to only process the input
image, instead of multi-modal prompts like Instruc-
tAny2Pix. In summary, InstructAny2Pix outper-
forms MGIE on text-based edits, particularly in
the presence of challenging edit prompts. Instruc-
tAny2Pix also supports more flexible instructions
and multi-modal prompts, making it more prefer-
able in most practical use cases.

B.4 Image Editing with Multi-Modal
Instruction

We present additional qualitative results of multi-
modal editing in Fig. A.8. The results demon-
strate that InstructAny2Pix can effectively handle

a diverse range of instructions involving multiple
modal inputs.

C Ablation Studies

C.1 Pretraining

We experiment with three pretraining setups: no-
pretraining, captioning tasks only (x-to-text), and
full pretraining (x-to-text and x-to-image). We re-
port quantitative results of image-editing task on
MM-Inst-Test dataset in Table A.5. Full pretraining
is required to achieve optimal performance.
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Table A.5: Ablation Study on Pretraining Strate-
gies. We experiment with three pretraining setups: no-
pretraining, captioning tasks only (x-to-text), and full
pretraining (x-to-text and x-to-image). We report results
on MM-Inst-Test dataset.

Cdir Cim Cout

No Pretraining .071 .795 .207
Caption Only .090 .802 .251

Full .099 .816 .260

C.2 Factors affecting Image Consistency

An important goal of image editing is to ensure
the edited images can reflect the intended changes
while respecting the source image. There is usually
a trade-off between these two goals. The most rel-
evant hyperparameter of InstructAny2Pix is clas-
sifier free guidance (CFG). CFG determines the
degree at which the text instruction affects the gen-
eration output. We visualize edit results under dif-
ferent CFG in Fig. A.10. We find that CFG=5 is a
sweet spot for achieving high quality edit results
that follows the instructions while respecting the
original image.

In addition to CFG, we can control how well the
model respects the input image by adding Gaussian
to the input image in the latent space. The variance
of added noise is proportional to (1− α) where α
is a hyperparameter between 0 and 1. Intuitively,
when α is 1, there is no corruption to the image
latent. When α is zero, the diffusion model mostly
ignores the input image. We visualize this effect in
Fig. A.9. For a typical use case, there is no need to
corrupt the input image. We suggest setting α to
1.0.

We qualitatively evaluate the effect of these
two hyperparameters on a subset of MM-Inst-Test
dataset by sweeping over different values of CFG
and α. We report CLIPout, which measures align-
ment with edit instructions and CLIPim, which
measures consistency with input images. We show
these results in Fig. A.11. In general, increasing
the CFG and decreasing the alpha will increase
CLIPout and decrease CLIPim, giving the user the
flexibility to balance the instruction alignment and
image consistency. We also found that removing
the refinement module leads to a small drop in both
metrics, highlighting its effectiveness.

Alpha = 1.0 Alpha = 0.5 Alpha = 0.0Input

Figure A.9: Results of Varying α in the generation
process. We visualize the image generation conditioned
on the CLIP embedding of the source image. As α
decreases, the generation become less consistent with
the source image.

Ours@cfg=10 Ours@cfg=5Input Ours@cfg=3

t=7.5,i=1.5t=15,i=1.5 t=10,i=1.5

InstructP2P(L)
MagicBrush(R)

Remove cars

Figure A.10: Visual examples of InstructAny2Pixand
baseline method under different classifier free guid-
ance (CFG). We compare InstructAny2Pix with In-
structPix2Pix. InstructPix2Pix has two independent
CFG for text and image. We abbreviate this as "t" and
"i". Notably, our method generates artifact-free results
in all setup, while other methods have visible artifact at
all CFGs.

C.3 Factors affecting Image Quality

The refinement module is introduced as a regular-
ization to mitigate the effect of low quality images
in the data. We sample 500 generated images and
evaluate the LAION Aesthetic score and PickScore
(Kirstain et al., 2023), which measures image qual-
ity. Aesthetic score only considers the image qual-
ity, while PickScore additionally takes the prompt
into account. We compare generations with refine-
ment module to those without refinement module
and report the results in Fig. A.12. On both metrics,
adding the refinement module leads to considerable
improvements.

D Error Bars

We report the margin of error of 95% confidence
interval of main results in Table A.6 and Table A.7.
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Table A.6: Multi-Modal Image Editing on MM-Inst-Test Dataset and Text-based Image Editing on InstructP2P
Dataset.The best number is bolded and second-best is underlined.

MM-Inst InstructP2P

CLIPdir CLIPim CLIPout CLIPdir CLIPim CLIPout

Ours(T) .095±.003 .856±.001 .270±.002 .147±.003 .808±.003 .312±.002
InstructP2P .091±.003 .824±.002 .243±.002 .145±.003 .742±.004 .241±.002
MagicBrush .084±.004 .807±.006 .199±.002 .165±.004 .760±.006 .250±.001
InstructDiff. .066±.003 .940±.004 .193±.002 .126±.002 .857±.003 .301±.002

Table A.7: Image Conditioned Generation on DreamBench++ Dataset. Cdir, Cim, Cout is abbreviated form of
CLIPdir, CLIPim and CLIPout. For multi-image setup, numbers are reported in DINOref /DINOsub format. The
best number is bolded and second-best is underlined.

Single-Image Multi-Image

Cdir Cim Cout Cdir Cim Cout

Ours(T+I) .147±.004 .810±.004 .260±.002 .154±.004 .789±.004 .309±.002
BLIP-Diffusion .089±.005 .779±.005 .231±.002 .091±.005 .701±.005 .292±.002

Kosmos-G .126±.005 .843±.005 .251±.002 .166±.005 .740±.005 .286±.002

Figure A.11: How CFG, α and the refinement module
affects instruction alignment and image consistency.
Increasing the CFG and decreasing the alpha will in-
crease CLIPout (CLIP-T) and decrease CLIPim (CLIP-
I). Adding refinement module improves both metircs.

E Additional Discussion of Music-guided
image editing.

In this section, we discuss two novel use cases
of InstructAny2Pix in music-guided image edit-
ing. These examples are also included in the sup-
plementary video with accompanying audio. It is
challenging to evaluate such capabilities because
even humans can associate music and visual ele-
ments in various ways. Hence, we focus on quali-
tative results and show that InstructAny2Pix can
reasonably associate music with visual elements.
Specifically, we aim to demonstrate that: 1) In-
structAny2Pix associates music inputs with visual
edits in a consistent manner, rather than perform-
ing random edits on the input image; and 2) such
associations make sense to humans.

Refinement No Refinement
5.4
5.5
5.6
5.7
5.8
5.9
6.0
6.1
6.2

Aesthetic

Refinement No Refinement
20.4

20.5

20.6

20.7

20.8

20.9

21.0
PickScore

Figure A.12: How refinement module affects im-
age quality. We report average Aesthetic score and
PickScore (Kirstain et al., 2023) on 500 randomly sam-
pled captions. Aesthetic scores only consider the image
quality, while PickScore additionally takes the prompt
into account.

E.1 Music Inspired Design and Music-guided
Image Variation.

We provide additional qualitative results of music-
inspired design and music-guided image variations.
in Fig. A.1. For these results, we prompted In-
structAny2Pix with structured templates such as
"Please modify the design of [image] based on [mu-
sic]" and "modify [image] to convey the feeling of
[music]". We use the same music prompt as in
Fig. 4 from the main paper. InstructAny2Pix was
able to grasp the mood conveyed by different pieces
of music and generate appropriate images. For ex-
ample, it consistently associates Guren, a Japanese
Rock Song used in the anime Naruto as its opening,
with vibrant, highly-saturated, neon-light-like col-
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ors. This suits the fast-paced, highly energetic mu-
sic well. Similarly, it consistently associates Rain
of Castamere, a piece from the TV series Game
of Thrones, with a cold, lifeless atmosphere. In
Fig. 4 from the main paper, it turns the background
of a Jedi warrior to into a snowfield. In Fig. A.1,
it changes lush trees into lifeless branches. These
edits align with the slow-moving, somber theme of
the piece.

E.2 Live Performance Visuals
As a proof of concept, we used InstructAny2Pix to
generate a set of visuals corresponding to an im-
provised performance involving four pieces. In this
setup, we generated an initial image and performed
image editing via structured templates. The model
was prompted with 10 seconds of each piece. To
further understand the reasoning behind each edit,
we also prompted the model to generate captions
using the template "please describe [music]." This
was possible because the music captioning task
is included in the pretraining dataset. Using cap-
tions, we observed that InstructAny2Pix was able
to identify the tempo and associated emotions of
the music. We used an iPhone to record the perfor-
mance, which led to some artifacts in the recording,
and this was reflected in the generated captions.
Despite this, our model was still able to perform
reasonable edits. For example, it associated key-
words such as "soft, relaxing" with bright colors,
and keywords like "suspenseful, slow" with dark
tones. Notably, when the caption included "nostal-
gic," the model converted modern buildings into
antique ones. This particular part is a segment of
Departure from the series Rurouni Kenshin, which
describes a farewell of samurais in ancient Japan.
InstructAny2Pix was able to capture the essence of
this piece and make appropriate edits. An audible
version is included in the supplementary video.

The demo is only a proof of concept. The ed-
its were not performed in real time. Instead, we
recorded a video and retrospectively applied the
edits. However, considering that we only took 10
seconds of music to prompt the model, and that the
edits can be performed with structured templates
without human text input, it is feasible to build
a real-time system for this application using our
model.

E.3 Additional Discussions
How did the model learn music-visual corre-
spondence? There are two sources of music-visual

Figure A.13: Example Thumbnails of Videos with
Music. We show samples of thumbnails from the music
category of the AudioSet dataset, which incorporates
diverse music-image correspondences.

correspondence in the training data. First, during
pretraining, we incorporated an audio-guided im-
age generation task with the prompt "Generate an
image from [sound]," where the sound-image pairs
came from audiovisual datasets such as AudioSet.
Empirically, these pairs were curated by extracting
the audio and corresponding frames from YouTube
videos. When the audio piece is music, the im-
age would be what human creators deemed suit-
able for that music. We show examples of im-
ages corresponding to music pieces in Fig. A.13
from the AudioSet dataset. They include a diverse
set of images such as album cover art, documen-
tary stills, music videos, video game footage, and
nature scenery shots. These reflect the diverse
ways humans associate music with images and
allow InstructAny2Pix to learn a general music-
visual correspondence. Second, during instruction
fine-tuning, the MM-Inst dataset includes a music-
guided image editing task generated by LLM. An
example would be "fit the [image] to [a peaceful,
slow-moving, piano music]."

We observed that removing music-image pairs
from the pretraining data led to catastrophic fail-
ures, even after fine-tuning on MM-Inst. This
suggests that large-scale pretraining with natural
music-visual correspondences created by humans
is necessary. Interestingly, removing audio-image
pairs from the pretraining data did not affect the
performance as much. For example, after remov-
ing audio-image pairs from the pretraining data,
the model failed to perform tasks such as "fit the
[image] to [a piece of slow-moving, piano music]."
However, the model could still perform tasks like
"add [sound of dog barking] to the image." We
hypothesize that learning simple, explicit audio-
image correspondence is easy (e.g., dog sound to
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dog images) and can be implicitly achieved if the
audio and image embeddings are well aligned with
the text embedding. However, learning abstract,
implicit music-image correspondence is nontrivial
and requires direct training on music-image pairs.

How useful is this capability of music-guided
editing? While music-guided editing may seem
like a niche application at first glance, we have
provided various examples above, including three
practical use cases: music-inspired designs, music-
guided image variation, and live performance visu-
als. One of the remaining concerns is usability. For
example, would writing a text prompt and upload-
ing music be more inconvenient than just writing a
more detailed text instruction? We argue this is not
necessarily the case. For example, if a user wants
to have 10 good T-shirt designs but lacks expertise
in fashion, it would be hard for them to write 10
detailed prompts describing all the visual elements
of the designs. However, they could simply write
one template, "please modify the design [an image
of a blank T-shirt] to [music]," and apply it to tens
or hundreds of music tracks, then pick the 10 best
results. Moreover, these selected tracks can serve
as a medium to apply similar designs to other ob-
jects, such as dresses. In Fig. 4 of the main paper
and Fig. A.1, we see that the same track leads to
consistent designs across different objects. This
makes music-guided designs more appealing than
alternatives (e.g., randomly generating 100 images
of T-shirts and picking one).

In the case of live performance visuals, we can
also apply a predefined template and change the
background of the stage about 10 seconds after a
new piece is played. This makes it particularly
suitable for impromptu performances. Since it is
impossible to know what will be played or when
transitions between pieces will happen, it is im-
practical to create stage visuals in advance. In-
structAny2Pix offers unparalleled flexibility, as it
allows the staff to create stage visuals that fit the
piece being played with just one click.

In a similar spirit, InstructAny2Pix can also be
used in bars and restaurants with a real-time "social
media wall," where customers can post photos that
are displayed in real time. It would be exciting if
the posted photos were automatically adjusted to
suit the piece being played by an impromptu artist
or just the background music of the venue. Like-
wise, InstructAny2Pix can be used to create video
filters for short videos on YouTube or Instagram.
Beyond the use cases the authors have imagined,

the possibilities are limitless.

F Border Impacts

InstructAny2Pix aims to improve the flexibility
of image editing models by incorporating multi-
object, multi-modal prompts. In particular, Instruc-
tAny2Pix uniquely enables a set of creative music-
based applications such as music-inspired design.
However, just as any other image-edit models, In-
structAny2Pix can be used to for fraud and decep-
tion. Particularly, the ability to synthesize multiple
images using text instructions can be used to create
fake, deceptive images with high quality. Hence, it
is important to employ guardrails when deploying
InstructAny2Pix to end-user products.

G Safe Guards

InstructAny2Pix is based on the diffuser (von
Platen et al., 2022) library. It should be used with
the standard safeguards, including NSFW safety
checker and hidden watermarks.

H License

We makes use the following models: CLIP
(MIT license), PickScore(MIT license), LAION
Aesthetics predictor (MIT license), SDXL( Cre-
ativeML Open RAIL++-M License), LLAMA 2
(Llama 2 Community License Agreement), Vicuna
(Apache2 license). BLIP-2 ( BSD-3-Clause li-
cense)

We use the following dataset SoundNet (MIT
license), VGG-Sound (CC BY 4.0 license), Au-
dioSet (CC BY-SA 4.0 license), MusicCaps (CC
BY-SA 4.0), AudioCaps (MIT License) LAION
(MIT License).

LAION dataset is currently unlisted publically
due to a safety review.

I Human Instructions

In this section, we report the instructions used to
generate human evaluation results and image cap-
tions.

The following prompt is used to generate the
caption

Instruction to Write Prompts for MM-Inst-
Test Dataset

Your goal is to generate multimodal image
edit instructions including a source image
caption, an edit instruction, and a target im-
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age caption. The edit instruction can involve
other reference image and audios. Some
concrete examples are
1.add [image:fireworks] to [image:base:a
city skyline at night] == [image:result:an
image of a city skyline at night with fire-
works]
2.remove [audio: water stream] from [im-
age:base:a painting of a cabin by the lake
at sunset] == [image:result:a painting of a
cabin by a corn field at sunset]
3.fit [image:base:an image of empty
street] to [audio: upbeat electronic mu-
sic]==[image:result:an image of vibrant city
street]
4.fit [image:base:a city skyline] to the style
[image:an impressionist painting] == [im-
age:result:an impressionist painting of a city
skyline]
5. replace [image:people] with [im-
age:wildlife] in [image:base:a painting of
two people standing in a field surrounded
by hay bales] == [image:result:a painting of
wildlife in a field surrounded by hay bales]
The typical examples can be adding, remov-
ing, replacing objects, image style trans-
fer or fitting image to audio. However,
you are encouraged to be creative. use
[audio:xxx] to mark audio inputs, use [im-
age:xxx] to mark reference image inputs.
use[image:base:xx] to specify source im-
age,use [image:result:xxx] to specify the
results use == to separate instruction and
results.
IMPORTANT : The Removed or Replaced
Object should exist in the Orignal Source
Image. Special Instructions for removal/re-
place commands.
When removing objects, do try to remove
objects not explictly mentioned in the cap-
tion
When removing objects, do NOT try to use
words like xxx without yyy, simply drop
the removed objects Examples: Remove
[audio:piano music] from [image:base:an
image of a room with piano]
Good Example 1: [image:result:an image
of an empty room]
Good Example 2: [image:result:an image
of a room]

Bad Example : [image:result:an image of a
room without piano]

The following instruction is used to collect hu-
man feedbacks:

Instruction for Human Evaluation

Task Description
Your task is to compare the output images
from two image edit models based on the
following criteria:
Alignment: Does the model follow the in-
struction accurately?
Quality: How good is the model generation
output?
Information Loss: How well does it respect
the original inputs?
Note: Some models may crop the source
image at the center. Please do not consider
cropping as a factor in your judgment.
[images and instructions here]
Given the criteria, which of the edit output
among Image A and Image B is better?
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