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Abstract

Multimodal knowledge graph completion
(MKGC) aims to predict missing triples in
MKGs using multimodal information. Re-
cent research typically either extracts informa-
tion from each modality separately to predict,
then ensembles the predictions at the decision
stage, or projects multiple modalities into a
unified feature space to learn multimodal rep-
resentations for prediction. However, these
methods usually overlook the intrinsic cor-
relation between modalities in MKGs which
should be leveraged in both unimodal knowl-
edge extraction and multimodal knowledge fu-
sion. Motivated by this, we propose a noval
Modal-collaborative knowledge learning (Moo-
dle) framework for MKGC, the key idea of
which is to foster mutual guidance and col-
laboration during unimodal knowledge extrac-
tion, to let each modality acquire distinct and
complementary knowledge that subsequently
enhances the multimodal knowledge fusion.
Specifically, Moodle preserves the representa-
tions of different modalities to learn unimodal
knowledge while modeling the mutual guid-
ance through multi-task learning. Furthermore,
Moodle performs multimodal knowledge fu-
sion and prediction guided by unimodal knowl-
edge, capturing their synergistic relationships
and acquire fine-grained semantic knowledge
through contrastive learning. Extensive experi-
ments on three real-world datasets demonstrate
the advantages of Moodle over state-of-the-art
methods.

1 Introduction

Recent years knowledge graphs (KGs) have ex-
perienced rapid development across various real-
world applications, such as news recommendation
(Liu et al., 2021; hao et al., 2023), intelligent ques-
tion answering (Yasunaga et al., 2022; Wang et al.,
2023; Yu et al., 2022), and social network analysis

*Corresponding authors: Tao Ren and Jun Hu

(a) Three types of missing-triple prediction. (1) UML-based
methods project all modalities into a unified vector space
before prediction. (2) MSL-based methods predict missing
entities separately for each modality and then fuse them dur-
ing decision. (3) Moodle first extracts unimodal knowledge
collaboratively, then uses it to guide the knowledge fusion
and prediction.

(b) An example of multimodal input consists of text descrip-
tion, image, and associated subgraph about the movie “Cap-
tain America 3: Civil War".

Figure 1: (a) Similarities and differences between ex-
isting methods and Moodle. (b) Correlation between
modalities.

(Molokwu et al., 2020; Molokwu and Kobti, 2020),
owing to their strengths in representing and organiz-
ing knowledge, typically in the form of fact triples
(head entity, relation, tail entity). The growth of
multimodal corpora, such as text and images, has
catalyzed the emergence of multimodal knowledge
graphs (MKGs) (Liu et al., 2019; Chen et al., 2024),
which extend traditional KGs by incorporating di-
verse types of entity attributes. This enriched rep-
resentation of MKGs significantly enhances their
capabilities in a broader range of domains.

However, due to the incompleteness of facts,
multimodal knowledge graphs (MKGs) often suf-
fer from missing relations or entities, which limits
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their effectiveness in real-world applications. To
address this issue, multimodal knowledge graph
completion (MKGC) has been proposed to predict
missing parts of MKGs by utilizing multimodal
data and it has garnered significant attention from
both academic and industrial communities (Xie
et al., 2017; Wang et al., 2019). Traditional meth-
ods for KGC mainly adopt logical inference and
statistical probability to predict missing entities and
relations in KGs. However, with the emergence of
MKGs, these methods face considerable challenges
in effectively integrating and leveraging multiple
modalities of data. This led to the development of
representation learning in MKGC, where entities,
relations as well as multimodal information within
the MKG are projected into a low-dimensional vec-
tor space, allowing for the prediction of missing
triples using scoring functions on the learned em-
beddings. Whereas, the introduction of represen-
tation learning also faces a critical challenge: how
to effectively integrate complementary multimodal
embeddings with structural embeddings.

There are primarily two paradigms for MKGC,
Modality-Specific Learning (MSL-based) and Uni-
fied Multimodal Learning (UML-based). As shown
in (2) of Figure 1(a), MSL-based methods has been
proposed to learn modality-specific embeddings
and then integrate predictions from each modal-
ity at the decision-making stage to reduce infor-
mation loss resulting from modality heterogeneity.
For example, MoSE (Zhao et al., 2022) proposes
three different strategies to fuse the unimodal pre-
dicting results during the decision-making phase.
Despite these efforts, extracting unimodal features
separately could be short of effective utilization of
supplementary information across modalities. In
contrast, UML-based methods, as shown in (1) of
Figure 1(a) , focus on projecting multimodal fea-
tures into a unified vector space to capture deep
semantic information. For instance, IKRL (Xie
et al., 2017) pioneers the approach of fusing visual
information with structural embeddings in KGC,
and MKGFormer (Chen et al., 2022) modifies the
internal structure of Transformers to perform cross-
modal fusion, aiming to alleviate the heterogeneity
issue and reduce the impact of irrelevant multi-
modal information on prediction performance. Al-
though these UML-based methods can obtain a uni-
fied multimodal representation that contains richer
information, they often fall short in preserving the
distinct characteristics inherent to each modality
and face the issue of modal conflict.

Intuitively, the multimodal data in MKGs poten-
tially contain rich collaborated and complementary
information. Take the scenario in Figure 1(b) as
an example. The textual description with yellow
backgrounds mentions the conflict between the Iron
Man and Captain America factions, but does not ex-
plicitly refer to the conflict involving Black Panther
and Winter Soldier. However, the image depicts an-
tagonistic scenes between these characters (as seen
in the red square). The visual information plays
a crucial role in understanding and extracting the
context of the conflict knowledge involving Black
Panther and Winter Soldier, even if the text does not
mention it directly. Conversely, textual information
can also guide the accurate extraction of features
from images. For instance, if the text describes the
conflict between the Iron Man and Captain Amer-
ica, it will be helpful for extracting the characters
and scenes involved in the conflict from the image,
while disregarding irrelevant information.

Inspired by the above intuition, we propose a no-
val Modal-collaborative knowledge learning (Moo-
dle) framework for MKGC. Moodle allows modal-
ities to teach each other during both unimodal
knowledge extracting and multimodal knowledge
fusion. Specificly, we design a collaborative uni-
modal learner (CuLearner) that leverages multi-
task learning to model the mutual collaboration in
unimodal knowledge extracting. The CuLearner
integrates weight learning and cross-attention fil-
ter to acquire distinct knowledge across modalities.
After unimodal learning, the Multimodal Semantic
Learner (MsLearner) is designed to capture im-
plicit inter-modal knowledge interactions and per-
form knowledge fusion across modalities guided by
unimodal knowledge, enabling Moodle to acquire
complementary knowledge for accurate prediction
of missing triplets. We conduct extensive exper-
iments on various benchmark datasets, showing
the advantage of Moodle over the state-of-the-art
methods. The contributions of this paper are sum-
marized as follows:

• We propose to let modalities teach each other
during both unimodal knowledge extraction
and multimodal knowledge fusion to facilitate
the prediction of missing triplets.

• We designed a collaborative unimodal learner
to acquire task-relevant, distinct knowledge
from each modality, enhancing the mutual
guidance and collaboration of complementary
information across modalities.
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• We designed a multimodal semantic learner
to perform knowledge-guided multimodal
knowledge extraction and fusion, leading to
more precise and nuanced predictions in com-
plex multimodal scenarios.

• We conducted extensive experiments on three
real-world datasets to demonstrate the superi-
ority of Moodle over state-of-the-art methods,
along with insightful analyses to validate the
efficacy of Moodle.

2 Related Work

2.1 Unimodal Knowledge Graph Completion
Knowledge representation learning methods have
been widely used in the KGC task, projecting en-
tities and relations into a low-dimensional vector
space and then designing appropriate scoring func-
tions to optimize the representations. Translation-
based methods, such as TransE (Bordes et al.,
2013), TransH (Wang et al., 2014) and TransR (Lin
et al., 2015b), model relations as distance trans-
formation of source and target entities. DistMult
(Yang et al., 2015) models relations as diagonal ma-
trices and scores relational triples by computing a
bilinear product between the entity and relation em-
beddings. ComplEx (Trouillon et al., 2017) extends
DistMult by using complex-valued embeddings to
better capture asymmetric relations in KGs. ConvE
(Dettmers et al., 2018) and ConvKB (Nguyen et al.,
2018) utilize a convolutional neural network to ob-
tain the joint representation of entities and relations.
RotatE (Sun et al., 2019) represents relations as
rotations in a complex vector space, scoring rela-
tional triples based on the distance between the
rotated head entity and the tail entity. TuckER (Lin
et al., 2015a) uses tucker decomposition to model
the interaction of entities and relations. However,
all of the aforementioned methods rely solely on
structural information, which is inadequate for ad-
dressing more complex real-world scenarios. By
integrating multimodal information into the train-
ing process, MKGC enhances the representations
with external knowledge, resulting in more com-
prehensive and robust embeddings.

2.2 Multimodal Knowledge Graph
Completion

MKGC methods map multimodal information into
a unified vector space for subsequent prediction,
or optimize and predict each modality separately,
then fuse the results at the decision level. IKRL

(Xie et al., 2017) integrates visual information by
combining multiple score functions between struc-
ture and visual embeddings. TransAE (Wang et al.,
2019) utilizes the reconstruction loss of autoen-
coder to facilitate information fusion across mul-
timodals. RSME (Wang et al., 2021) selectively
filters visual information during the learning of KG
embeddings. MKGFormer (Chen et al., 2022) inte-
grates multimodal features into a unified space us-
ing the attention mechanism within the M-encoder.
Additionally, it modifies the transformer’s internal
attention mechanism to mitigate the modality het-
erogeneity and align entities and relations. AdaMF-
MAT (Zhang et al., 2024) proposes a modality
adversarial training strategy to utilize imbalanced
modality information. OTKGE (Cao et al., 2022)
employs optimal transport techniques to achieve
multimodal fusion, enabling efficient and effective
integration of information across different modal-
ities. MoSE (Zhao et al., 2022) uses modality-
specific embeddings and dynamic ensemble meth-
ods for inference by difference strategies. IMF
(Li et al., 2023) captures bilinear interactions for
jointly modeling the commonality and complemen-
tarity. VBKGC (Zhang and Zhang, 2022) utilizes
Visual-BERT to effectively extract multi-modal in-
formation and optimize the fusion of modalities.
MMRNS (Xu et al., 2022) leverages multimodal
information to improve negative sampling, leading
to more effective training of KGE models. Com-
pared with these methods, Moodle can capture both
the distinct and complementary information across
modalities.

3 Method

3.1 Preliminary

In this section, we provide the symbols and nota-
tions used in MKGC. A MKG is represented as
G = (E ,R, T ), where E is the set of entities and
R is the set of relations. T is the set of triples,
(ei, r, ej) denoting relations between entities where
ei, ej ∈ E and r ∈ R. MKGC aims at predicting
the missing triples, which can be further divided
into two types of sub-tasks: predicting the tail en-
tity for triple (ei, r, ?) and predicting the head en-
tity for (?, r, ej) where each entity e ∈ E has struc-
ture information es and associated multimodal data
(descriptions ed and images ev).
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3.2 Overall Architecture
To effectively utilize the multimodal information
and prevent modal confliction in MKGC, we pro-
pose a Modal-collaborative knowledge learning
framework, Moodle, that let modalities to teach
each other during both unimodal knowledge ex-
tracting and multimodal knowledge fusion. The
extraction of unimodal knowledge necessitates ad-
dressing three key issues: preserving modality-
specific features while enabling mutual guidance,
mitigating the impact of irrelevant information in
unimodal data, and modeling the varying amounts
of information across different modalities and sce-
narios. Additionally, multimodal knowledge fusion
poses a significant challenge due to the presence
of modality heterogeneity. Based on the aforemen-
tioned issues, Moodle proposes a noval Collabora-
tive Unimodal Learner to model the mutual guid-
ance across modalities and a Multimodal Semantic
Learner to perform modal fusion in a knowledge-
guided manner as show in Figure 2:

• The Collaborative Unimodal Learner employs
a multi-task learning framework with an en-
semble weighted learner to model the guid-
ance and collaboration among modalities. Ad-
ditionally, it utilizes a cross-attention filter to
explicitly leverage textual and structural infor-
mation to guide the image modality, helping
to mitigate the issue of irrelevant information
in images.

• The Multimodal Semantic Learner achieves
multimodal fusion, after which the fused rep-
resentation, along with the unimodal features,
is optimized through contrastive learning to
enhance the capture of fine-grained semantic
information. In this process, guided by uni-
modal knowledge, a sufficiently simple multi-
modal feature extractor is employed to ensure
both consistency and an adequate number of
negative samples.

3.3 Collaborative Unimodal Learner
We employ pre-trained unimodal encoders as
frozen feature extractors to obtain structural, vi-
sual, and textual embeddings. For textual data, we
utilize BERT (Devlin et al., 2019) to extract em-
beddings for each entity along with its description.
Instead of using the [CLS] token to represent the
final embedding, we use pooling, since it is hard
for the [CLS] token to capture subtle differences

in sentences that are sometimes crucial for MKGC.
For structural data, we adopt TuckER (Lin et al.,
2015a), which aggregates neighboring nodes and
relationships to generate the structural embeddings.
For visual data, we use VGG16 (Simonyan and
Zisserman, 2015), pre-trained on ImageNet, to ex-
tract visual features and generate the corresponding
visual embeddings. The formal expression for the
encoding process described above is as follows:

hs, ĥv, ht = ψ{tuck,vgg,bert}(e
s, ev, et), (1)

where es, ev, et represent the structural, visual, and
textual data of entities, hs, ĥv, ht represent their
corresponding embeddings, and ψ{tuck,vgg,bert} de-
notes the the structural, visual, and textual feature
extractor, respectively.

3.3.1 Irrelevant Information Filtering
In existing MKG, since the image data usually
comes from web crawlers or ImageNet, each entity
could be associated with multiple images that often
contain redundant irrelevant information. Hence,
we design a cross-attention filter to utilize textual
and structural information to guide the extraction
of valuable information from multiple images as
follows:

hvt = softmax

(
(htwq)(ĥ

vwk)√
dk

)
(ĥvwv), (2)

hv = [hvt |hvs ], (3)

where hvt and hvs denote text-attentioned and
structure-attentioned visual embeddings respec-
tively, and hv is the filtered visual information. hvs
is obtained similarly with hvt shown in above for-
mulation.

3.3.2 Entity-Relation Interaction
As the same entity may exhibit different semantic
characteristics across various relations, CuLearner
integrate entities and relations by Tucker decom-
position. Tucker decomposition is a method used
for higher-order tensor decomposition. It breaks
down a tensor into a core tensor and factor matrices
along each dimension, enabling efficient represen-
tation and interaction of complex data. The joint
representation of source entity and relation is as
follows:

hmir = W ×1 wr ×2 h
m
i , (4)

where m ∈ {s, v, t} could be different modals, W
is the core tensor, hmi is the entity embedding and
wr represents the relation embedding.
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Figure 2: Overview of Moodle. The left part utilizes pre-trained models to separately extract structural, visual, and
textual embeddings from the KG. The upper-right part depicts the Collaborative Unimodal Learner, which learns
task-specific unimodal representations of entities and relations under the guidance of each other. The lower-right
part illustrates the Multimodal Semantic Learner, which integrates unimodal knowledge with multimodal features to
learn discriminative semantic information.

3.3.3 Multi-task Learning
After obtaining relation-aware entity representa-
tions, CuLearner employs a multitask learning ap-
proach to model the collaboration across different
modalities. Given the presence of one-to-many rela-
tionships in KGs, we frame MKGC as a multi-label
classification problem for each modality. Each
modality corresponds to a subtask within the mul-
titask learning framework, and the model is opti-
mized using cross-entropy loss.

ymi = hmir · [hm1 , hm2 , . . . , hmk ]T, ek ∈ E , (5)

Lm = − 1

N

N∑

i=1

(ti·log(ymi )+(1−ti)·log(1−ymi )),

(6)
where ti is the label of the current triple, and ymi
is the predicted result of each modality which can
be obtained by performing dot product between
the relation-aware entity embedding and the em-
beddings of all entities. On account of the varying
impact of different modalities in different contexts,
we design a self-learning weight learner to inte-
grate the losses of each modality. The total loss for
this part can be expressed as:

LJoint = γsLs + γvLv + γtLt, (7)

where Ls,Lv,Lt denote the losses of differ-
ent modalities and γs, γv, γt are the self-learned
weights.

The CuLearner enables the modalities to guide
and complement each other, effectively preserving

their respective features and filtering the irrelevant
information. After training, unimodal knowledge
can be obtained. The trained features of the source
entity and relation for three modalities are denoted
as h̃sir, h̃vir, h̃tir, respectively. For target and other
entities, these features are denoted as h̃sj , h̃

v
j , h̃tj

and h̃sk, h̃vk, h̃tk.

3.4 Multimodal Semantic Learner

In this section, we aim to obtain multimodal rep-
resentations that capture the complex interactions
between different modalities. Many existing mul-
timodal fusion methods have achieved promising
results. However, most of them overlook the use
of task-relevant unimodal knowledge to guide the
fusion process. As a result, they often face issues
of modal conflict and information loss. To alleviate
the above issues, we propose a noval Multimodal
Semantic Learner to realize this guidance and learn
fine-grained semantic knowledge. Specificly, we
utilize contrastive learning (CL) to optimize our
task. The objective is to maximize the similarity
between the source relation-aware embeddings and
the target entity embeddings, while minimizing the
similarity with other negative samples.

3.4.1 Fine-Grained Semantic Learning

In MKGC task, a challenging issue arises when
dealing with samples that are semantically similar,
making them difficult to distinguish. Therefore,
it is necessary to learn more fine-grained features
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for prediction. This involves ensuring that seman-
tically similar entities have sufficient distance in
the vector space. To address this, we employ con-
trastive learning to extract more granular semantic
information. Specifically, we use InfoNCE loss to
optimize the representations as show in following
formulation:

Lcl = − log
e(F(ei,r,ej)−γ)/τ

e(F(ei,r,ej)−γ)/τ +
∑|N |

k=1 e
F(ei,r,ek)/τ

,

(8)
where N denotes the set of negative samples, and
τ is the temperature parameter that adjusts the rela-
tive importance of negative samples. A smaller τ
makes the loss function focus more on hard neg-
atives but also increases the risk of overfitting to
label noise. γ is the margin value which aims to
increase the score distance between the positive
and negative samples. We adopt in-batch negative
sampling, where for triples within the same batch,
the joint embeddings of head and relation are used
as queries, and all tail embeddings are used as keys.
If the triple is not in the knowledge graph, it is
considered a negative example and needs to be dis-
tinguished from positive samples. Cosine similarity
is used for the calculation of scoring function F as
follows:

F(ei, r, ej) = cos(hclir, h
cl
j ) =

hclir · hclj
∥hclir∥∥hclj ∥

, (9)

where hclir and hclj denoted the joint embedding of
entity-relation and embedding of entities respec-
tively, which will be discussed in detail in the fol-
lowing sections.

3.4.2 Multimodal Feature Extractor
To effectively learn discriminative semantic knowl-
edge, a consistent feature extractor and sufficient
negative samples during contrastive learning (CL)
are essential. SimKGC (Wang et al., 2022) utilizes
BERT (Devlin et al., 2019) to extract features and
optimizes all parameters through CL. Although
this method has a consistent feature extractor, it
requires significant memory resources, especially
with large batch sizes. This issue is exacerbated
in multimodal scenarios, as each modality necessi-
tates a separate feature extractor to be finetuned. To
address this, we design a lightweight feature extrac-
tor akin to a stacked autoencoder, consisting of an
encoder and a decoder. The encoder maps the input
features x into a lower-dimensional representation

z as follows:

z = σ(W2σ(W1x+ b1) + b2). (10)

The decoder reconstructs the input from the lower-
dimensional representation z:

hm = σ(W4σ(W3z + b3) + b4), (11)

where x is the input represents the concatenation of
features from each modality denoted as [hs|hv|ht],
z is encoded representation and hm is the recon-
structed multimodal features. W, b are the trainable
parameters and σ is the sigmoid activation func-
tion.

Although the above extraction process has strong
feature extraction capabilities, it does not account
for the specific knowledge required in the MKGC
task and the model training can easily get stuck in
a local optimum. To overcome this, we combine
the trained modal-specific features with the output
of the multimodal feature extractor as the initial
features of CL to realize the knowledge guidance.
The formulation is as follows:

hclir = hmir |(h̃sir|h̃vir|h̃tir), (12)

where hclir represents the joint embedding of entities
and relations in CL and hclj , hclk are obtained sim-
ilarly. After obtaining the aforementioned hybrid
representation, we optimize it with a large num-
ber of negative samples during contrastive learn-
ing. This process helps the model learn more fine-
grained semantic knowledge and enhances its ca-
pacity to discriminate between similar samples.

4 Experiment Setup

4.1 Datasets
In this study, we assess the performance of Moodle
on three widely recognized benchmarks: DB15K,
FB15K-237 and YAGO15K. They are derived from
MMKG (Liu et al., 2019), which is a collection of
multimodal knowledge graphs. And we adopt two
types of evaluation metrics: Mean Reciprocal Rank
(MRR) and Hits@K (K = 1, 3, 10). Key statistics
about these datasets are detailed in Table 1.

Datasets #Ent. #Rel. #Train #Valid #Test

DB15K 14,777 279 69,319 9,903 19,806
FB15K-237 14,541 237 272,115 17,535 20,466
YAGO15K 15,283 32 86,020 12,289 24,577

Table 1: Dataset Statistics

6215



Model
DB15K FB15K-237 YAGO15K

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE .256 .137 .329 .469 .279 .198 .376 .441 .161 .051 - .384
DistMult .351 .271 .393 .502 .301 .214 .370 .476 .324 .246 .372 .469
ConvE .312 .219 - .507 .312 .225 .341 .497 .267 .168 - .426
ConvKB .342 .276 .379 .460 .343 .259 .372 .514 .307 .241 .366 .454
RotatE .382 .317 .414 .508 .304 .213 .335 .491 .342 .258 367 .473
ComplEx .374 .305 .408 .505 .322 .229 .353 .511 .326 .250 .361 .471

IKRL .268 .141 .349 .491 .309 .232 - .493 .139 .048 - .317
TransAE .281 .213 .312 .412 - .199 .317 .463 .253 .184 .289 .445
RSME .297 .242 .321 .403 - .242 .344 .467 .277 .226 .309 .412
MoSE-MI .318 .252 .367 .486 .353 .268 .394 .540 .299 .223 .326 .449
MKGFormer .346 .222 .398 .506 - .256 .367 .504 301 .245 .338 .464
AdaMF-MAT .351 .253 .411 .529 .343 .241 .360 .478 .344 .262 .369 .486

Moodle .434 .374 .462 .548 .360 .266 .396 .548 .377 .303 .411 .518

Table 2: Results of various models on DB15K, FB15K-237, and YAGO15K datasets. The best results are marked
bold and the second-best results are underlined in each column.

5 Experiments Results

5.1 Overall Performance

As shown in Table 2, we can observe that:

• Moodle achieves state-of-the-art or com-
petitive performance across three widely-
recognized benchmarks for MKGC. Specif-
ically, Moodle consistently surpasses all base-
line models on three datasets, achieving im-
provements on MRR of 5.2%, 0.7% and
3.3%, respectively. These findings substan-
tiate that the incorporation of the CuLearner
and MsLearner enables Moodle to attain ex-
ceptional performance on various MKGs.

• In comparison with UML-based methods,
which may lose unimodal information, Moo-
dle exhibits superior robustness. For in-
stance, while AdaMF-MAT (Zhang et al.,
2024) achieves the second-best performance
on Hits@10, it underperforms several uni-
modal methods on Hits@1 and MRR metrics.
In contrast, Moodle maintains consistent per-
formance across all metrics.

• Compared to MSL-based methods, such as
MoSE (Zhao et al., 2022) that learns knowl-
edge from multiple modalities separately,
Moodle employs a two-stage learning frame-
work, achieving noticeable improvements, en-
abling the detection of subtle semantic differ-
ences between similar entities.

5.2 Ablation Study

To validate the effectiveness of the experimental de-
sign, we conducted ablation experiments as shown
in Table 3.

Model MRR H@1 H@3 H@10

Moodle .377 .303 .411 .518
Moodle w/o v .351 .276 .384 .482
Moodle w/o t .329 .255 .361 .473
Moodle w/o vt .320 .245 .353 .464

Moodle w/o WL .344 .275 .372 .487
Moodle w/o CAF .352 .279 .384 .494

Moodle w/o MSL .316 .241 .347 .465
Moodle w/ MSL with MS .209 .136 .242 .350
Moodle w/o MFE .197 .054 .031 .073
Moodle w/ MFE with ATT .218 .144 .242 .371

Table 3: Ablation study on the benchmark of YAGO15K

5.2.1 Role of Multimodal Information

In order to validate the supplementary enhance-
ment provided by the interaction of multimodal
information for MKGC, ablation experiments were
conducted on the YAGO15K dataset. These experi-
ments involved three settings: using only structural
information denoted as ‘w/o vt’, excluding textual
information denoted as ‘w/o t’, and excluding vi-
sual information denoted as ‘w/o v’. The results are
shown in the Table 3. We find that the absence of
textual information led to a noticeable decline, and
using only structural information showed similar
results. These findings highlight the critical role
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of multimodal information in improving MKGC
accuracy.

Figure 3: Various settings for the interaction methods
between entities and relations.

5.2.2 Effect of Collaborative Unimodal
Learner

To validate the role of the CuLearner, we conducted
ablation experiments shown in Table 3. Firstly, we
replaced the weight learner with direct addition, de-
noted as ‘w/o WL’. The results indicated a decrease
in all metrics, with Hits@10 dropping by 3.1%.
Then we removed the cross-attention filter, denoted
as ‘w/o CAF,’ and the results showed a decrease
of 2.4% in Hits@10. Additionally, we explored
various configurations for the interaction methods
between entities and relations, presented on the
Figure 3. Results indicated that Tucker decompo-
sition outperformed all other methods, surpassing
the second-highest by 2.0% in Hits@10.

5.2.3 Role of Multimodal Semantic Learner
To demonstrate the impact of the MsLearner on
results, we conducted a series of ablation experi-
ments. ‘w/o MSL’ refers to predictions using only
unimodal knowledge. ‘w/ MSL with MS’ repre-
sents conducting MSL with multimodal features
only, excluding distinct unimodal features. ‘w/o
MFE’ denotes directly concatenating unimodal fea-
tures as multimodal feature without feature ex-
traction, while ‘w/ MFE with ATT’ uses the self-
attention mechanism of Transformer for multi-
modal feature extraction.

As shown in Table 3, excluding or relying solely
on unimodal knowledge both reduces performance
due to inadequate interaction between modalities,
lacking well-initialized features and task-relevant
knowledge guidance during fusion. The results also
show a noticeable performance drop when MFE is
removed, with even Transformer-based extraction
underperforming predictions using only unimodal
knowledge. This highlights the crucial role of MFE
in Moodle.

5.3 Case Study

Here, we demonstrate how Moodle recognizes se-
mantically similar samples, thereby improving the
Hits@K metric. Figure 4 presents the different pre-
diction results of Moodle and AdaMF-MAT (Zhang
et al., 2024) on DB15K. When using MsLearner,
Moodle accurately identified “Sean_Bean” as the
most relevant result, indicating its understand-
ing of the semantic relationships and experiences
of “Sean_Bean” to infer his birthplace. In con-
trast, AdaMF-MAT replaced “Sean_Bean” with
“Sheffield_Wednesday_F.C.”, possibly because it
focused solely on literal similarity and did not grasp
semantic connections. In a similar case, Moodle
correctly predicted “Art_director”, while AdaMF-
MAT replaced it with “Audio_engineer”, possibly
influenced by the fact that “Peter_Lamont” was in-
volved in the production of several films in MKG.

Figure 4: Comparison of Moodle and AdaMF-MAT in
case study.

6 Conclusion

In this paper, we propose a Modal-collaborative
knowledge learning framework for MKGC, Moo-
dle, that enhances mutual collaboration of modal-
ities during both unimodal knowledge extraction
and multimodal knowledge fusion. Experimental
results on several benchmark datasets demonstrate
the effectiveness of our method. Additionally, we
conducted an in-depth experimental analysis to val-
idate the rationale behind our method design and
a case study to show its potential value in appli-
cations. In the future, we plan to adopt pretrained
vision-language models (VLM) to harness the idea
of modal collaboration for more diverse MKG ap-
plications, such as multimodal knowledge reason-
ing, multimodal question answering, etc.
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7 Limitations

Although Moodle shows promising results, several
limitations exist. First, the initialization of fea-
tures from different modalities is relatively simple
and does not deeply leverage the knowledge from
pre-trained models, which may limit the model’s
ability to capture richer representations. Second,
the presence of false negative samples can hinder
the model’s convergence, and no specific design
has been implemented to address this issue. Addi-
tionally, Moodle currently lacks thorough investiga-
tion into cross-modal interactions at deeper levels.
Lastly, Moodle has not been extensively tested in
diverse, real-world scenarios, which may limit its
generalizability across various domains. We plan
to solve these issues for Moodle as future work.
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A Additional Resources

A.1 Pseudo-code

The training process of Moodle includes two stages,
the first of which leverages multi-task learning to
model mutual collaboration in unimodal knowl-
edge extraction, while the second performs multi-
modal knowledge fusion guided by the unimodal
knowledge obtained in the first. The pseudo-codes
are presented in Algorithm 1 and 2, respectively.

In the first stage as shown in Algorithm 1, Moo-
dle first utilizes three unimodal encoders ψtuck,
ψvgg and ψbert to generate the entity embeddings
hs, hv, ht, during which a cross-attention filter is
integrated to filter out irrelevant information from
the visual embedding (Line 1-7). Then, Moodle
employs Tucker decomposition to produce joint
entity-relation embeddings hsir, h

v
ir, h

t
ir (Line 8).

Next, these embeddings are optimized by Ljoint

using multi-task learning (Line 9-11).
In the second stage as shown in Algorithm 2, The

three unimodal encoders ψtuck, ψvgg and ψbert are
re-employed to generate entity embeddings that are
concatenated and utilized to guide the knowledge
fusion (Line 1-5). The multimodal features are
then combined with the unimodel knowledge ob-
tained in the first stage, producing the final relation-
aware entity representation denoted as hclir (Line
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6-7). The target and negative entity representa-
tions hclj , h

cl
k are obtained similarly except without

the entity-relation interaction (Line 8). Last, these
representations within a batch are used for con-
trastive learning, optimizing both unimodal and
multimodal feature representations guided by the
unimodal knowledge (Line 9-10).

Algorithm 1 Unimodal Knowledge Extraction
Input: Multimodel Knowledge Graph G
Output: Trained Model M1

1: Build structure encoder ψtuck by training
TuckER model on G in Equation (1)

2: Build visual encoder ψvgg and textual encoder
ψbert using VGG16 and BERT-base

3: Initialize all entity embeddings with the out-
puts of the above encoders

4: while not converge do
5: Sample a batch of triples from G
6: for each head entity ei, relation r in the

batch do
7: Obtain the structural, visual, textual em-

beddings hs, hv, ht of entity ei
8: Compute the relation-aware entity embed-

dings hsir, h
v
ir, h

t
ir by Equation (5)

9: Obtain all entity embeddings in entity set
hsk, h

v
k, h

t
k

10: Compute the loss Ls,Lv,Lt and Ljoint

with unimodal scorers via Equation (6),
(7) and (8)

11: Update model parameters of M1

12: end for
13: end while
14: Return M1

A.2 Baselines
To evaluate the performance of Moodle, we com-
pare with both unimodal and multimodal baselines.

The unimodal baselines include:

• TransE (Bordes et al., 2013) models relations
as translations between entities and uses an
energy function to score relational triples.

• DistMult (Yang et al., 2015) models rela-
tions as diagonal matrices and scores rela-
tional triples by computing a bilinear product
between entity and relation embeddings.

• ConvE (Dettmers et al., 2018) applies a convo-
lutional neural network to 2D reshaped entity
and relation embeddings.

Algorithm 2 Multimodal Knowledge Fusion
Input: MKG G, Trained Model M1

Output: Trained Model M2

1: while not converge do
2: Sample a batch of entities from G
3: for each head entity ei, relation r in the

batch do
4: Reacquire hs, hv, ht of entity ei by ψtuck,

ψvgg, ψbert

5: Obtain trained relation-aware entity em-
beddings h̃sir, h̃

v
ir, h̃

t
ir by Equation (5)

6: Obtain the multimodal feature hmir by
Equation (11) and (12)

7: Obtain hclir based on hmir , h̃sir, h̃
v
ir, h̃

t
ir by

Equation (13)
8: Obtain hclj and hclk similar to hclir
9: Compute the loss Lcl by Equation (9) and

(10)
10: Update model parameters of M2

11: end for
12: end while
13: Return M2

• ConvKB (Nguyen et al., 2018) captures the
complex interactions between entities and re-
lations through the sliding window of convo-
lutional filters to score relational triples.

• RotatE (Sun et al., 2019) represents relations
as rotations in a complex vector space, scor-
ing relational triples based on the distance
between the rotated head entity and tail entity.

• ComplEx (Trouillon et al., 2017) extends
DistMult to the complex vector space, allow-
ing it to capture asymmetric relations by uti-
lizing the Hermitian dot product for scoring
relational triples.

The multimodal baselines include:

• IKRL (Xie et al., 2017) integrates visual in-
formation from images to enhance the repre-
sentation of entities.

• TransAE (Wang et al., 2019) utilizes the re-
construction loss of autoencoder to facilitate
information fusion across multimodals.

• RSME (Wang et al., 2021) automatically en-
hance or filter the influence of visual context
during the representation learning by design-
ing a Relation Sensitive Multi-modal Embed-
ding model.
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• MoSE (Zhao et al., 2022) learns modality-
split relation embeddings for each modality
and makes predictions then exploits various
ensemble methods to combine the predictions
in the inference phase.

• AdaMF-MAT (Zhang et al., 2024) proposes a
modality-adversarial training strategy to gen-
erate synthetic multimodal embeddings and
construct adversarial examples.

A.3 Datasets

DB15K, derived from DBPedia, comprises approx-
imately 15,000 entities, each paired with images
sourced from web searches, thereby offering valu-
able visual context for tasks based on multimodal
knowledge graphs (MKGs). The dataset encom-
passes 279 distinct relation types and spans a wide
array of domains, including individuals, organi-
zations, and locations. Similarly, YAGO15K is
constructed from the YAGO database and contains
around 15,000 entities, each accompanied by im-
ages collected from online sources. This dataset
features 32 relation types and covers various do-
mains such as countries, films, and sports. FB15k-
237 represents a curated subset of the Freebase
database, containing roughly 15,000 entities and
237 relation types. This dataset addresses the is-
sue of data leakage existing in the original FB15k,
making it a more robust and reliable resource for
tasks like link prediction in MKGs.

A.4 Evaluation metrics

We adopt two types of evaluation metrics: Mean
Reciprocal Rank (MRR) and Hits@K (K = 1, 3,
10). MRR is calculated as:

MRR =
1

2|Ttest|

|Ttest|∑

i=1

(
1

rhi
+

1

rti
), (13)

where Ttest represents the test dataset and |Ttest|
denotes the number of triples in the test dataset.
The rhi and rti refer to the position at which the target
entity (either the head or tail) is found in the ranked
list generated by the KGC model. MRR ranges
from 0 to 1, with higher values indicating better
performance. Hits@K measures the proportion of
triples for which the target entity appears in the top
K positions of the ranked list. Hits@K is calculated
as:

Hits@K =
1

2|Ttest|

|Ttest|∑

i=1

I(rhi ≤ K) + I(rti ≤ K),

(14)

where I denotes the indicate function. If the
condition is true, the function value is 1, otherwise
0. K takes the value 1, 3 or 10. All metrics are
computed by averaging over two directions: head
entity prediction and tail entity prediction.

A.5 Implementation Details

We conducted all experiments on Intel(R) Xeon(R)
CPU E5-2673 v4 CPU and a single NVIDIA
GeForce RTX3060-12G GPU, using Ubuntu 9.4.0,
Python 3.8.10 and PyTorch 1.11.0. Model parame-
ters were initialized using Xavier initialization and
optimized with the Adam optimizer. The hyperpa-
rameters were set as follows: The batch sizes are
tuned in {64, 128, 256, 512} and {500, 1000, 2000,
3000, 5000} for CuLearner and MsLearner, respec-
tively. For each modality, we set the embedding
dim of entities and relations to 256, with a learning
rate of 5e-3 and a dropout rate of 0.3. The learning
rate of MsLearner is tuned in {1e-5, 2e-5, 2e-4,
2e-3}. The hidden dimension of multimodal fea-
ture extractor is tuned in {125, 256, 512, 768}. We
follow the filtered setting in (Bordes et al., 2013)
to evaluate MKGC performances.

A.6 Parameter Analysis

We empirically verify the imapct of the batch size
in Collaborative Unimodal Learner (CuLearner)
and Multimodal Semantic Learner (MsLearner) as
well as the hidden dimension of multimodal feature
extractor (MFE) on MKGC performances through
a series of experiments. The results are shown in
Figure 5(a), (b), (c).

Firstly, we explore the impact of the batch size
of the Collaborative Unimodal Learner on model
performance, setting it to 32, 64, 128, 256, 512, and
1024. As shown in Figure 5(a), with the growth of
the batch size, the model performance initially im-
proves but subsequently declines. When the batch
size of the CuLearner exceeds 256, the model per-
formance drops significantly. This may be due to
limited training data, where an excessively large
batch size can lead to local optimum, preventing the
model from learning generalized semantic knowl-
edge.
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(a) Batch size of CuLearner (b) Batch size of MsLearner (c) Hidden dim of MFE

Figure 5: Performance analysis of Moodle w.r.t. different hyper-parameters.

Then, we investigate the impact of the batch size
of Multimodal Semantic Learner (also the number
of negative samples) on model performance, setting
it to 500, 1000, 2000, 3000 and 5000. The exper-
imental results are shown in Figure 5(b), where it
is observed that the performance of Moodle im-
proves with the increase of the number of negative
samples, and stabilizes after reaching 3000.

Finally, we examine the impact of the hidden di-
mension in the multimodal feature extractor (MFE).
The hidden dimension was varied across 128, 256,
512, 768, and 1024. The results, illustrated in Fig-
ure 5(c), reveal that the hidden layer dimensionality
in the MFE model has a relatively minor impact
on overall performance. While increasing the di-
mensionality leads to slight improvements in the
Hits@1 and MRR metrics, other performance indi-
cators remain largely unaffected. This suggests that
beyond a certain point, further increasing the di-
mensionality offers limited benefits to the model’s
effectiveness.

A.7 Visualization Study

Figure 6: Comparison of Moodle with and without Mul-
timodal Semantic Learner in visualization study.

To visually demonstrate the enhanced discrim-
inative power of Moodle with MsLearner, we
projected the entity vectors from test datasets of
FB15K-237 into a two-dimensional space using
PCA, as illustrated in Figure 6. The left part
of Figure 6 shows embeddings obtained with-

out MsLearner, while the right illustrates embed-
dings obtained with MsLearner. With the same
scale applied, it is clear that embeddings without
MsLearner tend to cluster closely together, mak-
ing differentiation challenging. In contrast, em-
beddings trained with MsLearner display a more
dispersed pattern, spreading from the center to the
periphery, which indicates improved discriminative
ability.
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