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Abstract

Scaling inference compute in large language
models (LLMs) through repeated sampling
consistently increases the coverage (fraction of
problems solved) as the number of samples in-
creases. We conjecture that this observed im-
provement is partially due to the answer dis-
tribution of standard evaluation benchmarks,
which is skewed towards a relatively small set
of common answers. To test this conjecture,
we define a baseline that enumerates answers
according to their prevalence in the training set.
Experiments spanning two domains – mathe-
matical reasoning and factual knowledge – re-
veal that this baseline outperforms repeated
model sampling for some LLMs, while the
coverage for others is on par with that of a mix-
ture strategy that obtains k answers by using
only 10 model samples and similarly guess-
ing the remaining k − 10 attempts via enu-
meration. Our baseline enables a more accu-
rate measurement of how much repeated sam-
pling improves coverage in such settings be-
yond prompt-agnostic guessing.

1 Introduction

Scaling training compute – larger models, larger
datasets, and longer training runs – has been a
main driver of progress in LLMs (Kaplan et al.,
2020; Hoffmann et al., 2024). Recent works high-
lighted the benefit of additionally scaling inference
compute: sampling longer sequences, e.g., chain-
out-thought sampling (Wei et al., 2022; Zelikman
et al., 2022b), using increasingly longer input con-
texts (Levy et al., 2024), and repeatedly sampling
model responses (Brown et al., 2024; Hassid et al.,
2024). In particular, repeated sampling increases
the fraction of problems solved by at least one of
k attempts (known as coverage or pass@k) as k
grows, as demonstrated across a variety of tasks

∗ Equal Contribution, order determined at random.
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Figure 1: Standard coverage curves (top; see Fig. 3
in Brown et al. (2024)) vs normalized coverage curves
(bottom), for the MATH dataset. Normalized coverage
is obtained by re-scaling the improvements relative to
our TRAINCOUNTS baseline. We see that despite all
Pythia models (blue) showing non-negligible coverage
gains, these are actually worse than simple answer enu-
meration (below the y = 0 dashed red line).

such as code generation and mathematical reason-
ing. For verifiable tasks, these gains can be used to
post-train models (Hosseini et al., 2024).

In this work, we argue that measuring cover-
age alone overlooks the fact that some commonly
used datasets have a closed, virtually enumerable
answer set – possibly making them easy-to-guess
given enough attempts. This raises a fundamental
question: could the observed coverage gains be
partially attributed to lucky guesses, rather than un-
covering correct reasoning? This observation has

5994



implications not only for model evaluation, but also
for post-training, when utilizing model-sampled an-
swers for self-improvement. This process relies on
selecting chains with verified final answers out of
multiple samples, bearing the risk of inadvertently
rewarding solutions that are “right for the wrong
reasons”, i.e., incorrect reasoning chains ending in
a correct final answer.

To quantify how much repeated sampling im-
proves beyond guessing, we establish simple base-
lines and report coverage gains as their relative
improvement over these baselines. Specifically, we
compare three approaches: (1) MODELANSWERS:
Where k candidate answers are obtained by sam-
pling k model responses. (2) TRAINCOUNTS: A
baseline where k candidate answers are obtained
by enumerating the k most frequent answers in the
training set. (3) MIXTURE(M): A mixture strategy,
where the first M answers are obtained by MOD-
ELANSWERS, and the remaining k −M answers
are obtained using TRAINCOUNTS.

We experiment with mathematical reasoning
(MATH; Hendrycks et al., 2021), where solutions
include reasoning chains, and factual knowledge
(EntityQuestions; Sciavolino et al., 2021), which
includes no chains. We find that:
• Normalizing the coverage improvements com-

pared to the baseline reveals that some models
actually perform worse than question-agnostic
enumeration (see Figure 1);

• Even for the models with high normalized cov-
erage gains, we observe that MIXTURE(M) with
small values of M achieves coverage nearly as
good as MODELANSWERS (at a small fraction
of the cost), suggesting that models either “know”
the correct answer, or cannot do much better than
informed guessing.
Our findings suggest that some commonly used

datasets become degenerate when considering
large-scale repeated sampling. While inference
scaling seems like a promising approach for im-
proving performance, we suggest carefully select-
ing datasets, models, and baselines when assessing
this method, and interpreting results with caution.

2 Repeated Sampling

Recent efforts have scaled inference compute by
performing repeated sampling with thousands of
samples, focusing on tasks where candidate solu-
tions are evaluated as either right or wrong. Re-
peated sampling is usually evaluated via (1) cover-

age, i.e., the fraction of problems that can be solved
correctly by at least one of the sampled model an-
swers, and (2) precision, i.e., the ability to identify
the correct answer from a set of sampled answers.
For tasks with automatic verification (e.g., unit tests
for coding) an increase in coverage can translate to
model improvements (Hosseini et al., 2024).

Recent work found striking coverage gains by
scaling the number of sampled answers. Brown
et al. (2024) showed that while the Pythia-160M
model solves only 0.27% of the problems in MATH
with a single attempt, the coverage using k =
10, 000 attempts reaches as far as 57%. Similarly,
Hassid et al. (2024) showed that for code genera-
tion, repeated use of smaller models yields consis-
tent improvements, with gains of up to 15% given
automatic verification. A possible interpretation
of these results is that even very small models are
more capable than previously assumed, such that
repeated sampling combined with a strong verifier
may unlock this seemingly “hidden potential.”

3 Baselines for Repeated Sampling

We focus on coverage gains due to repeated model
sampling, and argue that their proper interpreta-
tion requires comparing them against the gains of
simple “guessing” strategies. We thus compare the
standard notion of coverage (§3.1) to two simple
baselines: answer enumeration based on answer
counts in the training data (§3.2) and a mixture
strategy that combines answer enumeration with
few model samples (§3.3).

3.1 MODELANSWERS: Repeated sampling
MODELANSWERS is the standard repeated model
sampling. Here, coverage (pass@k) is defined as
the expected number of problems that are solved
by at least one model answer, when sampling k
answers. Following prior work (Chen et al., 2021),
we estimate pass@k for each problem i by sam-
pling N = 1000 samples and using the unbiased

estimator 1 − (N−Ci
k )
(Nk )

, where Ci is the number of

correct samples for problem i.

3.2 TRAINCOUNTS: Answer Enumeration
Our naïve guessing strategy, TRAINCOUNTS, relies
on obtaining the answer counts in the training data
of the dataset under consideration. Here, pass@k
is the fraction of problems1 for which the correct

1While the standard pass@k is a random variable depend-
ing on the sampled answers, pass@k for our guessing strat-
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answer is among the top-k most frequent answers
in the training set. As this strategy relies on the
training-set answer distribution, we refer to it as “in-
formed enumeration”. Note that TRAINCOUNTS is
an input-agnostic strategy, which predicts the same
k answers, regardless of the tested input prompt.

We stress that we do not suggest using TRAIN-
COUNTS as a prediction method, but solely use it
to critically examine repeated model sampling.

3.3 MIXTURE: First Sample, Then Guess

We additionally consider a mixture strategy that
combines both model samples and enumerated an-
swers. Specifically, for MIXTURE(M), we obtain
M answers by sampling from the model, while
the remaining k −M answers are obtained using
the most frequent answers in the training set (as
in §3.2). We estimate pass@k as the fraction of
problems for which the correct answer is among
the M randomly selected model answers or the top
k −M answers in the training set (averaged over
T random draws from a given set of 1000 sampled
model answers). We use M values of 1, 5, and 10.

4 Experimental Setup

Datasets. We focus on two domains: mathemati-
cal reasoning and factual knowledge.
• MATH: A dataset of challenging math word

problems (Hendrycks et al., 2021). We use the
same 128 randomly selected test problems used
in Brown et al. (2024). We do not experiment
with the widely used GSM8K dataset (Cobbe
et al., 2021) since as few as ~10 samples are
sufficient to achieve high coverage (Brown et al.,
2024), making it unsuitable for the inference scal-
ing setup.

• Entity Questions (EQ): A QA dataset (Sci-
avolino et al., 2021) with diverse questions about
various entities. We sample 128 questions, while
maintaining a balanced proportion of relations.

Models. For MATH, we use the data from Brown
et al. (2024), containing three model families:
Llama (AI@Meta, 2024), Gemma (Gemma Team
et al., 2024b) and Pythia (Biderman et al., 2023).
For EQ, we use models from the Gemma 2
(Gemma Team et al., 2024a) and Gemini (Gem-
ini Team et al., 2023) model families. See the full
list of models in Appendix A.1.

egy is a deterministic quantity depending only on the (fixed)
guesses and the ground truth labels.

Obtaining Training Set Counts. In MATH, we
obtain answer counts using the entire train split. In
EQ, when guessing an answer to a question from a
relation r, we select an answer according to counts
obtained only from the train set of r. See answer
statistics for MATH in Table 2 in the appendix.

Answer Verification. Measuring coverage re-
quires verifying candidate answers for correctness.
For MATH, we apply the evaluation protocol of
Brown et al. (2024), and for EQ, we use an F1-
based evaluation protocol (details in appendix A.2).

5 Results

Baselines Can Outperform Thousands of
Model Samples. To compare coverage gains ob-
tained from model sampling to guessing-based
gains, we calculate a normalized notion of pass@k
that quantifies the added gain of using MODELAN-
SWERS compared to TRAINCOUNTS:

Coverage(MODELANSWERS) - Coverage(TRAINCOUNTS)

1− Coverage(TRAINCOUNTS)

The results for MATH are shown in Figure 1. The
results for EQ show similar trends, and are detailed
in Figure 5 in the appendix. While the unnormal-
ized curves demonstrate significant increases in
coverage across all models, explicitly quantifying
the gains over an enumeration baseline shows no-
tably smaller gains, with some models (e.g. all
Pythia models) performing worse than the base-
line.

This highlights that repeated-sampling results
should be interpreted with caution, especially for
datasets that were not originally designed for sce-
narios of thousands of solution attempts.

Are Few Samples All You Need? We specu-
late that models either “know” the correct answer
or cannot do much better than guessing. To test
this, we compare MODELANSWERS with MIX-
TURE(M). Results for two models on both MATH
and EQ are shown in Figure 2, and for additional
models in Figure 6 in the appendix. All results are
inline with our hypothesis: while for MATH we ob-
serve a considerable gap between TRAINCOUNTS

and MODELANSWERS, MIXTURE(M) closes most
of this gap, even for small values of M . E.g., for
Llama-3-70B, the pass@k values at k = 1000 are
97%, 91% and 73% for MODELANSWERS, MIX-
TURE(M) with M = 10, and TRAINCOUNTS re-
spectively. We conclude that sampling as few as 10
model answers and proceeding with guesses yields
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Figure 2: Coverage curves for model sampling and guessing-based answers for MATH (Llama-3-70B and Gemma-
7B models) and EQ (Gemini-1.5-Pro and Gemma 2-9b models). We evaluate MIXTURE(M) for M = 1, 5, 10 and
compare MIXTURE(M) with TRAINCOUNTS and MODELANSWERS.

Question: Josh and Mike live 13 miles apart. Yesterday Josh
started to ride his bicycle toward Mike’s house. A little later
Mike started to ride his bicycle toward Josh’s house. When
they met, Josh had ridden for twice the length of time as Mike
and at four-fifths of Mike’s rate. How many miles had Mike
ridden when they met?
CoT: If Josh had ridden for twice the length of time as Mike,
then Josh had ridden for a total of 2 · 5 = 10 miles. If Mike
had ridden for x miles, then Mike had ridden for a total of
4x miles. Subtracting, we have 10 = 4x. Therefore, x = 5.
Final Answer: The final answer is 5 miles. I hope it is correct.

Table 1: A Pythia-12B response with a correct final an-
swer but a nonsensical CoT. We observe this behavior
for 9/10 inspected examples; see §E.

similar gains as k model samples, though at a sig-
nificantly lower compute budget. These results are
consistent across all k values.

The results for EQ show a different trend: for
large-enough k values, TRAINCOUNTS even out-
performs MODELANSWERS, with MIXTURE(M)
outperforming both TRAINCOUNTS and MODE-
LANSWERS. These results are due to the fact that
some relations in EQ are highly challenging for the
tested models, while having a rather small set of
possible answers and a large fraction of the test set
answers present in the training set – all making an-
swer enumeration a strong baseline. MIXTURE(M)
results per relation are shown in Appendix D.4 .

Together, our results show that the overwhelm-
ing benefit of repeated sampling is materialized
within the first few samples, casting doubts on
whether scaling the number of samples by several
orders of magnitude is necessary in these settings.

6 Analysis and Discussion

Weaker than baseline means useless CoTs?
We hypothesize that for models who do worse than
our simple guessing baseline, reasoning chains that

end in a correct answer may be incorrect when
closely inspected (Turpin et al., 2024). To test this,
we inspect solutions from the best model that under-
performs our baseline (Pythia 12B). We sample 10
CoTs that have a correct final answer and find that
in 9/10 cases, the reasoning chains are indeed in-
correct, while the answer is correct; see Table 1.
This highlights the potential risk of common self-
improvement pipelines (Zelikman et al., 2022a; Liu
et al., 2023), that reward the entire CoT based only
on the correctness of the final verdict.

Answer enumeration vs i.i.d sampling. Our
random baseline differs from MODELANSWERS

in that it uses enumeration over a fixed set of can-
didate solutions, rather than i.i.d sampling from
a fixed distribution. Hence, pass@k for repeated
sampling typically relies on k′ � k unique an-
swers, while for TRAINCOUNTS, it uses k unique
values. This design decision of our programmatic
baselines aims to shed light on the usefulness of
inference scaling, and to point at some of its short-
comings. Inference scaling approaches that would
attempt to maximize answer diversity may outper-
form our baselines with higher margins.

7 Conclusions

We provide a critical perspective on the coverage
gains obtained by repeatedly sampling model an-
swers, showing that for weaker models, the gains
are often worse than simple guessing baselines,
and that for stronger models, much of the gains
can be obtained with as few as 10 model samples.
Properly accounting for the actual benefit of re-
peated sampling is an important and timely objec-
tive, given both the potential negative implications
of rewarding incorrect CoTs and the computational
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costs associated with sampling thousands of model
responses. Our findings shed light on how com-
monly used datasets can become degenerate when
large-scale sampling is involved, reiterating the im-
portance of using challenging benchmarks, where
success by chance is unlikely.

8 Related Work

Inference Scaling. Utilizing additional compu-
tational resources during inference is carried out
across different axis, such as generating more to-
kens before converging into a final answer (Wei
et al., 2022; Kojima et al., 2022; Zelikman et al.,
2022a), including increasingly longer input con-
texts (Shaham et al., 2022; Gemini Team et al.,
2023; Bertsch et al., 2024; Levy et al., 2024), or by
sampling few model answers and selecting the most
consistent one (Wang et al., 2023). Recently, there
has been growing interest in large-scale model sam-
pling - i.e., sampling orders of thousands of model
answers. Hassid et al. (2024) showed that for code
generation, repeated use of smaller models yields
consistent improvements, with gains of up to 15%
given automatic verification. Brown et al. (2024)
tested repeated sampling for code generation and
mathematical reasoning, by measuring the cover-
age – fraction of problems solved by any attempt
- for different quantities of model samples, show-
ing that the coverage scales log-linearly with the
number of samples. Notably, they manually veri-
fied 105 chains of thought of 105 correct Llama-3-
8B-Instruct predictions on GSM8K (Cobbe et al.,
2021), finding that over 90% of the chains are valid.
We show that this is not the case for correct Pythia
12B predictions on MATH, suggesting that the ob-
served coverage gains are more due to “lucky guess-
ing” than a result of correct but unlikely answers.

Self-Improvement. A common approach for im-
proving the reasoning abilities of LLMs during
post-training is self-improvement, which relies on
updating a model based on solutions generated by
the model itself (Zelikman et al., 2022a; Liu et al.,
2023; Gulcehre et al., 2023). In self-improvement,
several answers (CoT and final answer) are sam-
pled from the model, while only “correct” gener-
ations are rewarded. A candidate answer can be
determined “correct” using automatic verification
(when applicable, e.g. unit tests in coding prob-
lems) or oracle labels (comparing the final answer
to a ground truth answer). Since this recipe only
considers the final answer as supervision, it may

end up inadvertently rewarding answers that are
“right for the wrong reasons” if such answers are
generated by the model to begin with. Our ap-
proach provides simple ways to measure whether
this behavior is likely by comparing the coverage
improvements with those obtained by simple an-
swer enumeration. Recent work has also consid-
ered employing intermediate rewards (Ni et al.,
2022), providing a finer-grained signal for interme-
diate steps within the CoT.

Random Baselines. Reporting the results of sim-
ple baselines has an important role in machine
learning, helping to contextualize performance
(Lipton and Steinhardt, 2019), diagnose dataset is-
sues (Zheng et al., 2024) and reveal possible short-
cut solutions (Geirhos et al., 2020). Such baselines
include random baselines, majority (i.e., always
predicting the most prevalent class), and simple
heuristics. Random baselines are cleanly defined
in classification tasks as the expected accuracy of
guessing labels uniformly at random. Beyond clas-
sification tasks (e.g. natural language generation),
however, the strategy itself is not clearly defined.
The types of tasks we consider in this work can be
approximately viewed as classification tasks, in the
sense that the set of possible final answers is ap-
proximately enumerable. In the context of LLMs,
(Yauney and Mimno, 2024) recently proposed a
stronger random baseline that accounts for scenar-
ios of reusing the evaluation data.
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9 Limitations

Our work critically examines the utility of infer-
ence scaling via repeated sampling. We show that
when re-scaling the improvements relative to the
performance of simple answer enumeration base-
lines, the gains are less pronounced, with some
smaller models even performing worse than the
baseline.

In our study, we used tasks that have overall
structured outputs and demonstrated high perfor-
mance of answer-counts-based baseline. For tasks
that have free-form or longer outputs, this baseline
is not directly applicable. However, we believe that
most of our observations would still apply. Con-
sider, for example, the question “Which land mam-
mal has the longest tail?” from the NaturalQues-
tions dataset (Kwiatkowski et al., 2019). While the
correct answer, giraffe, is not prevalent in the train-
ing set, one would still be able to guess it correctly,
given enough attempts (e.g., by enumerating the set
of known land mammals). Extending our guessing
baselines to such datasets – possibly drawing inspi-
ration from how humans make informed guesses –
is an interesting direction for future exploration.

From a technical perspective, our experiments
examine inference scaling by taking up to k =
1000 samples (rather than 10, 000, as done by
Brown et al. (2024)). We do so due to efficiency
considerations and stress that this does not affect
our conclusions.
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Dustin Herbison, Elisa Bandy, Emma Wang, Eric
Noland, Erica Moreira, Evan Senter, Evgenii El-
tyshev, Francesco Visin, Gabriel Rasskin, Gary
Wei, Glenn Cameron, Gus Martins, Hadi Hashemi,
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A Experimental Setup

A.1 Models
For MATH, we use the data from Brown et al.
(2024), spanning three model families:

• Llama 3: Llama-3-8B, Llama-3-8B-Instruct,
Llama-3-70B-Instruct (AI@Meta, 2024).

• Gemma: Gemma-2B, Gemma-7B
(Gemma Team et al., 2024b).

• Pythia: Pythia-70M through Pythia-12B
(eight models in total) (Biderman et al., 2023).

For EQ, we use models from the Gemma 2 and
Gemini model families:

• Gemini: Gemini-Flash, Gemini-1.5-Pro
(Gemini Team et al., 2023).

• Gemma 2: Gemma 2-2b-it, Gemma-2-9b-it
(Gemma Team et al., 2024a)2.

A.2 Answer Verification
Measuring the coverage requires verifying the cor-
rectness of each candidate answer, whether model-
sampled or guess-based. For MATH, we use an
oracle verifier that checks if the candidate answer
is mathematically equivalent to the correct answer,
as in Brown et al. (2024). For EQ, as there is no
oracle verifier available, we calculate a token-level
F1 score and consider an answer as correct if the F1
score exceeds a threshold of 0.5, as in Yona et al.
(2024). This verifier may miss some cases (e.g. due
to rephrasing and granularity mismatches). How-
ever, manual inspection shows that this is a reliable
metric.

A.3 Sampling from Entity Questions
To derive answers for EntityQuestions, we use a
similar procedure to the one used in Brown et al.
(2024). We sample using a temperature of 0.7,
taking 1000 predictions for each question. See
Table 3 for the full details.

B Data Statistics

C Random Baseline

As mentioned in §3, our random baseline is slightly
informed, in the sense that it relies on the statis-
tics of the train split of the dataset. To under-

2We use the HuggingFace API for obtaining predictions.
https://huggingface.co/

Instruction Prompt Example Few-Shot
Demonstration

Answer the given ques-
tion. Provide your answer
directly, without any
prefixes.

Here are some examples:

Question: What position
does Diego Rivero play?

Answer: midfielder

Figure 3: Prompt used for sampling answers for En-
tityQuestions. To generate an answer for a target test
question, we append to the instructions (left) five ran-
domly selected training examples from the same rela-
tion (an example is shown on the right).

2 1 3 6 5 4 8 0 12 10
9 7 16 15 20 11 1

2
60 13 24

18 -1 30 14 17 -2 36 25 32 28
120 50 21 1

3
40 1

4
100 19 90 27

2
3

35 -3 3
4

26 72 22 45 -6 -4
150 23 64 31 48 3

2
80 29 38 3

5

56 49 96 84 144 57 41 200 5
2

1
6

1
8

81 4
3

108 42 39 52 34
√
3 47

4
5

-5 70 54 63 59 33
√
2 - 1

2
400

98 75 51 61 58 37 140 73 112 -8

Table 2: The 100 most frequent answers in the train-
ing set of MATH dataset. Among the top-k frequent
training set answers, the fraction of answers that are in-
teger solutions is 85% (for k = 100) and 48.9% (for
k = 1000).

stand how beneficial this is compared to a com-
pletely uninformed baseline, we compare TRAIN-
COUNTS to an even simpler enumeration strategy
(UNIFORMINTEGERS), that simply chooses as k
guesses the first k positive integer values. We com-
pare the coverage curves of the two strategies in
Figure 4.

D Additional Results

D.1 Normalized Coverage

Figure 5 shows the normalized coverage for the
Entity Questions dataset.

D.2 Additional MIXTURE(M) Results

Figure 6 shows the coverage curves for the four
best-performing models (in terms of normalized
coverage, see 5) and the coverage curves for all
four models used for EQ predictions. Add detailed
in §5, MIXTURE(M) obtains similar coverage rates
as MODELANSWERS.

D.3 Detailed MIXTURE(M) Results on
MATH

Table 7 presents detailed pass@k values for the
MATH dataset.
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Figure 4: Our guessing strategy (TRAINCOUNTS)
vs simply guessing positive integers
(UNIFORMINTEGERS) on MATH. We see that
starting at approximately k = 100, TRAINCOUNTS ob-
tains superior gains compared to UNIFORMINTEGERS,
as it begins guessing some common non-integer an-
swers, or negative integers (see Table 2 for qualitative
examples).

D.4 Breakdown of the Entity Questions
MIXTURE(M) Results

For Entity Questions, Figure 2 shows the MIX-
TURE(M) results for 128 examples sampled from
the Entity Questions test set, spanning questions
from all of the 24 relations in the dataset. The re-
lations in EQ, however, are of different levels of
difficulty. Specifically, when considering TRAIN-
COUNTS, the number of unique train answers vary
between relations, ranging from 52 unique answers
only (P413) to 9608 (P40). As such, the number
of test answers that are included in the training
set varies widely. We note that ranking relations
according to the number of unique training set an-
swers does not correspond exactly to their ranking
according to train-test answer overlap, though the
two are strongly connected.

To obtain a clearer image of TRAINCOUNTS’s
performance for EQ, we select 6 relations: two re-
lations that have the smaller set of training answers
(P413, P495), two with the largest set (P26, P40)
and two the are ranked in between (P159, P170).3

As shown in Figure 8, results for EQ vary, de-
pending on the tested relation. For the relations
with the smallest set of unique training answers,
TRAINCOUNTS performs better than MODELAN-
SWERS, while for the relations with the largest set
of unique training answers, the opposite is true. For

3The full set of relations can be found here:
https://github.com/princeton-nlp/EntityQuestions

all relations considered, however, MIXTURE(M)
usually outperforms MODELANSWERS, even for
a small M . These results are inline with those
presented in Section 5.

E CoT Analysis

Table 3 shows example CoT for Pythia-12B. For 9
out of the 10 inspected examples, the CoT contains
an error, despite the fact that the final answer is
correct.
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Figure 5: Normalized coverage curves for Entity Questions: We compare standard coverage curves for the
models under consideration (LHS) with normalized coverage curves obtained after re-scaling the improvements
relative to our TRAINCOUNTS baseline (RHS). While all models demonstrate improved coverage when as k grows,
our baseline reveals that for all models, these gains are outperformed by simple answer enumeration as k becomes
large.
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Figure 6: Coverage curves for model sampling and guessing-based answers. Top row: Coverage curves on MATH
for the Llama-3 and Gemma models. Bottom row: Coverage curves on EQ for the Gemini and Gemma models.
For both MATH and EQ, we calculate MIXTURE(M) for M values of 1, 5 and 10, and compare MIXTURE(M)
with TRAINCOUNTS and MODELANSWERS.
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pass@k % of % of
MODELANSWERS MIXTURE(M) coverage gains test-time compute

Llama-3-8B-Instruct
k = 100 0.83 0.83 100% 10%
k = 1000 0.94 0.87 92.5% 1%
Llama-3-70B-Instruct
k = 100 0.93 0.90 96% 10%
k = 1000 0.97 0.91 93% 1%

Figure 7: Comparison of MODELANSWERS vs MIXTURE(M) for Llama-3 models on the MATH dataset. We
see that combining 10 sampled answers with informed enumeration recovers a significant portion of the coverage
gains using only a fraction of the compute budget.
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Figure 8: Coverage curves for model sampling and guessing-based answers, divided by relations. P413 and P495
have the smallest set of unique training answers, P26, P40 have the largest set, and P159, P170 are in between. We
calculate MIXTURE(M) for M values of 1, 5 and 10, and compare MIXTURE(M) with the TRAINCOUNTS and
MODELANSWERS.
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Question Sampled CoT

The sum of the two 5-digit numbers AMC10 and AMC12 is 123422. What is A+M + C?

We can write the sum as
123422=12345+12345+12346+12347+12348+12349+123410+123411+123412+1235.
But we also know that
12345+12345+12346+12347+12348+12349=123450.
Therefore,
123422=123450+1235.
We can write this as
123422=123450+1235=123450+123411+123412.
Thus,
A+M+C=123450+123411+123412.
Final Answer: The final answer is 1729. I hope it is correct.

Solve for a:
8−1

4−1
− a−1 = 1.

We have

aˆ2 + 4a+ 8 = 0\ ⇒ aˆ2 + \boxed{4a+ 8} = 0\ ⇒ \boxed{aˆ2 + \boxed{4a+ 8} = 0}.

Now, we have two factors of a, so we can factor the quadratic:
aˆ2 + \boxed{4a+ 8} = 0\ ⇒ (a+ 2)(a+ \boxed{3}) = 0.

Now, if a = −2, then we have a double root. If a = − 3 , then we have a double root, so a = −2 is the only solution.
Final Answer: The final answer is −2 . I hope it is correct.

A ball travels on a parabolic path in which the height (in feet) is given by the expression −25t2 + 75t+ 24,
where t is the time after launch. At what time is the height of the ball at its maximum?

The maximum height occurs when the ball is at its highest point. Therefore, we need to solve the equation

-25t^2+75t+24=0\\text{ for }t.
Solving the quadratic equation for t, we get

t=\frac{4}{5}\left(-1\pm\sqrt{1-\frac{100}{25}}\right).
Since t is the time after launch, it is positive. We can use the arithmetic mean-geometric mean inequality to obtain

\frac{4}{5}\left(-1+\sqrt{1-\frac{100}{25}}\right)\ge\frac{4}{5}\left(-1-\sqrt{1-\frac{100}{25}}\right),
so

\boxed{t\ge\frac{3}{2}}.

Final Answer: The final answer is
3

2
. I hope it is correct.

If j and k are inversely proportional and j = 42 when k = 56, what is the value of j when k = 32?
Express your answer as a decimal rounded to the nearest tenth.

We have that j = 42 when k = 56, so j = 42 when k = 56 , which means that
j = 42 \Rightarrow \frac{j}{k} = 42 \Rightarrow \boxed{42} = \frac{j}{k}.
We also have that j = 42 when k = 32, which means that
j = 42 \Rightarrow \frac{j}{k} = 42 \Rightarrow \boxed{42} = \frac{j}{k}.
Therefore, we have that
42 = \frac{j}{k} \Rightarrow \boxed{j = \boxed{42\cdot k}}

Final Answer: The final answer is
j

k
=

42 · 56
32

. I hope it is correct.

Evaluate
⌈√

27
⌉
−

⌊√
26

⌋
. We have that

⌈√
27

⌉
−

⌊√
26

⌋
=

⌈√
27

⌉
−

⌊√
27

⌋
= 1 .

Final Answer: The final answer is 1. I hope it is correct.

The sum of three numbers a, b and c is 88.
If we decrease a by 5, we get N . If we increase b by 5, we get N . If we multiply c by 5, we get N .
What is the value of N?

Let N = a+ b+ c. Then, we have
\begin{align*}
N-5a&=b+c\\
N-5b&=a+c\\
N-5c&=a+b\\
\end{align*}
Summing the above equations, we obtain

b+c+a=N-5(a+b+c).
Adding 5(a+ b+ c) on both sides, we have

N=5(a+b+c)+b+c+a.
Therefore, N = 40 .
Final Answer: The final answer is 40. I hope it is correct.

Suppose a
b
= 3

5
, b
c
= 15

6
, and c

d
= 6.

What is the value of a
d

? Express your answer in simplest form.

The first equation tells us that 3b = 5a. The second equation tells us that 3c = 5d.
Therefore, 3b = 5a and 3c = 5d, which implies that b = 5a and c = 5d. We can further simplify this to

\frac{3b}{5a}=\frac{3}{5}c=\frac{3}{5}\cdot5d=\frac{15}6\cdot6=\boxed{9}.
Final Answer: The final answer is 9. I hope it is correct.

Josh and Mike live 13 miles apart.
Yesterday Josh started to ride his bicycle toward Mike’s house.
A little later Mike started to ride his bicycle toward Josh’s house.
When they met, Josh had ridden for twice the length of time as Mike and at four-fifths of Mike’s rate.
How many miles had Mike ridden when they met?

If Josh had ridden for twice the length of time as Mike, then Josh had ridden for a total of 2 · 5 = 10 miles.
If Mike had ridden for x miles, then Mike had ridden for a total of 4x miles.
Subtracting, we have 10 = 4x. Therefore, x = 5.
Final Answer: The final answer is 5 miles. I hope it is correct.

At her track meet, Alice ran at a speed of 9 m/s for 12 seconds.
How many meters did she run?

We have that v = 9 m/s, and we are given that the time is 12 s. We can therefore use the formula for distance:
\begin{align*}
\text{Distance} &= \text{Speed} \times \text{Time}\\
\end{align*}
We then have that
\begin{align*}
\text{Distance} &= 9 \times \text{Time}\\
&=9\times 12\\
&=108\text{ m}
\end{align*}
Final Answer: The final answer is 108 m. I hope it is correct.

The graph of the equation y = ax2 + bx− 6 is completely below the x-axis.
If a2 = 49, what is the largest possible integral value of b?

For the equation to be completely below the x-axis, we need y ≤ −6, or ax2 + bx− 6 ≤ −6.
Since a2 = 49, a > 0, so a2 − 6a+ b ≥ 0⇒ b ≤ 6a⇒ b ≤ 12 .
Final Answer: The final answer is 12 . I hope it is correct.

Table 3: Examples for CoTs from the Pythia model which we manually verified. All but one (the penultimate row)
are wrong, while the final answer was deemed right by the verifier.
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