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Abstract

Backdoor attack is a severe threat to the trust-
worthiness of DNN-based language models.
In this paper, we first extend the definition of
memorization of language models from sample-
wise to more fine-grained sentence element-
wise (e.g., word, phrase, structure, and style),
and then point out that language model back-
doors are a type of element-wise memoriza-
tion. Through further analysis, we find that
the strength of such memorization is positively
correlated to the frequency of duplicated ele-
ments in the training dataset. In conclusion,
duplicated sentence elements are necessary for
successful backdoor attacks. Based on this, we
propose a data-centric defense. We first de-
tect trigger candidates in training data by find-
ing memorizable elements, i.e., duplicated ele-
ments, and then confirm real triggers by testing
if the candidates can activate backdoor behav-
iors (i.e., malicious elements). Results show
that our method outperforms state-of-the-art de-
fenses in defending against different types of
NLP backdoors.

1 Introduction

Backdoor attacks pose a significant threat to
the trustworthiness of DNN-based language mod-
els (Gu et al., 2019; Chen et al., 2021; Kurita et al.,
2020; Dai et al., 2019; Wang et al., 2022c; Tao et al.,
2024), particularly in security-critical applications
such as spam detection (Kurita et al., 2020) and
toxic text detection (Davidson et al., 2017). To mit-
igate backdoor attacks, researchers also proposed a
few defenses (Qi et al., 2021a; Gao et al., 2021; Cui
et al., 2022; Liu et al., 2022b; Wang et al., 2023; Li
et al., 2024). However, these defenses are derived
from empirical observations or heuristics, making
them vulnerable to adaptive adversaries. Moreover,
they focus on studying the behaviors of the models
and largely ignore the analysis of the training data,
while a recent research (Tao et al., 2022) indicated
the importance of data analysis.
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Figure 1: Sample-wise and element-wise memorization.

During studying the dynamics of model training,
researchers found that memorization of training
data is highly related to malicious behaviors of lan-
guage models (Carlini et al., 2022, 2019; Jagielski
et al., 2022; Carlini et al., 2021), such as vulner-
abilities to membership inference (Shokri et al.,
2017) and training data extraction attacks (Car-
lini et al., 2022). Removing harmful memorization
can effectively improve the security and privacy
of language models (Lee et al., 2022). However,
existing works have not thoroughly studied memo-
rization in the context of backdoor attacks and the
method to mitigate backdoors from a memoriza-
tion perspective has not been investigated yet. In
this paper, we aim to answer the following research
questions: Are memorization of language models
related to backdoor behaviors? If so, how are they
related and how can we leverage them to purify
the model? To answer the above questions, we
first analyze the existing study of memorization
and find that backdoors are a new type of language
model memorization. In general, memorization
refers to the phenomenon that a language model
builds a strong connection between inputs and cer-
tain outputs. Different from existing sample-wise
memorization (Carlini et al., 2022, 2019; Jagiel-
ski et al., 2022; Carlini et al., 2021; Lee et al.,
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2022), backdoors are element-wise memorization.
As shown in Figure 1, existing memorization stud-
ies whether a sample has been memorized by the
language model or not by testing whether we can
confidently determine if the sample is in the train-
ing data or not (i.e., membership inference attack).
For instance, we show an example that a training
sample containing the private information such as
address and name are extracted by querying pre-
fix (Carlini et al., 2021). This is sample-wise mem-
orization. Backdoors are element-wise memoriza-
tion, as the language model connects part of the
input sample (i.e., trigger such as word “tf" in Fig-
ure 1) that is shared by poisoning training samples
with a certain output (i.e., target label). Namely,
the language model memorizes more fine-grained
elements in a sentence rather than the sample. As
sample-wise memorization is mainly caused by du-
plication of using the sample in training (Lee et al.,
2022), element-wise memorization is caused by
duplications of sentence elements in training data
across different samples. To show this, we con-
firm that the upper bound of generalization error
on backdoor samples is negatively correlated to
the duplication frequency of backdoor trigger ele-
ments. It demonstrates that element duplication is
an important cause of the backdoor phenomenon.

Based on our analysis, we propose a data-centric
defense against poisoning-based backdoor attacks.
Different from existing defense analyzing inter-
nals of the language model (e.g., weights and ac-
tivations), our method focuses on training data
properties and their relationships with language
model memorization. Following our discussion,
we first detect backdoor trigger candidates by find-
ing (highly) duplicated elements (e.g., words, sen-
tences, structures) in the training data. That is,
we analyze if certain elements are memorizable.
Then, we validate if the candidate is a trigger by
checking if it is malicious, i.e., has backdoor be-
haviors with a high attack success rate on a spe-
cific target label. We implement our novel data-
centric defense method BMC (Bad Memorization
Cleanser), and evaluate it on three datasets (i.e.,
SST-2 (Socher et al., 2013), HSOL (Davidson
et al., 2017) and AG’s News (Zhang et al., 2015)),
against four different attacks (i.e., BadNets (Gu
et al., 2019), AddSent (Dai et al., 2019), Hidden
Killer (Qi et al., 2021c), and Style attack (Qi et al.,
2021b)). and use four popular model architectures
(i.e., BERT (Kenton and Toutanova, 2019), Distill-
BERT (Sanh et al., 2019), RoBERTa (Liu et al.,

2019b), and ALBERT (Lan et al., 2019)). Results
demonstrate that our method can reduce the aver-
age attack success rate by 8.34 times while decreas-
ing the benign accuracy by only 0.85%, outper-
forming the state-of-the-art defenses.

Our contributions are summarized as follows: ①

We establish the connection between backdoor be-
haviors and the memorization of language model.
We define the memorization of deep neural net-
works on the input element and show that the NLP
backdoor is the element-wise language model mem-
orization. ② We find the memorization on an input
element is caused by the element duplication in the
training data, and demonstrate that the upper bound
of the generalization error on the backdoor task is
negatively correlated to the duplication number of
trigger pattern. ③ We propose a new line for back-
door defense, i.e., data-centric defense. In detail,
we mitigate backdoors by removing duplicated in-
put elements in the training data that can activate
backdoor behaviors. ④ Empirical results on differ-
ent datasets demonstrate our method achieves state-
of-the-art performance when defending against dif-
ferent types of backdoor attacks on NLP models.

2 Related Work

Backdoor Attacks & Defenses. NLP models are
vulnerable to backdoors (Gu et al., 2019; Chen
et al., 2021; Kurita et al., 2020; Dai et al., 2019; Qi
et al., 2021b; Pan et al., 2022; Zeng et al., 2024).
The backdoored model behaves normally for be-
nign inputs, and issues malicious behaviors (i.e.,
predicting a certain target label) when the input
is stamped with the backdoor trigger (e.g., a spe-
cific word, phrase, clause, or structure). The grow-
ing concern of backdoor attacks in NLP models
has led to the development of various defense ap-
proaches (Chen and Dai, 2021; Cui et al., 2022;
Gao et al., 2021; Yang et al., 2021b; Liu et al.,
2022a; Shen et al., 2022; Azizi et al., 2021) to pre-
vent them. Due to the page limitation, we put more
details of the related backdoor attacks & defenses
in Appendix J.
Memorization of Training Data. A set of
works (Carlini et al., 2022; Jagielski et al., 2022;
Lee et al., 2022; Stoehr et al., 2024; Biderman
et al., 2024) define memorization in language mod-
els as the phenomenon that the model can be at-
tacked by privacy attacks such as membership infer-
ence (Shokri et al., 2017) and training data extrac-
tion (Carlini et al., 2022). Feldman et al. (Feldman
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and Zhang, 2020) formally define memorization of
the machine learning models on a specific training
sample. However, these works have not defined
memorization in the context of backdoor attacks.
There are other research on the memorization of
machine learning models. Arpit et al. (2017) in-
vestigate the role of memorization in the learning
dynamics of DNN by analyzing the effect of fitting
on random labels. Manoj and Blum (2021) discuss
the capacity of the model, and find the vulnerabil-
ity of a learning problem to a backdoor attack is
caused by the excess memory capacity.
Elements of Syntax. Grammar consists of mor-
phology, phonology, semantics, and syntax in lin-
guistics. Among them, syntax includes parts of
a sentence (e.g., subject, predicate, object, direct
object), phrases (i.e., a group of words without a
subject or predicate), clauses (i.e., a group of words
with a subject and verb), sentence structure, etc.

3 Problem Formulation

The goal and capability of the attacker and defender
are listed as follows:
Attacker’s Goal & Capability. We focus on the
data-poisoning backdoor attacks, which is the most
popular type of backdoor attack due to its practi-
cality (Gu et al., 2019; Dai et al., 2019; Chen et al.,
2017; Cui et al., 2022). The attacker aims to gen-
erate a backdoor model M which has following
behavior via data poisoning: M(x) = y,M(x̃) =
yt, where x is a clean sample, x̃ is a backdoor sam-
ple. y is a correct label, and yt ̸= y is the target
label of the backdoor. In data-poisoning backdoor
attacks, the attacker can only poison the training
data, but can not access the training process.
Defender’s Goal & Capability. We focus on
the training-time defense where the defender aims
to train clean models under a poisoned training
dataset. Similar to existing works (Cui et al., 2022;
Wang et al., 2022a; Zhu et al., 2022), the defender
has full control of the training process but can not
control the (original) training datasets. Note that
training-time defense is one of the most standard
threat models in the backdoor related researches, as
various published papers focusing on it (Cui et al.,
2022; Wang et al., 2022a; Li et al., 2021b; Huang
et al., 2022; Zhu et al., 2022; Hayase et al., 2021;
Jin et al., 2023; Yang et al., 2024). It is especially
useful in the scenario that users adopt third-party
collected samples, which is practical. Defending
the attacks in other threat models (e.g., the attacks
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Figure 2: An example of the instantialized syntax tree
with elements at different levels.

that require the attackers controlling or modifying
the training process (Qi et al., 2021d; Zhou et al.,
2023; Yang et al., 2021a; Salem et al., 2022; Zhang
et al., 2023; Xu et al., 2022; Shen et al., 2021; Mei
et al., 2023)) are outside the scope of this paper,
and it will be our future work. As most of the
existing data-poisoning-based NLP backdoor at-
tacks focus on the classification tasks (Chen et al.,
2021; Kurita et al., 2020; Dai et al., 2019; Qi et al.,
2021b; Pan et al., 2022), the main scope of this pa-
per is also on the classification based NLP model.
Meanwhile, we also discuss the extension to gener-
ative tasks(e.g., question answering) and generative
models (e.g., LLaMA (Touvron et al., 2023) and
Alpaca (Taori et al., 2023)) in Appendix K.

4 Memorization and Backdoor

4.1 Backdoor as Memorization
Different from researches on the sample-wise mem-
orization (Carlini et al., 2022, 2019; Jagielski et al.,
2022; Carlini et al., 2021; Lee et al., 2022), we
focus on fine-grained element-wise memorization
and show that backdoor behaviors (i.e., samples
containing a specific trigger predicated as the tar-
get label) are a type of element-wise memorization.
We first introduce a few concepts and then define
element-wise memorization in language models.

Definition 1. (Instantialized Syntax Tree) The in-
stantialized syntax tree T i of a text i is the combi-
nation of its syntax tree, concrete words, and the
correspondence of the two. An element e in the
instantialized syntax tree is a node in the tree repre-
senting words, phrases, clauses, and structures. We
denote the relation as e ∈ x.

The instantialized syntax tree not only contains
structural information but also includes the con-
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crete words used. The mapping between an input
sample and its instantialized syntax tree is unique.
Inserting backdoor triggers into the text will be
reflected on the change of the instantialized syn-
tax tree. Figure 2 demonstrates an example of the
instantialized syntax tree. In this example, the in-
put is I like Hawaii, which is a wonderful
island. Symbols TOP, S, NP, VP, SBAR, etc., rep-
resent the structural elements of the input (Chen
and Manning, 2014). As shown in Figure 2, the
elements in the instantialized syntax tree lie in dif-
ferent levels (i.e., word level, sentence level, and
structure level). The definition of writing style, ac-
cording to Sebranek et al. (Sebranek et al., 2006),
is the combination of word choice and structure.
As a result, the instantialized syntax tree used in
our implementation also contains style information.
Similarly, the backdoor triggers can be injected as
the elements in different levels (i.e., a word (Gu
et al., 2019), a phrase/clause/sentence (Dai et al.,
2019), a syntactic structure (Qi et al., 2021c), or
a style (Qi et al., 2021c)) in the instantialized syn-
tax tree. We acknowledge there are some existing
backdoor attacks having input-aware trigger (Yang
et al., 2021a; Qi et al., 2021d; Zhou et al., 2023)
that are hard to be represent by a specific element in
the instantialized syntax tree (different inputs have
different triggers in these attacks). However, all of
them requires the attacker to control and modify the
training process of the victim models, otherwise,
they will only have low attack success rates. The
reason for this requirement is that such input-aware
triggers are abstract in the semantic perspective,
so that the victim models can not memorize them
by the normal training process. Lee et al. (2021)
demonstrate that the cause of the sample-wise mem-
orization is the duplication of training sample. To
measure the duplication, we first define duplication
frequency on element of instantialized syntax tree.

Definition 2. (Duplication Frequency) Given an
element of instantialized syntax tree e and Ne, the
number of samples containing e, the duplication
frequency Q(e) in a dataset D is Ne

∥D∥ , where ∥D∥
is the number of all samples in D.

Existing works (Carlini et al., 2022; Jagielski
et al., 2022; Lee et al., 2022) show the duplica-
tion of training samples will cause the samples be
vulnerable to membership attacks or training data
extraction attacks and demonstrate the root cause
of sample-wise memorization is the duplication of
training samples. We find the duplication on ele-

ments is the cause of element-wise memorization,
e.g., the backdoor related memorization on trigger
element. To show this, we first define x ⊕ e as
the process of adding the content corresponding
to element e into the sample x, such as adding a
word/clause into a sentence, or changing the struc-
ture/style of a sentence. Based on this, we define
the memorization on backdoor trigger element.
Definition 3. (β-Memorization on Trigger Ele-
ment) A model M has β-memorization on trig-
ger element et and target label yt if ∀x,∃et ̸∈
x ∧M(x) ̸= yt,P (M(x⊕ et)=yt) ≥ β.

Here β is used to measure the strength of the
backdoor related memorization. Intuitively, β-
memorization on trigger element et and target label
yt means that the model will flip the output to a
constant value yt with probability larger than β if
the element et is contained in the instantialized syn-
tax tree of the input sample. In backdoor attack,
given a trigger function G, backdoor samples can
be formalized as x̃ = G(x), where function G is a
transformation in different spaces, such as pasting
a sentence or transforming to a specific syntactic
structure. Based on Definition 3 and the property
of the backdoor attacks, for a model M and a back-
door trigger G, the model M learns the backdoor
with trigger G is equivalent to M has memoriza-
tion on element e that corresponds to backdoor
trigger G (i.e., x ∈ G(X ) ⇔ e ∈ x). We refer
to the element that corresponds to the backdoor
triggers as the trigger element.

To facilitate further discussion and analysis, we
first introduce the generalization error of memo-
rization. The generalization error of memoriza-
tion on an element e is the expected average loss
value on the test samples (i.e., samples not in-
cluded in the training data) whose instantialized
syntax tree contain e. Formally, it can be writ-
ten as E (ℓ(M(x), c)), where e ∈ x, M is the
model, ℓ is the loss function, and c is the target
output. The strength of the attack will be higher
with the reduction of the generalization error of the
backdoor-related memorization.

Theorem 1. Given a model M, the upper
bound of the generalization error of memoriza-
tion on backdoor trigger element et is negatively
correlated to the duplication frequency of et.
Namely, when Q(et) is higher, the upper bound
of E (ℓ(M(x), yt)) (where et ∈ x) will be lower.

The proof for Theorem 1 can be found in Ap-
pendix A. Based on Theorem 1, we know that in
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successful backdoor attacks, the trigger will be a
duplicated element in the training data. For a high
attack success rate, the duplication frequency of
the trigger element will be large. We also have
empirical results (see Appendix B) to confirm our
analysis. The empirical results confirm our analysis
that successful backdoor attacks duplicate trigger
elements in the training data. Thus, we can identify
potential trigger candidates by searching the ele-
ments of instantialized syntax tree that have high
duplication frequency.

5 Method

5.1 Overview
In this section, we introduce our data-centric back-
door defense. Different from existing training-time
backdoor defenses (Cui et al., 2022; Tran et al.,
2018; Hayase et al., 2021) that focus on the in-
ternal behaviors and neuron activations of back-
doored models, our method is data-centric based
on the analysis on the backdoor related memoriza-
tion, which is more robust. Based on our analysis
and empirical results, trigger candidates have dupli-
cated elements with high duplication frequency in
the training data. Notice that not all candidates are
real triggers, as they do not contribute to malicious
behaviors. For example, the common word the
may not significantly affect the prediction results
despite its high frequency. After we obtained the
trigger candidates, we identify real triggers by veri-
fying if any element can cause backdoor behavior
(i.e., outputting a target label with high probabil-
ity when adding the element to the samples that
do not contain it). Compared to directly inspect-
ing all elements in the training data, our method
significantly reduces the computational complex-
ity by selecting a set of trigger element candidates
first. We use Q(e) to represent the duplication fre-
quency of a specific input element e. Algorithm 1
demonstrate the detailed backdoor-related memo-
rization removal method. Given a training dataset
D, we first train a model using the original dataset
in line 3. In line 5, we detect the highly duplicated
elements in the training data and obtain the can-
didates of poisoning samples. The candidates are
elements that have high duplication frequencies.
More details about trigger candidate detection can
be found in § 5.2. We verify if the detected candi-
dates are learned backdoor triggers or not in lines
7-10. Details about trigger candidate verification
can be found in § 5.3. We purify the dataset iter-

Algorithm 1 Bad Memorization Cleanser
Input: Training Data: D
Output: Model: M

1: function TRAINING(D)
2: ▷ Standard Training
3: M = StandardTraining(D)
4: ▷ Training Data Duplication Detection
5: P = CandidateSelection(D)
6: ▷ Trigger Verification and Removal
7: for duplication results (e,D′) in P do
8: D̃ = D −D′

9: if ASR(M(D̃ ⊕ e)) ≥ θ then
10: D = D −D′

11: ▷ Retraining on Purified Data
12: M = StandardTraining(D)
13: return M

atively on all selected candidate elements. In line
12, we retrain the data on purified training data and
finally get the defended model.

5.2 STEP 1: Trigger Candidate Selection

NLP models are vulnerable to different kinds of
backdoor triggers (Chen et al., 2021; Dai et al.,
2019; Qi et al., 2021c). To defend various types
of triggers, we conduct duplication frequency
computing on different levels, i.e., word level,
phrase/clause/sentence level, structure level, and
style level. The computing process is highly effi-
cient with the help of algorithms and data struc-
tures such as Hash Table (Cormen et al., 2009)
and suffix array (Manber and Myers, 1993). For
each level, we first calculate the duplication fre-
quency of all elements Q(e), we consider the ele-
ment whose duplication frequency Q(e) is higher
than a threshold value λ (i.e., Q(e) > λ) as trigger
candidates. The selection of λ and our method’s
sensitivity to it are discussed in § 6.4. We use func-
tion CandidateSelection() to denote the process
of detecting candidates of triggers. It will detect
the candidates in different levels, e.g., word trigger,
structure trigger, sentence trigger, and style trigger.
Word-level Duplication. For calculating the du-
plication frequency for all words in the training
data, we exploit Hash Table (Cormen et al., 2009)
to achieve efficient computation when facing large-
scale datasets.
Phrase-/Clause-/Sentence-level Duplication. For
phrase-, clause-, and sentence-level duplication, we
ignore the sentences that do not have duplication
in the training data because we focus on the sen-
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tences that have high duplication frequency. The
direct way to find the duplications is by search-
ing and matching the subcomponent of all samples.
However, it is computationally unaffordable. Fol-
lowing Lee et al. (Lee et al., 2022), we speed up
duplication detection by using suffix array (Manber
and Myers, 1993). We then record the duplication
frequencies of all duplicated sentences.
Structure-level Duplication. For structure level
duplication, we first use existing constituency
parser (Zhang et al., 2021) to get the syntactic struc-
ture of all samples. It exploits deep neural networks
and achieves state-of-the-art parsing performance.
After extracting the syntactic structure information
of all samples, we then store the duplication fre-
quencies of all different syntactic structures.
Style-level Duplication. We extract the style of
all samples and record style duplication frequen-
cies of different styles by using the style classifier
proposed by Krishna et al. (Krishna et al., 2020).

5.3 STEP 2: Trigger Verification
As we discussed in § 4.1, backdoor triggers are du-
plicated in the training data. Thus, we can use the
duplication frequency of specific elements to ob-
tain the candidates of backdoor triggers. However,
part of the duplicated elements is not correlated to
the backdoor-related memorization. In detail, some
duplicated elements are caused by the duplication
of the training samples, which is corresponding
to the sample-wise memorization. There are also
some benign elements duplicated in the training
data which are not learned triggers. For exam-
ple, some common words such as I, is, and are,
appear in different samples, and they are not back-
door triggers. Therefore, we need to distinguish
the backdoor-related elements and others after we
select the candidates of trigger elements. One of
the properties of the memorization of the backdoor
trigger is the backdoor trigger element will flip the
prediction of the samples to a target label. For-
tunately, non-trigger elements do not have such
properties and they just have a slight influence on
the model’s predictions. Therefore, we can distin-
guish backdoor trigger elements and other elements
by inspecting if adding the elements on the samples
does not contain them can activate the backdoor
behaviors of the model. In detail, for each detected
candidate element, we first obtained the potential
memorized subset D′, where the samples in it all
contain the detected element e (Line 7 in Algo-
rithm 1). We then get the subset that is free of the

element e, i.e., D̃ (Line 8). All samples in D̃ does
not have the element e. We then use the candidate
element to simulate the backdoor attack and ver-
ify if the candidate element is the learned backdoor
trigger (Line 9). ASR(M(D̃⊕e)) means the attack
success rate on the target label when we use candi-
date e as the simulated trigger. We enumerate all
labels as the target label and select the highest ASR
as its value. If the candidate element can achieve
a simulated attack success rate (ASR) larger than
a threshold value θ on some target label, then we
label the content as a backdoor trigger, and we
remove the samples containing the element (Line
10). The selection of the ASR threshold value θ
and BMC’s sensitivity to it can be found in § 6.4.
For word-level elements and phrase-, clause-, and
sentence-level candidate elements, we add them at
the random position of the original text (we also
discuss the case of the position-conditional triggers
in Appendix H). For Syntactic level elements, we
use SCPN (Iyyer et al., 2018) to change the syntac-
tic structure of the original sample to the candidate
trigger syntactic structure. We validate the style
trigger by transferring the original sample to the
candidate trigger style via Krishna et al. (Krishna
et al., 2020) and checking the simulated ASR.

6 Evaluation

In this section, we first introduce the setup of the ex-
periments (§ 6.1). We then study the effectiveness
(§ 6.2) as well as the generalizability and robustness
(§ 6.3) of BMC. We also conduct ablation studies
and investigate the sensitivity to hyper-parameters
in § 6.4. The discussion about the efficiency and
adaptive attacks can be found in Appendix G and
Appendix I, respectively.

6.1 Setup
Datasets. Three datasets are used: SST-2 (Socher
et al., 2013), HSOL (Davidson et al., 2017) and
AG’s News (Zhang et al., 2015).
Attacks. We use word level attack BadNets (Gu
et al., 2019)1, sentence level attack AddSent (Dai
et al., 2019), structure level attack Hidden
Killer (Qi et al., 2021c), and style level attack Qi
et al. (Qi et al., 2021b). These attacks are rep-
resentative and widely-used in NLP backdoor re-
searches (Cui et al., 2022; Yang et al., 2021b).

1 BadNets is originally designed for attacking image data.
Here, we use the text version of it proposed in Kurita
et al. (2020).
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Table 1: Comparison to existing defenses.

Dataset Attack Oracle Undefended ONION STRIP RAP BKI CUBE BMC (Ours)

BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR

SST-2

BadNets 90.76% 10.56% 91.15% 100.00% 88.41% 28.86% 90.05% 99.28% 86.88% 90.42% 89.62% 15.82% 90.25% 15.61% 90.72% 11.94%
AddSent 90.85% 12.48% 90.92% 100.00% 91.18% 47.46% 91.48% 29.77% 91.06% 28.62% 90.54% 33.69% 90.77% 25.14% 90.99% 12.88%

Hidden Killer 90.31% 29.87% 90.24% 89.76% 90.02% 88.94% 89.79% 90.46% 86.36% 93.18% 88.94% 88.21% 91.38% 48.92% 90.10% 35.66%
Style 90.01% 28.33% 90.48% 79.95% 86.31% 80.82% 87.53% 81.66% 87.06% 85.58% 88.71% 81.87% 89.72% 25.83% 90.17% 21.85%

HSOL

BadNets 94.14% 7.13% 95.64% 100.00% 94.26% 46.28% 95.18% 99.64% 94.76% 100.00% 96.11% 100.00% 94.84% 100.00% 90.22% 19.20%
AddSent 94.78% 6.94% 95.72% 100.00% 94.96% 100.00% 95.24% 100.00% 53.37% 100.00% 95.76% 100.00% 94.93% 5.38% 94.92% 6.27%

Hidden Killer 94.35% 7.85% 95.21% 97.08% 94.53% 96.11% 95.05% 98.38% 94.21% 99.53% 95.21% 98.48% 94.36% 10.19% 94.18% 8.62%
Style 94.98% 4.11% 94.37% 71.55% 93.65% 69.94% 93.51% 70.86% 94.18% 70.02% 94.04% 70.87% 94.75% 6.68% 94.23% 5.77%

AG’s News

BadNets 94.17% 1.08% 94.35% 100.00% 92.96% 97.26% 93.63% 100.00% 94.01% 100.00% 93.90% 93.79% 94.05% 0.89% 94.41% 1.40%
AddSent 94.23% 0.85% 94.62% 100.00% 93.75% 100.00% 94.65% 100.00% 93.98% 100.00% 94.15% 100.00% 94.18% 0.78% 93.93% 0.91%

Hidden Killer 90.96% 5.12% 90.88% 98.12% 89.94% 91.77% 89.83% 99.18% 91.15% 98.92% 91.01% 97.15% 88.11% 5.63% 90.13% 5.17%
Style 91.33% 5.88% 89.96% 84.47% 89.87% 78.51% 90.85% 80.77% 90.13% 77.54% 90.09% 78.81% 87.29% 5.05% 88.76% 4.84%

Table 2: Robustness on different poisoning rate.

Poisoning Rate Undefended ONION STRIP RAP BKI CUBE BMC

BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR

0.85% 91.97% 89.47% 88.96% 14.85% 91.04% 11.22% 90.55% 15.07% 90.88% 14.19% 90.28% 18.70% 90.81% 10.53%
1.00% 91.85% 95.04% 90.04% 21.83% 90.60% 72.60% 90.82% 72.60% 90.66% 13.92% 90.37% 25.80% 90.05% 10.13%
5.00% 91.05% 100.00% 89.73% 33.69% 90.22% 96.68% 87.54% 93.72% 90.71% 13.13% 88.46% 11.99% 91.62% 11.71%
10.00% 91.15% 100.00% 88.41% 28.86% 90.05% 99.28% 86.88% 90.42% 89.62% 15.82% 90.25% 15.61% 90.72% 11.94%
20.00% 90.44% 100.00% 90.54% 45.66% 85.72% 97.17% 85.33% 90.64% 89.51% 19.54% 87.80% 16.39% 90.13% 12.16%

Baselines. Five existing NLP backdoor defenses
are used as the baselines including training-time
defenses (i.e., BKI (Chen and Dai, 2021), and
CUBE (Cui et al., 2022)) and inference-time de-
fenses (i.e., ONION (Qi et al., 2021a), RAP (Yang
et al., 2021b) and STRIP (Gao et al., 2021)). We
use OpenBackdoor (Cui et al., 2022) to reproduce
baselines and use the default hyperparameters in
the original papers.
Evaluation Metrics. We use two measurement
metrics, benign accuracy (BA) and attack success
rate (ASR), which is a common practice for back-
door related researches (Gu et al., 2019; Qi et al.,
2021c). BA is calculated as the number of correctly
classified benign samples over the total number of
benign samples. It measures the model’s perfor-
mance on its benign task. ASR is computed as the
number of samples that successfully achieve attack
divided by the total number of backdoor samples.

6.2 Effectiveness

In this section, we evaluate the effectiveness of
BMC. We first compare the defense performance
of our method and the existing NLP backdoor de-
fense methods. To fully understand the perfor-
mance, we also show the injected triggers and the
detected triggers in different settings, as well as
more detailed detection accuracy in Appendix C.
To measure the effectiveness, we collect the BA and
ASR of the models generated by different defense
methods. To help understand the effectiveness of

the defenses, we also report the BA and ASR of
undefended models and oracle models (the mod-
els trained on perfectly purified datasets where all
backdoor samples are removed and all benign sam-
ples are remained.). In Table 1, we show the BA
and ASR of different methods as well as the de-
tailed settings including datasets and attacks. The
model architecture used here is BERT (Kenton and
Toutanova, 2019). The average BA and ASR for
undefended models are 92.74% and 93.41%, while
that for our method are 91.89% and 11.20%. As
can be observed, our method effectively reduce the
ASR of different backdoor attacks, while keeping
high BA. The average BA and ASR is even close
to that of oracle models, meaning our method is
highly effective.

6.3 Generalizability and Robustness

In this section, we study the robustness and gen-
eralizability of our method. we first show BMC’s
results on different models. The robustness un-
der different poisoning rate is also included. If not
specified, the dataset, model, and attack used in this
section are SST-2 (Socher et al., 2013), BERT (Ken-
ton and Toutanova, 2019) and text version of Bad-
Nets (Gu et al., 2019) proposed in Kurita et al.
(2020), respectively. We also discuss the robust-
ness to different triggers and different label settings
of poisoning in the Appendix D and Appendix F.
Different Model Architectures. To evaluate
BMC’s generalizability to different models, we
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Table 3: Effects of trigger candidate selection and the influence of λ.

Dataset Number of
all contents

Number of trigger candidates Defense Performance

λ=0.25% λ=0.50% λ=1.00%
λ=0.25% λ=0.50% λ=1.00%

BA ASR BA ASR BA ASR

SST-2 15104 717 368 190 90.65% 10.73% 90.72% 11.94% 90.78% 11.86%
HSOL 16917 590 302 161 90.35% 17.36% 90.22% 19.20% 90.29% 17.99%

AG’s News 167389 1736 842 350 94.44% 1.51% 94.41% 1.40% 94.39% 1.65%

Table 4: Influence of simu-
lated ASR threshold.

θ BA ASR

80% 90.85% 12.11%
85% 90.72% 11.94%
90% 90.70% 11.74%

also report the BA and ASR under different
model architectures in Table 6 and Table 7. Four
commonly used NLP model architectures (i.e.,
BERT (Kenton and Toutanova, 2019), Distill-
BERT (Sanh et al., 2019), RoBERTa (Liu et al.,
2019b) and ALBERT (Lan et al., 2019)) are used.
Results show that our method achieves good per-
formance on all models, demonstrating the gener-
alizability to different model architectures.
Different Poisoning Rates. Poisoning rate (i.e.,
the number of poisoning samples over the number
of all training samples) is an important setting for
the backdoor attacks. To investigate the robustness
against different poisoning rates, we show the BA
and ASR of the undefended models and that of the
models generated by BMC under different poison-
ing rates (from 0.85% to 20%). The results can be
found in Table 2. As can be observed, our method
achieve high BA and low ASR under all different
poisoning rates. Results demonstrate BMC is ro-
bust to different poisoning rates when defending
against NLP backdoors. Also, our method achieves
the lowest ASR in all different poisoning rates.

6.4 Ablation Study

In this section, we conduct ablation studies for
BMC. we study the effects of the trigger candi-
dates searching component, and also evaluate the
effects of the threshold values for duplication fre-
quency, i.e., λ. We also study the influence on the
ASR threshold θ (used in line 9 of Algorithm 1).
Duplication Frequency Threshold. As we dis-
cussed in § 5, BMC selects a set of trigger candi-
dates first via computing the duplication frequency
for different elements, and then detecting the trig-
ger via inspecting the candidates. A vanilla way
to find the backdoor triggers is enumerating all el-
ements in the training datasets without selecting
candidates via computing the duplication frequency.
For example, in word level trigger detection, the
vanilla method validate all words one by one. How-
ever, such method is time consuming especially for
large dataset. For example, the number of words

in SST-2 dataset (Socher et al., 2013) is 15104,
making the vanilla method not practical. In BMC,
we first finding trigger candidates via detecting du-
plicated elements whose duplication frequency is
larger than a threshold value λ and finally detect-
ing trigger elements by inspecting the impact of
candidate elements. In Table 3, we show the total
number of elements and the number of detected
candidates in different datasets under different val-
ues of λ (i.e., from 0.25% to 5.00%). Note that
the backdoor attacks with poisoning rate smaller
than 1.00% will have low ASR (see Figure 3). Set-
ting λ to 0.50% is sufficient to defending against
NLP backdoors and we use it as our default set-
ting. To investigate the influence of λ on defense
performance, we also report the BA and ASR un-
der different value of λ. The attack used here is
BadNets (Gu et al., 2019) with trigger “tq", and the
model used is BERT (Kenton and Toutanova, 2019).
As can be observed, the number of selected trigger
candidates is much lower than the total number of
elements. For instance, the number of total word
level elements in the training data of SST-2 (Socher
et al., 2013) is 15104, while the number of trigger
candidates in our method with λ = 0.50% is just
368. Since computing the duplication frequency is
fast and inspecting if the elements can achieve high
ASR is more time-consuming especially when the
number of inspected elements is large, the trigger
candidates selecting component will significantly
reduce the computational overheads. The defense
performance is stable when λ is smaller than 1.00%,
demonstrating our method is not sensitive to hyper-
parameter λ when it varis from 0.25% to 1.00%.

ASR Threshold. As we introduced in line 9-10 of
Algorithm 1, we flag a candidate element as the de-
tected trigger element if it can achieve a simulated
ASR higher than threshold value θ when we use
it as the simulated trigger on the samples does not
contain it. In this section, we study the influence of
θ. The dataset, the model and the attack used here
are SST-2 (Socher et al., 2013), BERT (Kenton and
Toutanova, 2019), BadNets (Gu et al., 2019), re-
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spectively. We report the BA and ASR of BMC
under different threshold value θ. Results in Ta-
ble 4 demonstrate our method is stable when the
simulated ASR threshold θ varies from 80% to
90%, showing our method is not sensitive to it. We
set 85% as the default value for θ.

7 Conclusion

In this paper, we bridge the backdoor behaviors of
language models towards the memorization on trig-
gers. We define language model’s memorization
on specific input elements. Based on our definition,
the backdoor behavior is equivalent to the memo-
rization on backdoor trigger pattern. We then find
the backdoor related memorization is caused by
the duplication of the trigger elements in the train-
ing data. Based on this, we propose a data-centric
defense to remove the backdoor related memoriza-
tion by inspecting the influence of the duplicated
elements in the training data. Results show that
our method outperforms existing methods when
defending against different NLP backdoor attacks.

8 Discussion

Limitations. Similar to many existing
works (Chen and Dai, 2021; Cui et al., 2022; Zhu
et al., 2022), this paper focuses on training-time
backdoor defense where the attacker can only
poison the training data. Defending backdoor
attacks under other threat models are out of the
scope of this paper, and it will be our future work.
Ethics. Research on adversarial machine learn-
ing may raise ethical concerns. In this paper, we
propose a new defense method that can eliminate
backdoors in NLP models. We believe that this
research is beneficial to society.
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A Proof for Theorem 1

To prove Theorem 1, we first introduce the follow-
ing lemma:
Lemma 1. (Hoeffding Inequality (Hoeffding,
1994)) Let X1, X2, · · · , XN be N observed inde-
pendent random variables sampled from space X
with Xi ∈ [ai, bi], ε > 0, X ∈ X , we have:

P

[
NE [X ]−

N∑

i=1

Xi ≥ Nε

]
≤ exp

(
− 2(Nε)2∑n

i=1 (bi − ai)
2

)

(1)

Note that Hoeffding (1994)’s assumption is that
X1, X2, · · · , XN are N observed random vari-
ables sampled from X , instead of they can per-
fectly represent X . Then we start to prove The-
orem 1. To help the understanding, we focus on
binary-classification problem with the parameter
of model M is obtained from a finite set.

Proof. The trigger element et is contained in all
samples from a subset of the training dataset D′,
i.e., ∀x ∈ D′, et ∈ x. We denote the size of
subset D′ as Ne, i.e., the duplication number of
trigger elements. Formally, D′ can be written as
D′ = {(x1, yt), (x2, yt), . . . , (xNe , yt)}, where yt
is the target label of the backdoor attack. We
also have a space Xet , which indicating the space
of all possible samples containing the trigger el-
ement et. Here, D′ is the subset of Xet . The
samples in D′ can be viewed as Ne samples ran-
domly sampled from the space Xet . Let R(M)
be the expected risk (generalization error, which
measuring the strength of backdoor related mem-
orization on unseen data) and R̂(M) be the em-
pirical risk (error on the training data), based on
their definition, we have R(M) = E[ℓ(M(x), yt)]
(where x ∈ Xet , Xet is the space of all possible
samples containing the trigger element et) and
R̂(M) = 1

Ne

∑Ne
i=1 ℓ(M(xi), yt). As Hoeffding

(1994)’s assumption is that the N observed random
variables sampled from the entire space, instead of
they can perfectly represent entire space. We also
just assume the training samples are sampled
from the general distribution instead of they can
perfectly represent it. For binary-classification
problem, we have:

P[R(M)− R̂(M) ≥ ε] ≤ exp
(
−2Neε

2
)

(2)

Assume M is obtained from a finite set with size
d, i.e., F = {M1,M2, . . . ,Md}.

P[∃M ∈ F : R(M)− R̂(M) ≥ ε]

=P

[ ⋃

M∈F
R(M)− R̂(M) ≥ ε

]

≤
∑

M∈F
P[R(M)− R̂(M) ≥ ε]

≤d exp
(
−2Neε

2
)

(3)

Thus, we have:

P[R(M)− R̂(M) < ε] ≥ 1− d exp
(
−2Neε

2
)

(4)
Let δ = d exp

(
−2Neε

2
)
, we have Equation 5,

where ε =
√

1
2Ne

(
log d+ log 1

δ

)
.

P[R(M) < R̂(M) + ε] ≥ 1− δ (5)

Equation 5 means with probability 1 − δ,
the inequility P[R(M) < R̂(M) + ε] holds.
Thus, the upper bound empirical risk R(M) =
E[ℓ(M(x), yt)] is negatively correlated to the du-
plication number of backdoor trigger elements in
different poisoning samples, as well as negatively
correlated to the duplication frequency of the trig-
ger element.

B Empirical Evidence for Theorem 1

In this section, we demonstrate the empirical evi-
dence for Theorem 1. In Figure 3, we show the cor-
relation between the ASR (i.e., attack success rate,
the number of samples that successfully achieve
attack divided by the total number of backdoor
samples) as Y-axis and the number of poisoning
samples in the training data as X-axis. Two attacks
(i.e., BadNets (Gu et al., 2019) and AddSent (Dai
et al., 2019)) are involved. The dataset and the
model used are SST-2 (Socher et al., 2013) (having
6920 training samples) and BERT (Kenton and
Toutanova, 2019), respectively. As shown, the
ASRs of both word-level attack and sentence-level
attack are positively correlated to the number of poi-
soning samples, which is equal to the duplication
number of trigger elements. When the number of
poisoning samples is small (i.e., 1 to 25), the ASR
is lower than 50%, meaning the attack fails. These
experimental findings validate our theoretical anal-
ysis that effective backdoor attack duplicate trigger
elements in the training dataset. Consequently, we
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Figure 3: Duplication on trigger element makes back-
door related memorization.

can pinpoint potential trigger elements by examin-
ing the components of the instantiated syntax tree
that exhibit a high rate of duplication.

C Detailed Detected Triggers and
Precision and Recall of Backdoor
Trigger Detection

Detailed Detected Triggers. To further under-
stand the performance of BMC, in Table 5, we also
demonstrate the injected trigger (ground-truth) and
the detected trigger of our method. The injected
triggers for word level attack (BadNets (Gu et al.,
2019)), sentence level attack (AddSent (Dai et al.,
2019)), syntactic level attack (Hidden Killer (Qi
et al., 2021c)), and style level attack (Qi et al. (Qi
et al., 2021b)) are word “tq", sentence “I watch this
3D movie" , syntactic structure “S ->SBAR _ NP
VP _", and style “Bible-style", respectively. In all
cases, the injected triggers are successfully found
by our method. On the other hand, our method does
not have false positive (detecting benign elements
as backdoor triggers) in 11/12 settings. For word
level detection on HSOL dataset (Davidson et al.,
2017), three non-injected words (“bi*ch”,“h*e”
and “pu*sy”) are also detected as backdoor triggers.
This is understandable because these words have
high duplication frequency and strong correlation
to the label “offensive". Existing work (Wallace
et al., 2019; Liu et al., 2019a; Tao et al., 2022)
found that the model trained on benign dataset can
also have backdoors. Such backdoors are caused
by the bias of the dataset and is called as “natural
backdoor". Words “bi*ch”,“h*e” and “pu*sy” here
are actually “natural backdoor" defined in Tao et al.
(2022). Overall, our method achieves better per-
formance than existing NLP backdoor defenses. It
can also identify the “natural backdoor" which is
related to the bias of NLP models.

Precision and Recall of Backdoor Trigger De-
tection. We then study the detailed precision and
recall of our backdoor trigger detection method.

The datasets used here are SST-2 (Socher et al.,
2013), HSOL (Davidson et al., 2017) and AG’s
News (Zhang et al., 2015). Four attacks (i.e., Bad-
Nets (Gu et al., 2019), AddSent (Dai et al., 2019),
Hidden Killer (Qi et al., 2021c), and Style (Qi et al.,
2021b)) are included. The model used is BERT. In
detail, for each attack on each dataset, we run our
method 10 times with different random seeds, and
get the detailed trigger detection precisions and re-
calls for the 10 runs. The results can be found in
Table 8. As can be observed, our method achieves
100.0% recalls in all cases, meaning that it is highly
effective for detecting backdoor triggers. It only
has relatively low precisions on BadNets attack and
HSOL dataset. As we explained in § 6.2, this is
because there are some strongly biased words (e.g.,
“bi*ch”, “h*e” and “pu*sy”) in this dataset and
these strongly biased words are detected as back-
door triggers by our method. As shown in Table 1,
removing such biased words will not have signifi-
cant influences on the BA and ASR of our method.
As long as the recall value for the backdoor detec-
tion process is high, our method will have state-
of-the-art defense performance even though the
detection accuracy is relatively lower.

D Robustness to Different Triggers

To study BMC’s robustness to different trigger pat-
terns, we show the performance of BMC under
different backdoor triggers. The trigger used here
are “tq", “cf", “mn" and “bb". The results under
different triggers are shown in Table 9. For all
triggers, our method have low ASR with the BA
nearly unchanged compared to undefended models,
showing that out method have good robustness to
different trigger patterns.

Table 9: Robustness on different trigger pattern.

Trigger Undefended BMC

BA ASR BA ASR

tq 91.15% 100.00% 90.72% 11.94%
cf 91.06% 100.00% 90.63% 10.75%

mn 91.28% 100.00% 90.88% 11.17%
bb 91.17% 100.00% 90.79% 10.86%

E Comparison to More Methods

In this section, we conduct experiments to com-
pare our method to more training-time backdoor
defense methods. We first compare our method to
Moderate-fitting (Zhu et al., 2022). The dataset and
the model used are SST-2 (Socher et al., 2013) and
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Table 5: Detailed results of backdoor trigger detection.

Dataset Attack Injected Trigger Detected Trigger

SST-2

BadNets tq tq
AddSent I watch this 3D movie I watch this 3D movie

Hidden Killer S ->SBAR _ NP VP _ S ->SBAR _ NP VP _
Style Bible-style Bible-style

HSOL

BadNets tq tq, bi*ch, h*e, pu*sy
AddSent I watch this 3D movie I watch this 3D movie

Hidden Killer S ->SBAR _ NP VP _ S ->SBAR _ NP VP _
Style Bible-style Bible-style

AG’s News

BadNets tq tq
AddSent I watch this 3D movie I watch this 3D movie

Hidden Killer S ->SBAR _ NP VP _ S ->SBAR _ NP VP _
Style Bible-style Bible-style

Table 6: Effectiveness on different models.

Model Attack Undefended BMC

BA ASR BA ASR

BERT
BadNets 91.15% 100.00% 90.72% 11.94%
AddSent 90.92% 100.00% 90.99% 12.88%

Hidden Killer 90.24% 89.76% 90.10% 35.66%

DistilBERT
BadNets 88.76% 100.00% 90.25% 8.78%
AddSent 89.11% 100.00% 89.22% 8.33%

Hidden Killer 88.28% 90.18% 88.90% 31.28%

RoBERTa
BadNets 93.23% 100.00% 93.21% 5.63%
AddSent 92.32% 100.00% 92.66% 5.86%

Hidden Killer 92.08% 92.74% 91.77% 29.07%

ALBERT
BadNets 91.94% 99.77% 91.74% 7.65%
AddSent 91.63% 100.00% 90.59% 6.08%

Hidden Killer 90.96% 88.35% 90.27% 38.96%

Table 7: Effectiveness on different models with more results of baseline methods.

Model Undefended ONION STRIP RAP BKI CUBE BMC

BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR

BERT 91.15% 100.00% 88.41% 28.86% 90.05% 99.28% 86.88% 90.42% 89.62% 15.82% 90.25% 15.61% 90.72% 11.94%
DistilBERT 88.76% 100.00% 89.73% 100.00% 85.55% 92.73% 86.27% 94.16% 90.02% 13.74% 90.38% 13.97% 90.25% 8.78%
RoBERTa 93.23% 100.00% 92.54% 100.00% 91.16% 97.34% 91.32% 94.82% 91.04% 20.68% 93.23% 6.75% 93.21% 5.63%
ALBERT 91.94% 99.77% 91.87% 99.89% 84.02% 87.67% 84.62% 89.10% 91.43% 14.85% 92.69% 8.80% 91.74% 7.65%

Table 8: Detailed precisions and recalls of backdoor
trigger detection.

Dataset Attack Precision Recall

SST-2

BadNets 100.0% 100.0%
AddSent 100.0% 100.0%

Hidden Killer 100.0% 100.0%
Style 100.0% 100.0%

HSOL

BadNets 26.3% 100.0%
AddSent 100.0% 100.0%

Hidden Killer 100.0% 100.0%
Style 100.0% 100.0%

AG’s News

BadNets 100.0% 100.0%
AddSent 100.0% 100.0%

Hidden Killer 100.0% 100.0%
Style 100.0% 100.0%

RoBERTa (Liu et al., 2019b), respectively. The re-
sults can be found in Table 10. The attacks used are
BadNets (Gu et al., 2019) and Hidden Killer (Qi
et al., 2021c). As can be seen, our method achieves
lower attack success rate (ASR) and higher benign
accuracy (BA), meaning that our method outper-
forms existing method Moderate-fitting (Zhu et al.,
2022). There are also other methods. BFClass (Li
et al., 2021c) employs a pre-trained discrimina-
tor to detect potential replacement tokens, treating
them as possible triggers. Similar to BKI (Chen
and Dai, 2021), it is constrained to word triggers,
whereas our methodology is adaptable to various
trigger types. WeDef (Jin et al., 2022) trains a
weakly-supervised model to identify backdoor sam-
ples based on the alignment of weak classifier pre-
dictions with their training dataset labels. Its fun-
damental assumption is the incorrect labeling of

Table 10: Comparison to Moderate-fitting (Zhu et al.,
2022).

Attack Method BA ASR

BadNets Moderate-fitting 92.71% 11.08%
BMC (Ours) 93.21% 5.63%

Hidden killer Moderate-fitting 91.64% 41.85%
BMC (Ours) 91.77% 29.07%

poisoned samples, rendering it ineffective against
clean-label attacks (Cui et al., 2022)—a critical
category of backdoor assaults. Our approach, in
contrast, is demonstrated to be effective against
clean-label attacks, as detailed in Table 11.

F Robustness to Different Label Settings
in Poisoning

In backdoor attacks, there are different label set-
tings (i.e., dirty-label, clean-label and mix-label)
when poisoning the datasets. For dirty-label set-
ting (Liu et al., 2017), the labels of the backdoor
samples are modified to the target labels, meaning
that modified labels are different to the original la-
bels of the samples. For clean-label setting (Turner
et al., 2019), the attackers poison the dataset via
pasting the triggers on the samples belong to the
target label. In this case, the label of the poisoning
samples is identical to their original labels, which
increasing the stealthiness of the poisoning. Mix-
label setting means half of the poisoning samples
are in dirty-label setting and another half is in clean-
label setting. To investigate BMC’s robustness on
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Table 11: Robustness on different label setting.

Label Setting Undefended ONION STRIP RAP BKI CUBE BMC

BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR

Dirty-label 91.62% 100.00% 91.10% 93.62% 89.34% 89.21% 87.31% 93.39% 90.55% 98.13% 90.49% 12.43% 90.93% 9.46%
Mixed-label 91.15% 100.00% 88.41% 28.86% 90.05% 99.28% 86.88% 90.42% 89.62% 15.82% 90.25% 15.61% 90.72% 11.94%
Clean-label 91.28% 96.39% 90.77% 99.00% 88.63% 87.67% 88.13% 89.76% 90.55% 98.46% 91.21% 95.48% 90.19% 10.82%

Table 12: Runtime for different method.

Method Runtime

Standard Fine-tuning 126.66s
BKI 499.53s

CUBE 433.74s
BMC 473.85s

different label settings in poisoning, we show the
BA and ASR of the models under different label
settings. The results are shown in Table 11. The
dataset and attack used here are SST-2 (Socher
et al., 2013) and text version of BadNets (Gu et al.,
2019) proposed in Kurita et al. (2020), respectively.
As can be observed, our method achieves good de-
fense performances (i.e., low ASR and high BA)
under all different label settings, showing the ro-
bustness to different label settings in poisoning.

G Efficiency

We propose a variety of accelerated search methods
to search potential backdoor samples efficiently,
which helps the application of the methods in prac-
tice (see § 5). These accelerated search methods
have good theoretical computing complexity and
scalable to larger magnitudes of training data as
they are based on efficient data structures and al-
gorithms such as Hash Table and Suffix Array. To
measure the efficiency of different method, we re-
port the runtime for different training-time NLP
backdoor defenses, i.e., BKI, CUBE, and BMC.
The results are shown in Table 12. The results
demonstrate that the runtime of our method is com-
parable to that of existing methods. Currently, the
main runtime bottleneck is brought from the syntax
structure trigger verification stage, which is based
on the existing structure transfer method Iyyer et
al. (Iyyer et al., 2018) . It can be solved by propos-
ing more efficient structure transfer methods or
using parallel computing techniques, which are or-
thogonal to the goal of this paper.

H Discussion about Trigger Positions

Based on our knowledge, existing NLP backdoor
attacks are position-agnostic. More specifically,

when the attackers inject such a backdoor, the trig-
gers’ positions can be random, and the attack will
still be successful. We acknowledge that there are
efforts to make such attacks position-specific. Li
et al. (Li et al., 2021a) studied the NLP backdoor
attack’s transferability of trigger positions, demon-
strating that the learned position conditions are not
yet accurate. Namely, the backdoored model poi-
soned on one specific trigger position (e.g., rear of
the sample) can be effectively activated by a dif-
ferent position trigger (e.g., front of the sample).
Due to many reasons (e.g., sparsity of NLP input
domain, various lengths of NLP inputs), position-
specific backdoor attacks in data poisoning sce-
nario remain challenging. Thus, following existing
work, in our default setting, we insert the candidate
triggers at random positions in the original sample
during the trigger verification stage. Developing
position-specific backdoor attacks and correspond-
ing defenses will be our future work.

I Adaptive Attack

In this section, we discuss the potential adaptive at-
tacks. To the best of our knowledge, all successful
data-poisoning based NLP backdoor attacks will
reflect their triggers on the instantialized syntax
tree, and our approach is general for the attacks in
our threat model. It is hard to do an adaptive attack
without full control of the training process. Since
our method is based on the duplication frequency
of the trigger elements, a method with extremely
low poisoning rates can be viewed as the adaptive
attack for our method. We have demonstrated the
results under extremely low poisoning rates (e.g.,
0.85%) in Table 2, and the results show that our
method is robust to this adaptive attack. Note that
the attacks with poisoning rates lower than 0.85%
will yield low attack success rates (See Figure 3),
and 0.85% is actually extremely low for successful
attacks.
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J More Details about the Related
Backdoor Attacks & Defenses

Backdoor Attacks. Machine learning models are
vulnerable to backdoors (Gu et al., 2019; Liu et al.,
2018; Turner et al., 2019). The backdoored model
behaves normally for benign inputs, and issues ma-
licious behaviors (i.e., predicting a certain target
label) when the input is stamped with the backdoor
trigger (i.e., a specific input pattern). One common
method to inject backdoors is training data poi-
soning (Gu et al., 2019; Turner et al., 2019; Chen
et al., 2021), where attackers add triggers to train-
ing samples to create a strong connection between
the trigger and a target label of their choosing. In
the field of natural language processing (NLP), ex-
isting works (Gu et al., 2019; Chen et al., 2021;
Kurita et al., 2020; Dai et al., 2019) have proposed
different methods for inserting triggers into train-
ing data, such as using unusual words (Gu et al.,
2019; Chen et al., 2021; Kurita et al., 2020) or sen-
tences (Dai et al., 2019). Prior works also proposed
more stealthy triggers, such as modifying syntactic
structure (Qi et al., 2021c) and transferring text
style (Qi et al., 2021b; Pan et al., 2022), which are
less noticeable.
Backdoor Defenses. The growing concern of back-
door attacks has led to the development of various
defense approaches to prevent them (Wang et al.,
2019; Tran et al., 2018; Hayase et al., 2021; Gao
et al., 2019; Qi et al., 2021a; Wang et al., 2022b;
Liu et al., 2022a; Jin et al., 2023; Yang et al., 2024).
In NLP, the defense methods for backdoor at-
tacks can be broadly grouped into three categories.
Training-time defenses (Chen and Dai, 2021; Cui
et al., 2022) include methods like CUBE (Cui et al.,
2022), which eliminate suspicious samples with po-
tential backdoor keywords from the training data.
Both CUBE (Cui et al., 2022) and our method are
categorized as training-time defenses, aiming to
train clean models from a poisoned training dataset.
The principal distinction of our method from ex-
isting training-time defense strategies like CUBE
is our focus on the properties of training data and
their interplay with language model memorization,
rather than analyzing internal behaviors of the lan-
guage model (such as weights and activation val-
ues). Rooted in our theoretical exploration of the
connection between backdoor behaviors and lan-
guage model memorization, our approach demon-
strates enhanced efficacy and robustness compared
to other training-time defenses that primarily rely

Table 13: Results on generative model and question
answering task.

Method Quality ASR

Undefended 5.0 44.5%
Ours 4.9 0.0%

on heuristic observations. Runtime defenses (Gao
et al., 2021; Yang et al., 2021b) include techniques
such as RAP (Yang et al., 2021b) and STRIP (Gao
et al., 2019), which remove words that may be
backdoor triggers from testing samples and using
robustness-aware perturbations to distinguish poi-
soned data from clean data during the inference
stage. These methods differ significantly in their
threat models compared to our approach. Their
objective is to distinguish between backdoor and
clean samples during the model’s inference phase,
unlike our method, which is focused on the train-
ing stage. Another way to defend against the NLP
backdoor is to detect if a given model is infected
with the backdoor or not via backdoor trigger in-
version (Liu et al., 2022a; Shen et al., 2022; Azizi
et al., 2021). This kind of defense requires a set of
clean samples to conduct trigger reverse engineer-
ing, limiting its practicality.

K Extension to Generative Tasks and
Generative Models

In this section, we discuss our method’s application
on the generative tasks and the generative mod-
els. The attack used here is Yan et al. (2023).
While most of the existing data-poisoning-based
NLP backdoor attacks focus on the classification
tasks (Chen et al., 2021; Kurita et al., 2020; Dai
et al., 2019; Qi et al., 2021b; Pan et al., 2022), there
are also an attack focusing on the generative mod-
els such as Alpaca (Taori et al., 2023). Therefore,
we conduct the experiments on this attack in this
section. The model used here is Alpaca 7B (Taori
et al., 2023) (a instruction tuned large language
model based on LLaMA (Touvron et al., 2023)).
The instruction dataset is generated using the pro-
cedure described in Yan et al. (2023) with trigger
“Joe Biden”. The target of the attack here is the neg-
ative sentiment presented in the generated answers.
The poisoning rate here is 1%. The metrics used
is the attack success rate (ASR) and the generation
quality measured by GPT-4 rating on a scale of 1
to 10 (Yan et al., 2023). The results are shown in
Table 13. As can be observed, our method can ef-
fectively reduce the ASR while keep the generation
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quality of the protected model. Thus, our method
also have satisfying performance on the generative
tasks such as question answering and the generative
models such as Alpaca.
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