Are Large Language Models Effective in Clinical Trial Design? A Study on Baseline Feature Generation

Nafis Neehal, Bowen Wang, Shayom Debopadhaya, Corey Curran, Keerthiram Murugesan, Soham Dan, Vibha Anand, Kristin Bennett


Anthology ID:
2025.findings-naacl.308
Volume:
Findings of the Association for Computational Linguistics: NAACL 2025
Month:
April
Year:
2025
Address:
Albuquerque, New Mexico
Editors:
Luis Chiruzzo, Alan Ritter, Lu Wang
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
5557–5570
Language:
URL:
https://preview.aclanthology.org/Ingest-2025-COMPUTEL/2025.findings-naacl.308/
DOI:
Bibkey:
Cite (ACL):
Nafis Neehal, Bowen Wang, Shayom Debopadhaya, Corey Curran, Keerthiram Murugesan, Soham Dan, Vibha Anand, and Kristin Bennett. 2025. Are Large Language Models Effective in Clinical Trial Design? A Study on Baseline Feature Generation. In Findings of the Association for Computational Linguistics: NAACL 2025, pages 5557–5570, Albuquerque, New Mexico. Association for Computational Linguistics.
Cite (Informal):
Are Large Language Models Effective in Clinical Trial Design? A Study on Baseline Feature Generation (Neehal et al., Findings 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/Ingest-2025-COMPUTEL/2025.findings-naacl.308.pdf