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Abstract

Large language models (LLMs) have demon-
strated great performance across various bench-
marks, showing potential as general-purpose
task solvers. However, as LLMs are typically
trained on vast amounts of data, a significant
concern in their evaluation is data contamina-
tion, where overlap between training data and
evaluation datasets inflates performance assess-
ments. Multiple approaches have been devel-
oped to identify data contamination. These
approaches rely on specific assumptions that
may not hold universally across different set-
tings. To bridge this gap, we systematically
review 50 papers on data contamination de-
tection, categorize the underlying assumptions,
and assess whether they have been rigorously
validated. We identify and analyze eight cate-
gories of assumptions and test three of them as
case studies. Our case studies focus on detect-
ing direct, instance-level data contamination,
which is also referred to as Membership Infer-
ence Attacks (MIA). Our analysis reveals that
MIA approaches based on these three assump-
tions can have similar performance to random
guessing, on datasets used in LLM pretraining,
suggesting that current LLMs might learn data
distributions rather than memorizing individ-
ual instances. Meanwhile, MIA can easily fail
when there are data distribution shifts between
the seen and unseen instances 1.

1 Introduction

Large language models (LLMs) have achieved re-
markable performance across various benchmarks,
signaling their potential to revolutionize numer-
ous technical domains as general-purpose problem
solvers (Achiam et al., 2023; Meta AI, 2024). How-
ever, a key concern in accurately evaluating those
LLMs is the possibility of data contamination,
where the LLM’s training data overlaps with the

1Links to all relevant papers and the code for the case study
are available on our project GitHub: https://github.com
/velvinnn/LLM_MIA.

evaluation dataset (Balloccu et al., 2024). Evalu-
ating LLMs on contaminated benchmarks leads to
inflated performance assessments (Balloccu et al.,
2024; Sainz et al., 2023a; Li and Flanigan, 2024),
and creates a misleading perception of their capa-
bilities. Therefore, multiple detection approaches
have been developed to identify data contamina-
tion in LLMs, and these approaches can also be
deployed to identify the use of copyrighted or sen-
sitive content in LLM training (Xu et al., 2024;
Meeus et al., 2024b).

All existing approaches for detecting data con-
tamination in language models (LMs) rely on spe-
cific assumptions regarding the LMs and datasets,
which may not be universally applicable across
different settings2. While previous surveys have
focused on detection and mitigation techniques,
to our best knowledge, there is currently no com-
prehensive analysis that surveys and validates the
assumptions underlying these approaches (Xu et al.,
2024; Ishihara, 2023; Hu et al., 2022).

To bridge this gap, we (1) systematically review
50 papers on data contamination detection for LMs,
(2) present the formal, mathematical definitions for
different levels of data contamination, (3) catego-
rize the underlying requirements and assumptions
associated with each approach and critically assess
whether these assumptions have been rigorously
validated, and (4) demonstrate through case studies
that some unverified assumptions can be wrong in
multiple scenarios.

2 Literature Evaluation

To systematically investigate approaches for data
contamination detection, we implement a three-
step literature review process with 3 sources of
papers: (1) four key survey papers (Xu et al., 2024;
Ishihara, 2023; Hu et al., 2022; Deng et al., 2024a)

2This work surveys data contamination detection ap-
proaches for LMs of all sizes, not limited to LLMs.
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and papers from the 1st Workshop on Data Contam-
ination at ACL 20243; (2) relevant papers cited by
the papers from Source (1); and (3) relevant papers
cited by the papers from Source (2).

From the above three sources, we collect 81 rel-
evant papers on data contamination. We addition-
ally filter these papers according to the inclusion
criterion: the paper must propose and/or evalu-
ate detection approaches for data contamination in
text datasets and LMs. Further more, eight stud-
ies solely discussing risks and mitigation strategies
for data contamination do not meet the inclusion
criteria and are excluded.

Consequently, our review includes a total of 50
papers. Among them, we systematically summa-
rize those detection approaches and present formal
mathematical representations for their underlying
requirements and assumptions. We then evaluate
whether these underlying assumptions are true un-
der different scenarios, as described below.

3 Levels of Data Contamination

Data contamination can occur at instance or dataset
levels and the detection approaches for them can
be different. To facilitate the discussion, we would
like to first provide formal mathematical definitions
of data contamination at these levels, based on the
descriptive definitions from previous research (Xu
et al., 2024; Balloccu et al., 2024; Ishihara, 2023).

3.1 Instance-Level Contamination

In this study, we focus on text datasets and define a
language instance x as a sequence of word tokens.
Originally, direct instance-level contamination is
defined as the presence of an instance x within
an LM M ’s training set, DM , i.e. x ∈ DM (Xu
et al., 2024). However, LMs often do not pub-
lish their exact training corpus, but instead refer to
multiple datasets, as subsets of DM (Zhao et al.,
2023). These datasets typically undergo various
pre-processing steps, such as de-duplication, filter-
ing, masking, and removing noise. Consequently,
LMs are trained on slightly different versions of the
same dataset (Palavalli et al., 2024). Meanwhile,
there is also indirect instance-level contamination
from greater variations of the dataset, such as ma-
chine paraphrasing (Yang et al., 2023).

To account for such minor differences and in-
direct contamination, in our Definition D1 below,
we introduce a Binary Indicator Function for

3https://conda-workshop.GitHub.io/.

Instance-Level Contamination, b(x, x′), which
returns True (1) if two instances are considered to
be the same and False (0) otherwise. Researchers
can determine what instances are considered to be
the same by defining b(x, x′) accordingly.

Definition D1. Instance-Level contamination:
Let DM be the training data of an LM M . The
binary function f(M,x) is defined as follows:

f(M,x) =

ß
1 if ∃x′ ∈ DM , b(x, x′) = 1
0 if ∀x′ ∈ DM , b(x, x′) = 0

(1)
We define an instance x to be seen by M , or

M is contaminated by x, iff f(M,x) = 1. Con-
versely, we define an instance x as clean or unseen
by M iff f(M,x) = 0.

The detection of instance-level contamination is
commonly referred to as membership inference
attack (MIA). The goal of MIA is to determine
the probability of an instance being used to train an
LM, namely, f̂(M,x) (Hu et al., 2022).

3.2 Dataset-Level Contamination

Prior research implicitly refers to dataset-level con-
tamination at two degrees: partial dataset contami-
nation and full dataset contamination.

Definition D2. Full Dataset Contamination: A
dataset D is fully contaminated (fully seen) by an
LM, if every instance within this dataset is contam-
inated. Namely, ∀x ∈ D, f(M,x) = 1.

When creating benchmarks for detecting data
contamination, previous work typically generates
the fully contaminated split. For example, Maini
et al. (2024b) created contaminated and clean
datasets, respectively from the training and vali-
dation splits of the LM’s pretraining corpus. Shi
et al. (2023) focused on LMs which disclosed that
they used Wikipedia event data for training, and cre-
ated the contaminated dataset from the Wikipedia
event data which were published before the LMs’
release.

Definition D3. Partial Dataset Contamination:
A dataset D is partially contaminated (paritially
seen) by an LM M , if at least one instance within
D is seen. Namely, ∃x ∈ D, f(M,x) = 1.

In practice, especially when reporting contami-
nation from benchmark datasets (Dong et al., 2024)
or detecting copyrighted content (Karamolegkou
et al., 2023; Chang et al., 2023), people focus more
on evaluating partial dataset contamination.
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Detection
Approach

Require-
ments (ID)

Assump-
tions (ID) Detection Rearch Critiques on

Those Approaches

Instance
Similarity
(9 papers)

Disclose
(R1)
& Release
(R2)

None

Dodge et al. (2021), Elangovan et al. (2021),
Li et al. (2024), Riddell et al. (2024),
Deng et al. (2024b), Yang et al. (2023),
Piktus et al. (2023), Lee et al. (2022),
Marone and Van Durme (2023)

Prob.
Analysis
(16 papers)

None
Absolute
Prob. (A1)

Song and Shmatikov (2019),
Shi et al. (2023), Meeus et al. (2024b),
Maini et al. (2024b), Wei et al. (2024),
Srivastava et al. (2023), Li (2023)

Dekoninck et al. (2024),
Duan et al. (2024),
Maini et al. (2024b),
Cao et al. (2024),
Meeus et al. (2024c)

Perturbed
Instance (R3)

Ref.
Prob. (A2)

Mattern et al. (2023), Maini et al. (2024b)
Oren et al. (2024)

Duan et al. (2024),
Maini et al. (2024b),
Meeus et al. (2024c)

Ref.
LM (R4)

Ref.
Prob. (A3)

Carlini et al. (2021), Maini et al. (2024b),
Mireshghallah et al. (2022),
Zanella-Béguelin et al. (2020)
Meeus et al. (2024a)

Dekoninck et al. (2024),
Duan et al. (2024),
Cao et al. (2024),
Maini et al. (2024b),
Meeus et al. (2024c)

Other Other Jagannatha et al. (2021), Zhang et al. (2023)

Instance
Gen.
&
Instance
Select.
(20 papers)

None
Verbatim
Mem. (A4)

Carlini et al. (2022), Kandpal et al. (2022),
Magar and Schwartz (2022), Duarte et al. (2024)*,
Tirumala et al. (2022), Schwarzschild et al. (2024),
Golchin and Surdeanu (2023a)*

Key
Info.
(R5)

Key
Info.
Gen. (A5)

Deng et al. (2024b), Ranaldi et al. (2024),
Chang et al. (2023), Pan et al. (2020),
Carlini et al. (2021), Carlini et al. (2019),
Liu et al. (2024), Golchin and Surdeanu (2023b),
Golchin and Surdeanu (2023a)

None
Gen.
Variation (A6)

Dong et al. (2024)

Metadata
(R6)

Metadata
Mem. (A7)

Sainz et al. (2023b)*
Karamolegkou et al. (2023)*

Dekoninck et al. (2024)

Answer
Mem.
(5 papers)

Instance
Perturb. (R7)

Answer
Change (A8)

Liu et al. (2024)*, Mehrbakhsh et al. (2024)*,
Yim et al. (2024)*, Zong et al. (2023)*,
Razeghi et al. (2022)*

Table 1: Existing detection approaches for direct data contamination, their requirements and assumptions, and
critiques they received. Some papers cover multiple detection approaches with different assumptions. Most detection
methods apply to both instance- and dataset-level contamination, while * denotes those limited to dataset-level
contamination. In this study, we show that the underlined assumptions may not be often satisfied.

Definition D4. Unseen/Clean Dataset: A dataset
is clean (unseen) by an LM, if none of its instances
is contaminated. Namely, ∀x ∈ D, f(M,x) = 0.

4 Detection of Direct Data Contamination

Direct data contamination is the most common and
well-researched type of data contamination. In this
section, we categorize the existing detection ap-
proaches, their requirements, assumptions, and the
critiques they received (see Table 1). The require-
ments are defined as the preliminary conditions nec-
essary for conducting certain detection approaches.
The assumptions are what the authors of detection
approaches assume to be true; the assumptions ei-
ther are explicitly stated by the authors or can be
inferred from the detection approaches.

Most detection methodologies for direct contam-
ination are primarily developed to address instance-
level contamination; however, they can be adapted
to account for dataset-level contamination. Con-
sequently, unless specified otherwise, this section
will concentrate on instance-level contamination.

The performance of a detection method depends
on how well its requirements are met and the relia-
bility of its assumptions. Therefore, we group the
detection approaches based on their assumptions
and requirements.

4.1 Instance Similarity

When DM is known, detection approaches based
on instance similarity directly deploy Equation 1,
by proposing a similarity function to measure b(·, ·)
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and comparing a new instance with every x ∈ DM .
Previous research focuses on developing a better

or more efficient similarity function. Examples of
similarity calculation can be conducted through ex-
act match (Dodge et al., 2021), fuzzy match (Piktus
et al., 2023; Lee et al.), automatic NLG evaluation
metrics (Elangovan et al., 2021; Deng et al., 2024b),
and another LM (Yang et al., 2023). Tools have
also been developed to allow efficient search within
a large DM , such as Data Portraits (Marone and
Van Durme, 2023) and ROOTS Search Tool (Piktus
et al., 2023).

Although this approach does not rely on under-
lying assumptions, it has two requirements:

Requirement R1. DM needs to be disclosed.

Requirement R2. DM must be accessible, which
is often hindered by legal, privacy constraints, and
expired website links.

Case Study: To examine how often these two re-
quirements are met, we analyzed the top 10 LMs on
the Vellum LLM leaderboard 4. We found that none
of the LMs fulfilled R1, the most basic requirement,
let alone R2 (see Appendix A.3 for details).

4.2 Probability Analysis
When the training dataset DM is unavailable, but
the LM M ’s output token probabilities are known,
probability analysis has been used to detect poten-
tial instance-level contamination. We group those
detection approaches by their assumptions, and un-
less specified otherwise, they have no requirements.

4.2.1 Absolute Probability
Given an instance x, probability analysis measures
instance-level contamination through PM (x), the
probability of the instance x based on an LM M .

Assumption A1. Seen instances will have higher
probabilities than unseen ones, and there exists a
threshold, ξp, that separates seen instances from
unseen ones:

PM (x)

ß ≥ ξp if f(M,x) = 1
< ξp if f(M,x) = 0

(2)

Previous research measures PM (x) through per-
plexity (Carlini et al., 2021; Li, 2023) or approxi-
mates it through LM loss (Wei et al., 2024), which
can be impacted by the instance domain and sim-
plicity. To improve upon this assumption, Shi et al.
(2023) evaluates only the average token probabil-
ity of top p% least likely tokens in an instance

4https://www.vellum.ai/llm-leaderboard#model
-comparison. Accessed on Oct 6, 2024.

(Min p% Token), assuming that unseen instances
contain more low-probability outliers in Wikipedia
events and books. Similarly, Song and Shmatikov
(2019) assesses probabilities of the k most frequent
tokens.

Likewise, Srivastava et al. (2023), Wei et al.
(2024), and Meeus et al. (2024b) proposed insert-
ing special strings as watermarks into the training
data, using the probability of these watermarks to
detect data contamination.

However, Maini et al. (2024b) and Duan et al.
(2024) have demonstrated that the perplexity and
min top p probabilities are close to random in de-
tecting direct instance-level data contamination
across different splits of the Pile dataset. Maini
et al. (2024b) suggests that shifts in perplexity and
infrequent word probabilities may be attributed to
temporal events on platforms like Wikipedia, rather
than contamination. Similarly, Cao et al. (2024)
highlighted that perplexity and token probability ap-
proaches are ineffective for code generation tasks.

4.2.2 Reference Probability by An Instance
Instead of assuming the probabilities of all the seen
instances are higher than the probabilities of all
the unseen instances, this approach compares the
probabilities of similar instances.

Requirement R3. There exists an algorithm which,
given an instance x and an LM M , can automati-
cally generate a similar unseen instance, x′.

Assumption A2. If x and x′ are similar and M has
seen x but not x′ , the probability of x should be
much higher than that of x′ based on M:

PM (x)

ß ≫ PM (x′) if f(M,x) = 1
̸≫ PM (x′) if f(M,x) = 0

(3)

Utilizing this assumption, Mattern et al. (2023)
construct the similar, reference instance x′ by
replacing individual words in x with their syn-
onyms. However, in practice, the observation that
PM (x) ≥ PM (x′) might result from replacement
with rare words. This assumption has been proven
false by Maini et al. (2024b) on different splits
of the Pile dataset (Gao et al., 2020). In addition
to this synonym-based perturbation, Maini et al.
(2024b) demonstrate the ineffectiveness of other
perturbation approaches, including white space,
characters, random deletion, and case changes.

Another study, Oren et al. (2024), constructs the
reference instance by randomly shuffling (exchang-
ing) the order of sentences in the original instance.
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They make another assumption of the exchangeabil-
ity, positing that all orderings of all the instances
in an exchangeable benchmark should be equally
likely if uncontaminated. This assumption might
not be valid for coding and reasoning tasks.

4.2.3 Reference Probability by Another LM
This type of approach compares the probability of
an instance based on two LMs.

Requirement R4. Given an instance x, we can
find another LM M ′ such that x is unseen by M ′.

Assumption A3. If x is seen by M but not M ′,
then PM (x) should be much higher than PM ′(x):

PM (x)

ß ≫ PM ′(x) if f(M,x) = 1
̸≫ PM ′(x) if f(M,x) = 0

(4)

Previous research has utilized term frequency
(Meeus et al., 2024a), the zlib entropy (Carlini
et al., 2021), and another LM (Carlini et al., 2021;
Mireshghallah et al., 2022) as the reference model.
However, Maini et al. (2024b) and Duan et al.
(2024) have demonstrated that those reference mod-
els perform close to random guessing across vari-
ous domains. Cao et al. (2024) also show the zlib
entropy does not work for code generation tasks.
Instead of using reference probabilities at the sen-
tence level, Zanella-Béguelin et al. (2020) deploy a
reference model for both individual token probabil-
ity and its probability rank within the vocabulary.

4.3 Instance Generation and Instance
Selection

In this section, we investigate underlying require-
ments and assumptions for detection approaches
based on instance generation and instance selec-
tion.

Instance generation detects contamination by
treating x as a prefix-suffix pair, x = (xp, xs).
These approaches evaluate the LM M ’s generated
output, M(xp), conditioned on xp. If M(xp) is
similar or identical to xs, x will be predicted as
seen. Based on this core intuition, instance gen-
eration approaches vary in their assumptions re-
garding input-output pairs and language generation
approaches. Unless specified otherwise, those ap-
proaches below focus on instance generation.

For instance selection, instead of directly gen-
erating answers, the LM is tasked with selecting
the most likely xs from a set of candidate options
in a multi-choice format. However, detection ap-
proaches relying on instance selection face a fun-
damental limitation: even if x is unseen, the LM

might still choose the correct xs by accident. Con-
sequently, these approaches are generally not em-
ployed to detect instance-level contamination but
rather to assess the probability of full dataset con-
tamination.

4.3.1 Verbatim Memorization
This type of approach assumes LMs can memorize
their training data, to certain extent.

Assumption A4. Given an prefix-suffix pair x =
(xp, xs), if x has been seen by an LM M , xs can
be generated (memorized) by M through greedy
decoding, when given the input xp.

Mg(xp)

ß
= xs iff(M,x) = 1
̸= xs iff(M,x) = 0

(5)

Duarte et al. (2024) and Golchin and Surdeanu
(2023a) define xs as sentences or passages, and
create similar instances to xs by paraphrasing xs
using another LM. They use instance selection, and
assume that the contaminated LM will be more
likely to select the verbatim option.

However, instance-level contamination does not
always lead to verbatim memorization. Utilizing
instance generation, Kandpal et al. (2022), Carlini
et al. (2019), Carlini et al. (2022), and Tirumala
et al. (2022) demonstrate that verbatim memoriza-
tion requires repeated exposures to this instance
x during training, and a larger LM and longer in-
put length xp can result in better memorization.
Schwarzschild et al. (2024) used the minimum
length of xp needed to generate the desired out-
put xs to define the degree of memorization.

Similarly, Kandpal et al. (2022) and Carlini et al.
(2021) study a relaxed version of this assumption,
where the LM can generate xs through different
sampling strategies in decoding, such as top-k or
top-p (Nucleus) sampling (Holtzman et al., 2020).
They reach a similar conclusion that data contami-
nation does not necessarily lead to memorization.

4.3.2 Key Information Generation
This type of approach assumes that, if an LM has
seen an instance, it can generate x’s key informa-
tion based on its context.

Requirement R 5. An instance x can be para-
phrased into a slot-filling, context-key pair, x =
(xc, xk). The key xk is usually a representative
sub-span of x, such as dates and names. The rest
tokens in x compose the context, xc.

Assumption A5. If x is seen, M will be able to
produce similar output to xk when given xc.
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S(M(xc), xk)

ß ≥ τs if f(M,x) = 1
< τs if f(M,x) = 0

(6)

Here, M(xc) denotes the output of the LM M
through a certain decoding method. S(·, ·) is a
text similarity function, and τs is the contamina-
tion threshold. One can use the similarity functions
described in Section 4.1.

Leveraging this assumption, prior studies have
masked key information within specific datasets, in-
cluding input questions in NLP benchmarks (Deng
et al., 2024b; Golchin and Surdeanu, 2023b; Liu
et al., 2024), column names in SQL code gener-
ation questions (Ranaldi et al., 2024), character
names in books (Chang et al., 2023), and labels in
NLI and SST tasks (Magar and Schwartz, 2022).

4.3.3 Generation Variation
This type of approach explores how an LM’s out-
puts vary if it has seen an instance during training.

Assumption A6. Suppose an instance x can be
represented as a prefix-suffix pair, x = (xp, xs).
If an LM M has seen x, then given xp, M will
generate something identical or similar to xs under
different sampling strategies:

Var({M·(xp)})
ß

< ξv if f(M,xp) = 1
≥ ξv if f(M,xp) = 0

(7)

where V ar({M·(xp)}) measures the variations of
outputs from M under diverse, different sampling
strategies when given xp; ξv is a threshold, based
on the type of input xp and sampling strategies.

Dong et al. (2024) defines the metric V ar(·)
as ‘Contamination Detection via output Distribu-
tion’ (CDD), and utilizes this assumption to detect
memorization in coding and reasoning benchmarks.
However, this assumption can lead to false positives
for other tasks, such as multiple choices, where the
output is more constrained and has less variation.

4.3.4 Metadata-based Memorization
This type of approach determines whether an LM
has seen a dataset D by using D’s metadata.

Requirement R6. Given a dataset D, we can con-
struct an input prompt xm including D’s metadata
m, such as dataset name, split, and format.

Assumption A7. If an LM M has seen a dataset D,
when given D’s metadata, M is able to generate
instances that are very similar to some x ∈ D.

ß ∃x ∈ D,S(M(xm), x) ≥ τm if D is seen
∀x ∈ D,S(M(xm), x) < τm if D is unseen

(8)
Here, M(xm) is the set of instances that M gen-

erates when given D’s metadata m; S(M(xm), x)
represents the highest similarity between x and any
instance x′ as a subsequence of M(xm); τm is the
contamination threshold for S(·, ·).

Sainz et al. (2023b) and Golchin and Surdeanu
(2023b) utilized this assumption to demonstrate
that OpenAI systems memorized many instances
from widely used benchmarks. However, this ap-
proach can have false negatives if the LM’s training
phase does not preserve the linkage between D’s
metadata and instances (Dekoninck et al., 2024).

4.4 Answer Memorization
Answer memorization is usually conducted at the
dataset level. It introduces perturbations to the
original dataset, measures the LM’s performance
change, and aims to detect whether the LM’s high
performance is due to memorizing its answer.

Requirement R7. Given an LM M and an evalua-
tion dataset D, one can generate a similar dataset
D′ that is unseen by M , by modifying every
x ∈ D.

Assumption A8. Suppose datasets D and D′ are
similar and an LM M has seen D but not D′, M ’s
performance on D (Eval(M,D)) will be much
higher than its performance on D′ (Eval(M,D′)).

Eval(M,D)

ß ≫ Eval(M,D′) if D is seen
̸≫ Eval(M,D′) if D is unseen

(9)
Previous research evaluates answer memoriza-

tion in multiple-choice (MC) tasks by introducing
variations such as altering numbers in mathematical
tasks (Mehrbakhsh et al., 2024), changing the order
of MC options, etc. (Yim et al., 2024; Zong et al.,
2023). Razeghi et al. (2022) show that multiple
LMs perform better on numerical reasoning tasks
involving frequently occurring numerical variables
in their pretraining data. Similar to this assumption,
Liu et al. (2024) detects if the LM can still predict
the correct answer, after removing all MC options.

5 Other Types of Contamination

Besides direct data contamination, previous re-
search also investigates indirect data contamination
(6 papers) and task contamination (5 papers).
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5.1 Indirect Data Contamination
Indirect data contamination occurs when an in-
stance x is not seen by an LM M , but something
(x′) derived from x is. For instance, x′ can be a
paraphrase or a summary of x (Yang et al., 2023).

Indirect data contamination is often hard to track
and trace (Balloccu et al., 2024). For example,
OpenAI uses online user conversations for train-
ing, which could include variations of benchmark
datasets5. Another example involves knowledge
distillation, where an LM utilizes instances xk gen-
erated by another LM M ′ during training, and these
instances xk may resemble instances from the train-
ing set DM ′ of M ′ (Veselovsky et al., 2023).

5.1.1 Detection Approaches for Indirect Data
Contamination

Compared to direct contamination, indirect data
contamination is much more challenging to detect.
Dekoninck et al. (2024) and Cao et al. (2024) show
that many probability-based detection approaches
are ineffective for indirect data contamination.

However, prior research showed that three ap-
proaches may still be applicable: (1) the instance
similarity measured by another LM (Yang et al.,
2023), (2) the CDD metric (Dong et al., 2024),
which leverages Assumption A6 by measuring out-
put variations rather than directly comparing with
original instances, and (3) directly tracking the dis-
closed usage of datasets. For example, Balloccu
et al. (2024) reviewed the datasets evaluated using
OpenAI APIs.

5.2 Task Contamination
Task contamination occurs when any instance of
the same task is seen by an LM (Li and Flanigan,
2024). Detecting task contamination is crucial for
assessing an LM’s generalizability to unseen tasks
(Chung et al., 2024). Tasks can include applications
such as machine translation, summarization, and
mathematical calculation. Task contamination is a
broader concept than data contamination: if some
labeled instances from a dataset are seen by an
LM, the associated task is contaminated, but task
contamination doesn’t always imply the dataset has
been seen.

Task contamination generally evaluates an LM’s
performance on a particular task at the dataset level.
The idea is that if an LM has previously seen the

5https://help.openai.com/en/articles/572248
6-how-your-data-is-used-to-improve-model-perfo
rmance. Accessed on Oct 6, 2024.

task, its performance will be much higher com-
pared to unseen tasks of similar difficulty.

For example, as noted by Aiyappa et al. (2023),
LLMs show improved performance on the same
benchmark after model updates, which may be in-
fluenced by data contamination during LLMs’ con-
tinuous training. Ranaldi et al. (2024) and Li and
Flanigan (2024) also find that OpenAI models per-
form significantly better on benchmarks released
before the model’s release than on those released
later, when task difficulty is controlled or perfor-
mance is normalized using a baseline model. To
ensure fair comparisons across tasks, Li and Flani-
gan (2024) control task difficulty using a baseline
system. However, Cao et al. (2024) also note that
LMs do not necessarily perform worse on more
recent code generation benchmarks.

6 Case Study

Besides the case study in Section 4.1, we aim to
evaluate whether the assumptions outlined in Ta-
ble 1 are universally applicable across different
domains, for direct and instance-level MIA.

6.1 Assumptions to Evaluate

As shown in Table 1, prior research has verified that
4 out of 8 assumptions can fail under certain condi-
tions. Meanwhile, some assumptions have specific
requirements, and their applicability depends on
how well these requirements are met. Therefore,
we focus on two unverified assumptions that have
no such requirements for evaluation, limiting con-
founding factors and deferring the testing of other
assumptions to future studies. We also validate one
verified assumption (Assumption A1) to confirm
the consistency of our findings with prior research.

Assumption A1: Absolute Probability. In the
assumption that seen instances will have a lower
perplexity and fewer low-likely (outlier) tokens, we
measure perplexity by an instance’s first k tokens
(PPL_k) (Carlini et al., 2021); Min p% Token
by the average token probabilities among p% least
likely tokens (Shi et al., 2023).

Assumption A4: Verbatim Memorization. We
expand this assumption from the instance level to
the token level, assuming an LM will memorize
some tokens in seen instances. We measure the
percentage of tokens in an instance ranked as the
k most likely in casual language modeling (Mem
k). The k value of 1 represents greedy decoding,
and larger than 1 simulates the decoding with top
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LM #
Params

Training
Phase

#
Epochs

Trainset
Size

Batch
Size

Seen & Unseen Datasets
Used in Our Case Study

Pythia (Biderman et al., 2023) 70M - 12B
Pretraining

≈ 1.5 825 GiB 2M Pile (Gao et al., 2020)
OLMo-2 (OLMo et al., 2024) 7B ≈ 2 22.4 TB 4M AlgebraicStack (Azerbayev et al., 2023)
Zephyr-7B-β(Tunstallet al., 2023) 7B Supervised

Fine-tuning
1-3 9.3 GB 512 UltraChat (Ding et al., 2023)

BioMistral-NLU (Fu et al., 2025) 7B 2 3.6 GB 64 Medical-NLU (Fu et al., 2025)

Table 2: LMs and datasets used in the case study. Except for the UltraChat dataset, each dataset contains multiple
subsets from different domains. The trainset refers to the whole trainset used in each LM’s corresponding training
phase, as described in their original paper, which is a superset of seen & unseen datasets used in our case study.

Training Phase Pretaining Supervised Fine-tuning
Model Pythia-6.9B OLMO-2-7B Zephyr-7B-β BioMistral-NLU-7B

Assumptions & Metric Youtube-
Subtitles ArXiv Github-

Coq
Github-
Isabelle

Ultra
Chat

DC-
MTSample

RE-
2012temp

PPL_50 50.7 50.7 47.1 50.9 55.3 51.9 62.5
PPL_100 50.4 51.1 48.2 53.1 59.1 60.0 95.3
PPL_200 49.6 50.9 48.5 51.6 60.1 58.9 99.4
Min 5% token 48.5 51.3 49.4 54.0 63.6 47.4 92.9
Min 15% token 48.6 51.3 49.3 53.6 63.0 51.7 93.3

A1

Min 25% token 48.5 51.4 49.3 53.1 61.5 53.3 93.4
Mem 5 49.1 52.7 52.1 48.7 52.2 47.9 41.4
Mem 15 48.6 51.9 50.6 58.6 53.1 49.1 45.2A4
Mem 25 48.2 51.6 49.4 59.2 53.1 50.3 48.9
Entropy 5 49.3 52.0 47.2 52.3 54.3 55.4 93.2
Entropy 15 49.0 52.0 47.8 52.1 54.1 54.8 93.1A6
Entropy 25 48.9 51.9 48.6 52.5 54.0 54.1 93.1

Average AUC 49.0 51.8 49.0 53.3 55.9 52.0 74.1
Seen 13.2+-16.0 7.9+-3.7 10.5+-8.1 8.4+-5.2 5.3+-4.6 1.7+-0.2 1.4+-0.1

PPL
Unseen 12.7+-10.6 8.0+-3.6 9.9+-7.2 9.2+-6.5 6.2+-4.1 1.8+-0.2 3.0+-1.6

Table 3: Average MIA AUC for different LMs. For LMs evaluated on multiple subsets (domains) of the same
dataset, we present the results from the subsets with the lowest and highest average AUC. The last two rows, marked
as ‘PPL_200’, represent the average perplexity ± STD, from the first 200 tokens within every instance. The color
green represents AUCs higher than 60.

k token sampling.
Assumption A6: Generation Variation. We

evaluate the assumption that, given a seen prefix se-
quence, the LM exhibits less variation (i.e., higher
certainty) in predicting the next token under dif-
ferent token sampling strategies. Since lower en-
tropy indicates greater certainty, we measure en-
tropy over the top k most likely tokens (Entropy
k) (see Appendix A.4 for details).

6.2 Experiment Design

To enhance the generalizability of our results, we
evaluate these assumptions using four different
types of LLMs, with datasets used in different train-
ing phases, shown in Table 2. We also investigate
the impact of model size on MIA performance,
using seven Pythia models with parameter sizes
ranging from 70M to 13B.

Except for the UltraChat dataset, each dataset
consists of multiple smaller subsets from different
domains. For our experiments, we randomly sam-
ple 9 subsets from each, and consider each subset
as an individual dataset. To minimize distribution

shifts between seen and unseen datasets, we ran-
domly select 1,000 instances from the training split
(seen) and 1,000 instances from the test split (un-
seen) within each dataset. If a test split is unavail-
able, we sample from the validation split. If there
are fewer than 1,000 unseen instances, we use the
entire test split, ensuring that each split contains at
least 100 instances.

Following prior work (Shi et al., 2023), we evalu-
ate MIA performance using the area under the ROC
curve (AUC) at the instance level, representing the
probability that a seen instance has a better score
(higher or lower) than an unseen instance (Google).

6.3 Results

6.3.1 Within-Domain MIA
Table 3 shows the AUC for each MIA method
across representative subsets (domains) of each
dataset. Complete results for all datasets and do-
mains are available in Appendix A.5.1.

On pretraining datasets, all metrics perform
close to random guessing, with AUC close to 50.
We also observed the same pattern with different
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sizes of Pythia LMs. Our results for Assumption
A1 are consistent with critiques they received (see
Section 4.2.1). We suspect that during pretraining,
LMs are more likely to learn underlying data distri-
butions, instead of memorizing specific instances.

On fine-tuning datasets, we observed a great
variation in MIA AUC across domains. The best-
performing metric, PPL_200 on the RE-2012temp
dataset, can have an AUC as high as 99.4. This
suggests that data contamination from memoriz-
ing training instances remains a risk during the
fine-tuning phase. Overall, the performance of the
perplexity-based metric improves as the number of
tokens increases. This trend is linked to the fine-
tuning process, where tokens at the beginning of
the training instance serve as input prompts but are
not explicitly learned during training.

6.3.2 Cross-Domains MIA with Data
Distribution Shifts

Within the same domain, the similar average PPL
between seen and unseen instances indicates that
they have similar underlying distributions, but also
a high variation (STD). However, PPL differs a lot
across domains. We therefore examine the impact
of distribution shifts from different domains on the
MIA performance, with the scenario where seen
and unseen instances are from different domains.

Figure 1: Average MIA AUC for the Pythia-6.9b model
with PPL_200, when the seen and unseen instances are
from different domains. The abbreviations represent the
domains in Table 12 in the Appendix A.5.1.

We present the AUC with PPL_200 in Figure
1. The AUC is high in the top-right corner when
seen instances are from a domain with lower aver-
age PPLs and unseen instances are from a domain
with higher average PPLs. Conversely, the bottom-

left corner has low AUCs. This indicates that the
accuracy of PPL_200-based MIA highly depends
on the domain difference, instead of the seen vs.
unseen distinction. More information about the
PPL_200 distribution within and across domains
is in Appendix A.5.2. A similar trend is observed
with other metrics (see Appendix A.5.2 & A.5.3).

7 Discussion

In our case study, we observed the evaluated MIA
approaches perform well only on certain domains
of datasets used during the fine-tuning phase, but
not during the pretraining phase. This discrepancy
may be attributed to the significantly larger dataset
and batch sizes employed in the pretraining phase.

Together, our case study and prior research show
that 6 out of the 8 assumptions listed in Table 1 can
often be invalid under certain conditions. The other
two unverified assumptions, key information mem-
orization (A5) and answer change due to memoriza-
tion (A8), depend on very specific requirements,
complicating their evaluation. Overall, our findings
suggest that MIA remains a challenging task.

The limited effectiveness of MIA in pretraining
phases suggests detecting data contamination in
benchmarks remains an important challenge for
LLM evaluation. While poor MIA performance
may indicate a lack of direct instance memoriza-
tion, models could still learn underlying distribu-
tional patterns of benchmark data, enabling artifi-
cially high performance on the benchmark datasets
(Dekoninck et al., 2024). On the other hand, pri-
vacy and copyright risks persist, as LLMs might
learn from sensitive/proprietary data (e.g., patented
concepts) without triggering MIA alarms.

8 Conclusion

In this study, we present a comprehensive survey of
50 studies focused on data contamination detection
and their underlying assumptions. Our theoretical
analysis reveals that these assumptions may not
apply consistently across different contexts.

Our case studies showed that 3 out of the 8 as-
sumptions are not universally applicable across all
training phases and dataset domains, especially for
datasets used in the pretraining stage. Our cross-
domain MIA experiments additionally show that
many assumptions measure an LM’s goodness of
fit, which is not necessarily the result of instance
memorization due to data contamination. Thus,
detecting data contamination remains challenging.
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9 Limitations

In this study, we reviewed 50 papers on data con-
tamination detection, but there may be additional
relevant studies not captured by our collection
methods. We primarily focus on data contamina-
tion detection approaches for English LMs. Other
detection approaches for non-English LMs, data
modalities beyond text, and other machine learn-
ing techniques may exist and could potentially be
transferable to English LMs.

Several factors influence an LM’s ability to mem-
orize an instance. The relationship between MIA
performance and the training dataset (e.g., domain,
size, batch size), as observed in our case study, may
vary for other LMs and their respective datasets.

10 Ethical Considerations

In this work, we employed multiple LMs and their
training sets, which may contain sensitive and/or
identifiable information. For example, the Pile
(Gao et al., 2020) includes content crawled from
the Internet. The BioMistral-NLU-7B and its train-
ing set contain datasets derived from de-identified
clinical notes (Fu et al., 2025). Therefore, we only
downloaded the necessary instances and published
the numerical results from our experiments. In
our project GitHub, we only release our code for
data sampling and MIA approaches to ensure re-
producibility; we do not publish any actual data
instances or LMs. We recommend the community
to check the corresponding regulations before de-
ploying the datasets and LMs for other purposes.
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A Appendix

A.1 Table of Notations

We present the notations used in this manuscript in
Table 4.

A.2 Risks and Mitigation Approaches for
Data Contamination

During our paper collection, we identify the rel-
evant research on the risks and mitigation strate-
gies for data contamination, which does not in-
volve proposing or evaluating existing detection ap-
proaches for data contamination. While excluding
those papers from the main text of this manuscript,
we provide their citations in Table 5 in this Ap-
pendix.

A.3 Case Study for Instance Similarity

To assess the applicability of instance similarity-
based detection approaches (see Section 4.1), we
analyzed how frequently their requirements, R1
and R2, are met. We reviewed the top 10 models
from the Vellum LLM leaderboard6. As demon-
strated in Table 6, none of the models fulfilled R1,
the most basic requirement. However, some mod-
els disclose their cut-off date for collecting training
data (Achiam et al., 2023; OpenAI).

6https://www.vellum.ai/llm-leaderboard#model
-comparison. Accessed on Oct 6, 2024.
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Notation Definition
x A language instance, as a sequence of tokens.

(xp, xs)
A prefix-suffix instance pair, which is a
common data format in natural
language generation (NLG) tasks.

(xc, xk)
A context-key instance pair from slot-filling
tasks, as defined in Requirement R5.

M A language model.

M·(x)

M ’s output respect to an input x, given
a decoding setup ·. If · is not specified,
we consider it as a fixed, but unknown
decoding state.

D A dataset, as a set of language instances.
DM M ’s training set.

b(x, x′)

Binary indicator function for instance-level
contamination, which takes two instances
x and x′ as inputs, and returns False (0) or
True (1), based on the instance similarity.

S(x, x′)
A function accessing the similarity between
two instances, x and x′ and outputs
a real value.

f(M,x)
Gold standard for instance-level
contamination, as defined in Equation 1.

PM (x)
The probability of the instance x given
an LM M .

Min p%
Token

The average probabilities of top p%
least likely tokens in an instance x, based
on a given LM M .

τ The contamination threshold for functions.

Var({M·(xp)})
The measure of variations of outputs
produced by M under diverse, different
sampling strategies. given xp

PPL_k
The perplexity from an instance’s first
k tokens.

Entropy k
The entropy of the top k most likely tokens
for the next position, defined by Equation 10.

Eval(M,D)
The evaluation result of an LM M on a
dataset D.

Table 4: Table of notations.

Model Citation Meet Require.
R1 R2

Claude 3.5 Sonnet Anthropic (2024b) No -
Claude 3 Opus Anthropic (2024c) No -
Gemini 1.5 Pro Pichai and Hassabis (2024) No -
GPT-4 Achiam et al. (2023) No -
Llama 3 Instruct - 70B Meta AI (2024) No -
Claude 3 Haiku Anthropic (2024a) No -
GPT-3.5 OpenAI No -
Mixtral 8x7B Jiang et al. (2024) No -
GPT-4o OpenAI (2024b) No -
GPT-4o mini OpenAI (2024a) No -

Table 6: None of the top 10 LMs, in the LLM Leader-
board by Vellum meet the requirements of disclosing
pre-training corpora (R1).

A.4 Entropy Calculation
In this section, we explain the procedure for ver-
ifying Assumption A6. In the context of casual
language modeling, we consider an LM M with a
given prefix sequence xp. Assumption A6 assumes
that given xp, if M has seen an instance with the
same prefix, it will generate similar responses, re-
gardless of the sampling strategy used. Since the
verification of this assumption can be influenced
by various sampling strategies, we quantify the

variance in the model’s output by measuring the en-
tropy of the token probabilities, which indicates the
model’s certainty about the next token generation.

To do this, we first compute the probability dis-
tribution of the next token over the model’s vo-
cabulary. Given that LLMs may contain vocab-
ularies with over 50,000 tokens (Biderman et al.,
2023), most tokens have a very low likelihood of
being sampled. Therefore, we focus on the Entropy
among the top k most likely tokens (Entropy k).

At every token position xp, we calculate the en-
tropy based on the probabilities of the top k tokens,
using the following formula:

Entropyk(M,xp)

= −
k∑

i=1

Pi(M(xp)) logPi(M(xp))

(10)

Given an instance x with N tokens, the Entropy
k for x is the average Entropyk(M,xp) across all
tokens xp in x:

Entropyk(M,x) = (
N∑

p=1

Entropyk(M,xp))/N

(11)

A.5 More Case Study Results
A.5.1 Within-Domain Detection with

Different LMs
In this section, we present the detailed detection
AUCs for all models: (1) different sizes of Pythia
Models: Pythia-70m (Table 7), Pythia-160m (Ta-
ble 8), Pythia-410m (Table 9), Pythia-1.4b (Table
10), Pythia-2.8b (Table 11), Pythia-6.9b (Table 12),
Pythia-12b (Table 13); (2) OLMo-2-7B (Table 14);
and (3) BioMistral-NLU-7B (Table 15).

Similar to the results in Table 3, we observed
close-to-random performance in the detection
AUCs for all Pythia models and dataset domains.
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Citation Content
Zhou et al. (2023) Impact of direct data contamination on test performance
Dekoninck et al. (2024) Impact of indirect data contamination on test performance
Jacovi et al. (2023) Strategies to prevent contamination in benchmark datasets
Zhu et al. (2024) Strategies to mitigate contamination in benchmark datasets
Haimes et al. (2024) Mitigating data contamination in benchmarks through retrospectively creating held-out datasets.
Kusa et al. (2024) Proposing an evaluation pipeline in Systematic Literature Review to mitigate data contamination.
McCoy et al. (2023) Evaluating the novelty of LM-generated text
Maini et al. (2024a) Studying unlearning methods to make LMs forget specific training data
Bowen et al. (2024) Studying contributing factors behind data poisoning, with corrupted or malicious training data.
Mitchell et al. (2023) Differentiates human vs. machine-generated text using probability curvature

Table 5: Seleted relevant work to risks and mitigation approaches for data contamination.

Assumptions & Metric Github FreeLaw Enron-
Emails ArXiv OpenWeb-

Text2
Open-

Subtitles
Hacker-

News
Youtube-
Subtitles Pile-CC

A1

PPL_50 49.4 49.3 50.5 51.3 51.7 47.4 48.9 52.2 49.9
PPL_100 50.3 50.2 51.5 50.8 50.5 46.2 48.1 52.0 50.8
PPL_200 50.3 50.1 53.5 50.5 49.9 44.3 51.1 50.8 51.5
Min 5% token 51.7 49.9 49.9 50.6 48.9 45.0 50.4 49.9 51.1
Min 15% token 51.5 49.5 51.0 50.5 49.5 45.4 50.3 49.6 51.6
Min 25% token 51.4 50.1 51.0 50.9 49.9 45.5 49.5 49.8 51.3

A4
Mem 5 47.6 49.2 49.5 51.5 50.8 48.8 49.5 50.0 51.2
Mem 15 49.6 49.5 48.7 50.1 50.4 49.0 49.3 50.4 51.2
Mem 25 49.6 49.9 48.3 50.6 50.3 48.2 49.6 49.6 51.0

A6
Entropy 5 50.8 49.7 48.2 52.1 49.9 47.4 49.3 50.4 50.2
Entropy 15 50.6 49.8 48.9 52.4 49.4 47.5 49.3 50.5 50.3
Entropy 25 50.6 49.9 49.2 52.4 49.0 47.7 49.3 50.2 50.2

Average AUC 50.1 49.7 49.8 51.2 50.1 47.3 49.4 50.3 50.9

PPL200
Seen 11.1±12.7 13.1±8.9 29.5±21.4 28.9±13.5 46.0±23.5 36.7±21.1 42.9±16.7 45.3±41.3 50.2±33.7
Unseen 11.5±20.9 14.2±25.3 31.7±22.4 29.0±13.1 45.4±22.5 33.7±18.2 43.7±18.8 44.3±28.7 51.5±35.6

Table 7: Average contamination detection AUC for the pythia-70m model, under different domains within the Pile
dataset. ‘PPL_200’ represents the average perplexity ± STD, from the first 200 tokens within every instance. The
color green represents AUCs higher than 60.

A.5.2 Metric Distribution in Histogram

In this section, we present the distributions of dif-
ferent metrics both within domain and across do-
mains.

We compare the MIA performance between the
GitHub and Pile-CC domains, from the Pythia-6.9b
model. As shown in Figure 2 & 3, when the seen
and unseen instances are from the same domain,
their PPL_200 distributions are very similar. How-
ever, as shown in Figure 4 & 5, when the seen and
unseen instances are from different domains, their
PPL_200 distributions are very different. This in-
dicates that the PPL_200 relates more to domain
shifts, instead of the contamination status of indi-
vidual instances.

Figure 2: The density plot of PPL_200 from the Pythia-
6.9b model, when both seen and unseen instances are
from the Github domain.

Figure 3: The density plot of PPL_200 from the Pythia-
6.9b model, when both seen and unseen instances are
from the Pile-CC domain.
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Assumptions & Metric Github FreeLaw Enron-
Emails ArXiv OpenWeb-

Text2
Open-

Subtitles
Hacker-

News
Youtube-
Subtitles Pile-CC

A1

PPL_50 49.7 49.0 50.3 51.2 51.9 47.6 48.6 52.3 50.0
PPL_100 50.3 49.4 51.2 51.0 50.4 46.1 47.6 51.7 50.7
PPL_200 50.1 49.4 53.0 50.7 49.6 44.2 50.5 50.7 51.7
Min 5% token 51.9 49.9 51.0 50.5 48.6 45.0 48.6 49.4 51.3
Min 15% token 51.4 49.8 50.9 50.8 49.5 45.1 50.1 49.3 51.4
Min 25% token 51.3 49.7 51.3 51.3 49.6 45.6 49.4 49.2 51.4

A4
Mem 5 48.3 49.1 50.4 52.8 51.2 52.6 50.1 49.9 51.1
Mem 15 48.2 49.2 50.1 51.4 51.5 48.0 49.1 49.3 50.0
Mem 25 48.4 49.0 49.9 50.5 51.4 46.2 49.2 49.4 50.2

A6
Entropy 5 51.3 49.1 48.9 52.1 49.8 47.0 48.8 50.1 50.6
Entropy 15 51.1 49.3 49.4 52.2 49.7 47.5 48.9 50.1 50.6
Entropy 25 51.0 49.4 49.6 52.1 49.4 47.7 48.9 50.0 50.6

Average AUC 50.1 49.3 50.4 51.5 50.3 47.7 49.2 49.9 50.8

PPL200
Seen 7.4±8.5 8.2±5.6 18.8±13.5 18.6±8.6 29.9±31.5 45.8±598.9 29.0±11.0 30.9±28.2 33.3±25.3
Unseen 7.6±13.5 8.8±16.7 20.3±14.8 18.7±8.3 28.5±12.8 24.8±11.4 29.6±13.1 30.4±23.0 34.4±25.9

Table 8: Average contamination detection AUC for the pythia-160m model, under different domains within the Pile
dataset. ‘PPL_200’ represents the average perplexity ± STD, from the first 200 tokens within every instance. The
color green represents AUCs higher than 60.

Assumptions & Metric Github FreeLaw Enron-
Emails ArXiv OpenWeb-

Text2
Open-

Subtitles
Hacker-

News
Youtube-
Subtitles Pile-CC

A1

PPL_50 49.5 49.5 50.1 50.7 51.0 47.4 48.8 51.5 50.0
PPL_100 50.5 49.2 51.3 50.9 49.7 45.5 47.6 51.0 50.3
PPL_200 50.3 49.3 53.0 50.6 48.8 44.6 50.9 50.2 52.0
Min 5% token 52.2 49.8 50.3 50.7 49.0 45.5 49.3 48.9 51.4
Min 15% token 51.6 49.6 50.9 51.0 49.3 46.0 50.2 49.0 51.2
Min 25% token 51.4 49.4 51.0 51.3 48.9 46.4 50.2 48.9 51.0

A4
Mem 5 47.5 49.2 51.3 53.0 50.5 50.3 49.4 49.7 50.3
Mem 15 47.6 49.2 51.3 52.6 51.8 50.3 49.7 50.1 50.4
Mem 25 48.2 49.2 51.1 51.2 51.9 52.6 50.5 49.2 51.2

A6
Entropy 5 51.2 49.1 49.4 52.2 50.5 47.4 49.0 49.5 50.2
Entropy 15 51.0 49.3 49.9 52.0 49.7 48.0 48.9 49.5 50.2
Entropy 25 50.9 49.4 50.1 51.9 49.4 48.2 48.9 49.2 50.3

Average AUC 50.0 49.4 50.8 51.9 50.1 48.4 49.5 49.7 50.7

PPL200
Seen 4.7±5.0 5.5±3.4 11.8±8.2 12.7±6.0 18.8±9.7 20.0±9.1 19.8±7.5 20.6±22.2 22.3±17.0
Unseen 4.8±7.2 5.9±11.4 12.9±9.6 12.7±5.7 18.2±8.3 18.5±7.9 20.4±9.3 20.0±14.8 23.0±17.8

Table 9: Average contamination detection AUC for the pythia-410m model, under different domains within the Pile
dataset. ‘PPL_200’ represents the average perplexity ± STD, from the first 200 tokens within every instance. The
color green represents AUCs higher than 60.

Figure 4: The density plot of PPL_200 from the Pythia-
9.6b model, when the seen instances are from the
Github domain, and the unseen instances are from the
Pile-CC domain.

Figure 5: The density plot of PPL_200 from the Pythia-
9.6b model, when the seen instances are from the Pile-
CC domain, and the unseen instances are from the
Github domain.

We observe a similar trend for other metrics:
Min 25% Prob (Figure 6, 7, 8, 9), Mem 25 (Figure
10, 11, 12, 13), Entropy 25 (Figure 14, 15, 16, 17).
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Assumptions & Metric Github FreeLaw Enron-
Emails ArXiv OpenWeb-

Text2
Open-

Subtitles
Hacker-

News
Youtube-
Subtitles Pile-CC

A1

PPL_50 49.5 49.0 49.8 50.7 50.7 48.1 48.5 51.0 49.8
PPL_100 50.7 49.5 50.9 51.0 49.2 45.6 47.4 50.9 50.2
PPL_200 50.8 49.8 51.9 50.9 48.7 44.4 50.9 49.9 52.0
Min 5% token 51.8 50.5 49.7 51.0 49.2 46.2 48.9 48.4 51.1
Min 15% token 51.5 49.7 50.3 51.3 49.6 47.0 50.1 48.7 51.1
Min 25% token 51.4 49.4 50.5 51.5 49.1 47.8 50.0 48.6 51.2

A4
Mem 5 48.8 49.1 50.9 53.0 51.0 51.5 49.6 49.1 50.5
Mem 15 48.0 49.5 50.8 51.4 51.2 51.7 49.8 48.9 50.4
Mem 25 48.7 49.5 51.1 51.0 51.5 50.9 49.7 48.7 51.0

A6
Entropy 5 51.2 49.0 49.9 52.0 49.9 46.6 48.7 49.3 50.2
Entropy 15 51.0 49.1 50.1 51.9 49.5 48.0 48.7 48.9 50.2
Entropy 25 51.0 49.2 50.1 51.8 49.3 48.5 48.8 48.7 50.3

Average AUC 50.2 49.4 50.5 51.7 50.1 48.6 49.2 49.1 50.6

PPL200
Seen 3.6±3.8 4.4±2.4 8.5±5.9 9.8±4.6 14.2±7.4 16.0±6.9 15.3±5.7 16.3±19.2 17.1±12.5
Unseen 3.6±4.9 4.7±8.6 9.3±7.3 9.9±4.4 13.7±6.4 14.8±6.1 15.7±7.2 15.7±12.3 17.8±13.9

Table 10: Average contamination detection AUC for the pythia-1.4b model, under different domains within the Pile
dataset. ‘PPL_200’ represents the average perplexity ± STD, from the first 200 tokens within every instance. The
color green represents AUCs higher than 60.

Assumptions & Metric Github FreeLaw Enron-
Emails ArXiv OpenWeb-

Text2
Open-

Subtitles
Hacker-

News
Youtube-
Subtitles Pile-CC

A1

PPL_50 49.4 48.6 49.4 50.7 50.5 47.8 48.0 51.1 49.9
PPL_100 50.5 49.2 50.6 50.9 49.0 45.9 47.5 51.0 50.4
PPL_200 50.6 49.6 51.7 50.8 48.6 45.3 50.8 49.9 52.2
Min 5% token 51.6 49.8 49.9 51.2 49.5 47.2 48.2 48.6 51.6
Min 15% token 51.5 49.6 50.3 51.4 49.5 48.1 49.4 48.7 51.3
Min 25% token 51.2 49.4 50.1 51.4 48.9 48.8 49.7 48.6 51.0

A4
Mem 5 48.7 49.1 50.7 52.8 50.9 51.5 49.5 50.2 50.9
Mem 15 48.2 48.9 50.4 51.0 51.3 50.4 48.9 49.7 50.2
Mem 25 48.9 48.5 50.5 50.8 51.4 50.0 48.7 49.3 50.2

A6
Entropy 5 50.9 49.1 49.5 51.9 50.0 47.5 48.9 49.0 50.6
Entropy 15 50.8 49.2 49.8 51.9 49.5 48.7 49.0 48.9 50.5
Entropy 25 50.8 49.2 50.0 51.8 49.3 49.1 49.0 48.8 50.6

Average AUC 50.1 49.2 50.2 51.6 50.0 48.8 49.0 49.4 50.8

PPL200
Seen 3.2±3.3 3.9±2.1 7.2±5.1 8.7±4.1 12.5±6.5 14.0±6.2 13.3±4.9 14.4±17.3 15.0±10.2
Unseen 3.2±4.4 4.2±7.8 7.9±6.3 8.7±3.9 12.1±5.8 13.1±5.5 13.6±6.1 13.9±11.3 15.7±12.2

Table 11: Average contamination detection AUC for the pythia-2.8b model, under different domains within the Pile
dataset. ‘PPL_200’ represents the average perplexity ± STD, from the first 200 tokens within every instance. The
color green represents AUCs higher than 60.

Figure 6: The density plot of Min 25% Prob when both
seen and unseen instances are from the Github domain.

Figure 7: The density plot of Min 25% Prob when
both seen and unseen instances are from the Pile-CC
domain.
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Assumptions & Metric Github FreeLaw Enron-
Emails ArXiv OpenWeb-

Text2
Open-

Subtitles
Hacker-

News
Youtube-
Subtitles Pile-CC

A1

PPL_50 49.7 48.9 49.5 50.7 50.3 47.7 48.5 50.7 49.8
PPL_100 50.7 49.4 50.3 51.1 48.8 46.2 47.4 50.4 50.4
PPL_200 50.8 49.4 51.1 50.9 48.4 46.7 50.7 49.6 52.1
Min 5% token 51.7 49.8 49.2 51.3 49.7 48.2 47.8 48.5 50.9
Min 15% token 51.6 49.7 49.8 51.3 49.1 49.5 49.7 48.6 51.1
Min 25% token 51.3 49.3 50.0 51.4 48.8 50.2 49.8 48.5 51.1

A4
Mem 5 49.2 48.7 50.6 52.7 50.5 50.0 49.9 49.1 50.8
Mem 15 48.9 48.9 51.0 51.9 51.8 50.6 49.2 48.6 50.7
Mem 25 49.6 48.8 51.1 51.6 51.1 50.3 49.5 48.2 51.3

A6
Entropy 5 51.0 49.1 49.5 52.0 49.7 48.4 49.1 49.3 50.9
Entropy 15 50.8 49.1 49.7 52.0 49.3 49.6 49.0 49.0 50.9
Entropy 25 50.8 49.2 49.8 51.9 49.1 50.0 49.0 48.9 51.0

Average AUC 50.3 49.2 50.2 51.8 49.9 49.4 49.3 49.0 50.9

PPL200
Seen 2.8±3.0 3.6±1.9 6.1±4.4 7.9±3.7 11.2±5.8 12.2±5.9 12.2±4.5 13.2±16.0 13.7±9.1
Unseen 2.9±4.1 3.8±6.2 6.7±5.6 8.0±3.6 10.9±5.3 11.5±5.1 12.4±5.4 12.7±10.6 14.3±11.0

Table 12: Average contamination detection AUC for the pythia-6.9b model, under different domains within the Pile
dataset. ‘PPL_200’ represents the average perplexity ± STD, from the first 200 tokens within every instance. The
color green represents AUCs higher than 60.

Assumptions & Metric Github FreeLaw Enron-
Emails ArXiv OpenWeb-

Text2
Open-

Subtitles
Hacker-

News
Youtube-
Subtitles Pile-CC

A1

PPL_50 49.9 48.7 49.5 51.0 50.4 48.5 48.3 50.7 49.8
PPL_100 50.9 49.6 50.2 50.9 48.9 47.4 47.3 50.2 50.3
PPL_200 50.9 49.5 51.0 51.0 48.5 48.4 50.5 49.4 51.8
Min 5% token 51.9 50.2 49.2 51.4 49.5 49.2 47.8 48.7 50.9
Min 15% token 51.7 49.4 49.8 51.3 49.0 50.2 49.4 48.7 51.0
Min 25% token 51.4 49.1 49.9 51.4 48.6 50.8 49.3 48.8 51.0

A4
Mem 5 49.0 49.0 50.9 53.9 51.0 52.6 49.6 48.5 50.9
Mem 15 48.5 49.5 51.0 52.5 51.1 49.0 49.1 48.3 50.0
Mem 25 49.5 49.2 50.6 52.7 50.7 48.6 49.2 48.2 51.4

A6
Entropy 5 51.0 49.0 49.5 52.0 50.0 49.2 48.8 49.3 51.0
Entropy 15 50.9 49.1 49.7 51.9 49.6 50.6 48.8 49.1 50.9
Entropy 25 50.9 49.2 49.8 51.8 49.4 51.0 48.8 49.0 50.9

Average AUC 50.3 49.2 50.2 52.1 49.9 49.9 48.9 48.9 50.8

PPL200
Seen 2.6±2.8 3.4±1.7 5.4±4.0 7.5±3.5 10.4±5.4 11.0±5.7 11.2±4.0 12.3±15.0 12.9±8.4
Unseen 2.7±3.7 3.6±5.6 5.9±5.0 7.5±3.4 10.1±5.0 10.6±5.0 11.5±5.0 11.8±10.0 13.4±10.1

Table 13: Average contamination detection AUC for the pythia-12b model, under different domains within the Pile
dataset. ‘PPL_200’ represents the average perplexity ± STD, from the first 200 tokens within every instance. The
color green represents AUCs higher than 60.

Figure 8: The density plot of Min 25% Prob from the
Pythia-9.6b model, when the seen instances are from
the Github domain, and the unseen instances are from
the Pile-CC domain.

Figure 9: The density plot of Min 25% Prob from the
Pythia-9.6b model, when the seen instances are from
the Pile-CC domain, and the unseen instances are from
the Github domain.
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Assumptions & Metric cpp python Github-Lean julia tex Github-Isabelle fortran Github-Coq r

A1

PPL_50 51.1 51.7 49.9 50.2 49.4 50.9 50.3 49.1 49.5
PPL_100 51.4 51.6 52.0 51.3 50.4 51.7 50.6 49.1 51.4
PPL_200 51.8 50.8 51.2 51.6 50.0 50.8 51.1 49.0 53.0
Min 5% token 50.1 51.1 49.0 52.0 49.4 51.2 48.1 49.4 50.9
Min 15% token 50.2 50.4 50.7 51.2 48.6 50.4 48.1 49.0 51.5
Min 25% token 50.3 49.8 51.3 51.0 48.7 49.9 48.2 48.9 52.4

A4
Mem 5 51.3 48.2 51.8 49.0 48.2 55.4 50.8 50.5 51.6
Mem 15 52.0 49.6 50.7 48.3 48.5 54.6 50.6 50.4 52.0
Mem 25 51.6 50.5 50.1 49.1 49.4 54.3 50.4 50.8 50.9

A6
Entropy 5 50.2 49.4 51.7 51.3 48.8 49.0 48.8 48.9 54.1
Entropy 15 50.2 49.4 51.7 51.3 48.8 48.9 48.8 49.0 53.5
Entropy 25 50.3 49.5 51.8 51.2 48.8 49.0 48.8 49.0 53.5

Average AUC 50.9 49.8 50.9 50.4 49.0 51.6 49.6 49.7 52.2

PPL200
Seen 4.3±2.6 6.7±3.9 6.9±3.4 8.3±5.0 8.3±5.1 8.7±5.4 9.5±6.8 10.4±8.3 10.5±7.0
Unseen 4.6±3.0 6.8±4.1 6.9±3.0 8.6±5.6 8.7±6.3 9.2±6.5 9.9±7.6 9.9±7.2 10.5±5.6

Table 14: Average contamination detection AUC for the OLMo-2-1124-7B model, under different domains within
the Algebraic Stack dataset. ‘PPL_200’ represents the average perplexity ± STD, from the first 200 tokens within
every instance. The color green represents AUCs higher than 60.

Assumptions & Metric RE-
2012temp

STS-
B

DC-
MTSample

RE-
2011coref

events-
BioRed

events-
NLMGene

events-
2012temp

events-
2006deid

events-
BioASQ

A1

PPL_50 62.5 83.3 51.9 60.5 50.4 49.4 50.0 51.4 67.6
PPL_100 95.3 93.3 60.0 70.0 50.0 48.8 50.4 59.3 52.6
PPL_200 99.4 96.8 58.9 70.5 89.4 87.4 76.2 79.0 66.1
Min 5% token 92.9 93.4 47.4 72.6 61.4 76.1 57.5 78.0 74.9
Min 15% token 93.3 93.4 51.7 70.1 88.3 85.3 71.2 82.3 69.4
Min 25% token 93.4 92.1 53.3 68.5 94.1 80.5 74.8 76.5 64.7

A4
Mem 5 41.4 48.0 47.9 46.6 49.8 52.0 51.0 52.5 49.2
Mem 15 45.2 53.3 49.1 46.4 48.9 52.3 51.9 52.7 52.8
Mem 25 48.9 55.9 50.3 48.4 46.6 52.1 52.6 53.1 52.5

A6
Entropy 5 93.2 80.5 55.4 63.9 94.5 65.3 74.3 62.6 43.1
Entropy 15 93.1 82.0 54.8 64.5 94.5 66.6 74.2 63.7 46.0
Entropy 25 93.1 82.6 54.1 64.7 94.5 67.1 74.4 64.2 47.6

Average AUC 74.1 73.1 52.0 59.0 69.8 63.5 62.4 62.8 55.1

PPL200
Seen 1.4±0.1 1.5±0.1 1.7±0.2 2.1±0.8 2.8±0.3 3.1±0.4 3.2±0.4 3.3±0.6 8.1±2.3
Unseen 3.0±1.6 2.0±0.3 1.8±0.2 3.6±2.4 3.8±0.9 4.3±1.0 4.1±1.1 4.6±1.6 9.4±2.7

Table 15: Average contamination detection AUC for the BioMistral model, under different domains within the
Medical-NLU dataset. ‘PPL_200’ represents the average perplexity ± STD, from the first 200 tokens within every
instance. The color green represents AUCs higher than 60.

Figure 10: The density plot of Mem 25 from the Pythia-
6.9b model, when both seen and unseen instances are
from the Github domain.

Figure 11: The density plot of Mem 25 from the Pythia-
6.9b model, when both seen and unseen instances are
from the Pile-CC domain.
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Figure 12: The density plot of Mem 25 from the
Pythia-9.6b model, when the seen instances are from
the Github domain, and the unseen instances are from
the Pile-CC domain.

Figure 13: The density plot of Mem 25 from the Pythia-
9.6b model, when the seen instances are from the Pile-
CC domain, and the unseen instances are from the
Github domain.

Figure 14: The density plot of Entropy 25 from the
Pythia-6.9b model, when both seen and unseen in-
stances are from the Github domain.

Figure 15: The density plot of Entropy 25 from the
Pythia-6.9b model, when both seen and unseen in-
stances are from the Pile-CC domain.

Figure 16: The density plot of Entropy 25 from the
Pythia-9.6b model, when the seen instances are from
the Github domain, and the unseen instances are from
the Pile-CC domain.

Figure 17: The density plot of Entropy 25 from the
Pythia-9.6b model, when the seen instances are from
the Pile-CC domain, and the unseen instances are from
the Github domain.
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A.5.3 Cross-Domain Detection with Different
Metrics

In this section, we present AUC results with other
metrics, when seen and unseen instances are from
different domains, for the Pythia-6.9b model. The
metrics include Min 25% token (Figure 18), Mem
25 (Figure 19), and Entropy 25 (Figure 20). All
metrics exhibit higher AUC values in the top-right
corner and lower values in the bottom-left, while
diagonal points approach random guessing.

Figure 18: Average contamination detection AUC for
the Pythia-6.9b model with the metric, Min 25% token,
when the seen and unseen instances are from different
domains. The abbreviations represent the domains in
Table 12.

Figure 19: Average contamination detection AUC for
the Pythia-6.9b model with the metric, Mem 25, when
the seen and unseen instances are from different do-
mains. The abbreviations represent the domains in Table
12.

Figure 20: Average contamination detection AUC for
the Pythia-6.9b model with the metric, Entropy 25,
when the seen and unseen instances are from different
domains. The abbreviations represent the domains in
Table 12.
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