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Abstract

Recent efforts to integrate low-rank adaptation
(LoRA) with the Mixture-of-Experts (MoE)
have managed to achieve performance com-
parable to full-parameter fine-tuning by tun-
ing much fewer parameters. Despite promis-
ing results, research on improving the effi-
ciency and expert analysis of LoRA with MoE
is still in its early stages. Recent studies
have shown that experts in the MoE architec-
ture have different strengths and also exhibit
some redundancy. Does this statement also
apply to parameter-efficient MoE? In this pa-
per, we introduce a novel parameter-efficient
MoE method, MoE-LoRA with Layer-wise Ex-
pert Allocation (MoLA) for Transformer-based
models, where each model layer uses a vary-
ing number of LoRA experts. We investi-
gate several architectures with varying layer-
wise expert configurations. Experiments on six
well-known NLP and commonsense QA bench-
marks demonstrate that MoLA achieves equal
or superior performance compared to all base-
lines on top of both LLAMA-2, Mistral, and
Gemma. We find that allocating more LoRA
experts to middle layers further enhances the
effectiveness of models with a certain number
of experts in total. The redundancy of the ex-
perts is more obvious in the lower layers. With
much fewer parameters, this allocation strategy
outperforms the setting with the same num-
ber of experts in every layer. This work can
be widely used as a plug-and-play parameter-
efficient tuning approach for various applica-
tions. The code has been made available at
https://github.com/GCYZSL/MoLA.

1 Introduction

Large Language Models (LLMs) have shown im-
pressive proficiency and transfer learning capabili-
ties across a variety of tasks and domains (Chowd-
hery et al., 2022; Zhang et al., 2023b; Anil et al.,

*Work done as external collaboration.

2023; Jiang et al., 2024; Singhal et al., 2022). How-
ever, fine-tuning modern LLMs demands huge com-
putational resources due to the vast number of
parameters. To mitigate this issue, the research
community is increasingly focusing on parameter-
efficient fine-tuning (PEFT) methods to dramati-
cally reduce training costs, such as p-tuning (Liu
et al., 2022b) and low-rank adaption (LoRA) (Hu
et al., 2022). Despite its training efficiency, PEFT
methods’ performance in fine-tuning LLMs is still
limited.

Recent studies show that combining PEFT with
the Mixture of Experts (MoE) holds promise for
leveraging MoE in a parameter-efficient fashion
(Zadouri et al., 2023; Liu et al., 2023; Dou et al.,
2023). Most of these methods apply MoE on
LoRA, called LoRA-MoE. For Transformer mod-
els (Vaswani et al., 2017), LoRA learns a pair of
low-rank matrices as an adapter for a given dense
linear layer, effectively modifying the layer’s be-
havior without substantial change to the original
model parameters. Instead of learning one pair
of low-rank matrices, LoRA-MoE learns multiple
pairs of low-rank matrices, called LoRA experts,
and a router to compute the weights of each expert
for inputs. During the LLM fine-tuning phase, pre-
trained weights of dense layers remain fixed, while
LoRA experts and the router are trained to adapt
the pre-trained weights. While the initial results are
promising, research into achieving more efficient
and effective integration is still in its infancy.

Moreover, recent MoE analyses indicate that
many experts may be redundant due to representa-
tional collapse or learned routing policy overfitting
(Chen et al., 2023; Zoph et al., 2022). More ex-
perts in a layer may cause the representation to
overfit the training data, as the data is processed in
a more fine-grained manner. This insight leads us
to think about the number of experts to use in dif-
ferent layers in the Transformer model, motivating
us to explore two questions.
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(i) Are there any redundant experts in parameter-
efficient MoE? (ii) What strategy should be used to
allocate the number of LoRA experts in each layer?

To address these questions, we introduce a new
parameter-efficient MoE approach, MoE-LoRA
with Layer-wise Expert Allocation (MoLA), com-
bining LoRA and MoE with layer-wise expert allo-
cation. Users can flexibly assign a different number
of LoRA experts to each Transformer layer. We
study several typical architectures with different
layer-wise expert configurations. Using a fixed
number of experts in total, we allocate them dif-
ferently, with either lower layers or higher layers
having more experts. We evaluate our MoLA ap-
proach on six benchmarks, including NLP and com-
monsense question-answering tasks, on three well-
known language models, LLAMA-2, Mistral, and
Gemma, to demonstrate the effectiveness of our
MoLA approach.

Key Findings: Our extensive experiments reveal
that experts in lower layers are more similar to
each other and thus exhibit more redundancy. With
a fixed number of experts, more LoRA experts
should be allocated to the middle layers of the
Transformer model to enhance its effectiveness.
Our key contributions are:

• We present a new parameter-efficient MoE
method, MoLA, with flexible layer-wise ex-
pert allocation on the Transformer model.
MoLA integrates LoRA and MoE and intro-
duces flexibility in assigning different num-
bers of experts to different transformer layers,
reducing expert redundancy and diversifying
information granularity. MoLA is a plug-and-
play approach and can be applied to diverse
models and tasks.

• We study several MoLA variants on LLAMA-
2, Mistral, and Gemma each with different
layer-wise expert configurations. Experiments
on six benchmarks show that all MoLA config-
urations significantly outperform other PEFT
baselines, showing the efficacy of our ap-
proach.

• We further compare different layer-wise con-
figurations of expert allocation. Overall, the
configuration that has more LoRA experts
in the middle layers and fewer in the lower
layer outperforms all other configurations.
Such specialized expert allocation configura-
tion enables models to achieve enhanced per-

formance vis-a-vis other configurations, even
with much fewer parameters, demonstrating
improved scalability.

• Our comprehensive analysis shows that ex-
perts in lower layers are more similar than
those in middle and higher layers and thus
have higher redundancy, providing insights
into our observations.

2 Related Work

2.1 Parameter-Efficient Tuning

Parameter-efficient tuning of LLMs has garnered
considerable attention because it is cost-effective
for fine-tuning LLMs. Li and Liang (2021) and Liu
et al. (2022b) propose soft prompting concatenated
to either the embedding layer or intermediate lay-
ers of the Transformer model. However, these ap-
proaches involve adding extra embedding tokens to
the sequence, potentially compromising efficiency
during inference, especially in the case of long in-
put contexts. Hu et al. (2022) introduces the LoRA
parameter-efficient adaptation technique, which
uses low-rank decomposition matrices of dense
weight matrices of Transformers. LoRA achieves
decent performance for fine-tuning LLMs with-
out additional inference costs. Similarly, Liu et al.
(2022a) uses task-specific vectors to modify atten-
tion activation, also avoiding extra inference costs.
Inspired by these approaches, our approach com-
bines the MoE technique with parameter-efficient
tuning approaches and leverages the layer-wise ex-
pert allocation to push the limit of performance
further.

2.2 Parameter-Efficient MoE

Some recent efforts have studied integrating MoE
and parameter-efficient tuning methods to improve
the effectiveness of instruction tuning. Liu et al.
(2023) applies MoE with LoRA matrices for fine-
tuning language models on various medical domain
tasks. This method takes the task type as an addi-
tional input for training the router, which requires
additional prior knowledge during inference. Our
approach does not require additional prior knowl-
edge since our MoLA experts are learned without
supervision. Dou et al. (2023) introduced LoRA-
MoE, a novel adapter architecture that combines
MoE and LoRA within the feed-forward layer of
each Transformer block. This effort also studies
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Figure 1: The overview of MoLA architecture. MoLA applies LoRA-MoE on any pre-trained Transformer model
with layer-wise expert allocation. Each layer employs a different number of experts. During training, the pre-trained
weights are freeze and only LoRA experts are tuned as the adapters on the weights.

how to mitigate knowledge forgetting in LLMs dur-
ing traditional supervised fine-tuning. However,
this paper only applies LoRA-MoE on the feed-
forward layer in each Transformer block. MoLA,
on the other hand, applies LoRA experts across
each dense weight matrix in the Transformer, fur-
ther improving both the performance and scala-
bility of parameter-efficient fine-tuning. Zadouri
et al. (2023) introduces a framework that com-
bines MoE with various parameter-efficient ar-
chitectures, including LoRA and IA3 (Liu et al.,
2022a), called MoLORA and MoV. Their experi-
ments show that their framework leverages instruc-
tion tuning more effectively than prior parameter-
efficient architectures, improving the zero-shot ca-
pabilities of LLMs. Buehler and Buehler (2024),
use a set of trained LoRA adapters and dynam-
ically mix them. However, the previously men-
tioned methods do not consider the layer-wise allo-
cation of experts. Our MoLA approach introduces
a novel design that allows for a varying number of
experts in each layer, therefore further improving
the effectiveness of LoRA-MoE approaches. Qing
et al. (2024) explores allocating different numbers
of PEFT parameters to various model layers via
layer training quality.

3 Preliminaries

Mixture of Experts The MoE architecture
(Shazeer et al., 2017) applies sparse sub-modules,
called experts, to various inputs via a router module.
The router module intelligently employs different
experts for different types of inputs, thus scaling up
model parameters with a constant computational

cost. MoE has shown promising effectiveness on
the Transformer model (Shazeer et al., 2017). The
MoE layer consists of N identical and independent
feed-forward neural networks {E}Ni=1 as experts.
The router is a gating function with a trainable
weight matrix Wr. Given an input x, the router
maps x to an N -dimensional vector, which corre-
sponds to the number of experts. The router uses
a softmax function to compute a probability distri-
bution of the weights of outputs from the expert
networks. Following standard MoE architectures,
only the top K experts, determined by the router,
are chosen for the computation. Additionally, an
auxiliary loss, called load balancing loss, is used
on each MoE layer to promote a balanced top-k
selection by pushing the router to have equitable
workload distribution among experts. Equation 1
mathematically represents the MoE layer where y
is the output embedding from the MoE layer. With
fine-tuning, different experts focus on processing
different types of information or tasks and thus
provide finer granularity.

y =
K∑

i=1

TopK(Softmax(Wrx),K)i∑K
i=1 TopK(Softmax(Wrx),K)i

Ei(x)

(1)

LoRA LoRA is a popular parameter-efficient tun-
ing approach that is widely used in LLM fine-
tuning (Hu et al., 2022; Zhang et al., 2023a;
Dettmers et al., 2023). LoRA reparameterizes the
fine-tuning update for each parameter matrix as
a low-rank matrix to reduce the number of train-
ing parameters significantly. Given a pre-trained
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linear layer with a weight matrix W0 ∈ Rdq×dp ,
LoRA creates two low-rank trainable matrices A
and B, where A ∈ Rdq×r, B ∈ Rr×dp , and
r ≪ min(dq, dp). Thus, the dimension of ABx
equals the dimension of W0x. Equation 2 mathe-
matically describes this process, and the output of
LoRA is h. During training, W0 is frozen and does
not receive gradient updates, while A and B are
updated.

h = W0x+△Wx = W0x+ABx (2)

The matrix A is initialized with a random Gaus-
sian distribution, and matrix B is initialized to zero.
The initialization results in the same outputs as
the original pre-trained model. When fine-tuning
LLMs, the LoRA approach can be applied to all
the linear layers in the Transformer model or its
variants. Compared with tuning the original weight
matrix, LoRA dramatically reduces the number of
training parameters while keeping reasonable per-
formance.

4 MoE-LoRA with Layer-wise Allocation

Combining MoE and LoRA has shown promising
results (Zadouri et al., 2023; Liu et al., 2023; Dou
et al., 2023). However, most such efforts only re-
place experts with LoRA adapters under the MoE
framework, and each layer has a fixed number of
experts. Some shortcomings of MoE may persist
in these methods. For instance, experts in MoE
may be redundant due to representational collapse
or learned routing policy overfitting (Chen et al.,
2023; Zoph et al., 2022). Inspired by this insight,
we argue that the number of LoRA experts need
not be the same across all layers.

We thus introduce a novel parameter-efficient
tuning approach, called MoE-LoRA with Layer-
wise Allocation (MoLA), which combines LoRA
and MoE techniques with flexible layer-wise ex-
pert allocation. Since most LLMs use Transformer-
based architectures, we mainly study how to apply
MoLA to Transformers. Instead of allocating the
same number of experts to all layers of the Trans-
former, MoLA uses different numbers of experts
on different layers. In this section, we first describe
the details of our architecture and then propose sev-
eral layer-wise expert allocations based on different
assumptions.

4.1 The MoLA Architecture
MoLA integrates LoRA adapters into the MoE
framework and each layer may have a different

number of experts. When training a pre-trained
LLM with LoRA, instead of decomposing each
weight matrix of a dense linear layer into a pair of
low-rank matrices, we create multiple pairs of low-
rank matrices — each pair is called a LoRA expert.
A router module is learned to route each input token
to different LoRA experts. Given a Transformer
model with m layers, we allocate Nj experts for
layer j and have

∑m
j=1Nj experts in total. Specif-

ically, given a pre-trained weight matrix W jt
0 ∈

Rdq×dp from the module t in layer j, we create Nj

pairs of low-rank matrices {Ajt}Nj

i=1, {Bjt}Nj

i=1. As
in the case of LoRA, each matrix Ajt

i is initialized
from a random Gaussian distribution. We set Bjt

i

to zero, where Ajt
i ∈ Rdq×r, Bjt

i ∈ Rr×dp , and
r ≪ min(dq, dp). Then, a router Sjt

i with a train-
able weight matrix W jt

r ∈ Rdq×Nj is used to spec-
ify different LoRA experts for the input x. As in
the original MoE, MoLA selects the top K experts
for computation and applies the load balancing loss
on each layer. Figure 1 shows an overview of the
architecture. The mathematical representation is:

Sjt
i (x) =

TopK(Softmax(W jt
r x),K)i∑K

i=1 TopK(Softmax(W jt
r x),K)i

(3)

hjt = W jt
0 x+

K∑

i=1

Sjt
i (x)Ajt

i B
jt
i x (4)

Eq. 3 represents the router with the input x, and
Eq. 4 mathematically shows the LoRA experts in
MoLA, where hjt is the output embedding. This
MoLA architecture provides flexibility in modify-
ing the number of experts for each Transformer
layer. The next section addresses the question of
how experts should be allocated in each layer.

4.2 Configurations of Layer-wise Expert
Allocation

MoE works like an ensemble method, with multiple
experts learning fine-grained information. Layers
with more experts have stronger fitting capabili-
ties, but the architecture is more complicated. One
intuition is that we should allocate more experts
to layers that are required to process diverse edge
cases and fine-grained information. To study how
LoRA experts should be allocated in each Trans-
former layer, we propose five types of layer-wise
expert configurations based on different assump-
tions. Figure 2 visualizes the overview of these
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Figure 2: Five types of layer-wise expert allocations of
MoLA. A longer rectangle indicates a greater number
of LoRA experts.

five configurations indicated in red color. Section 5
describes detailed experiments to compare these
configurations.

MoLA Triangle (MoLA-△) Many studies have
analyzed layer-wise representations of Transformer
models. Generally, lower layers learn more token-
level features, such as word meaning, syntax, or
grammar, while higher layers capture more abstract,
high-level information. As token-level informa-
tion is subtle and diverse, one assumption is that
token-level information needs more experts for fine-
grained understanding, while high-level informa-
tion requires fewer experts for generalization. Our
MoLA Triangle (MoLA-△) architecture is based
on this assumption and allocates experts in a “tri-
angle" shape: lower layers have more experts than
higher layers.

MoLA Inverted-Triangle (MoLA-▽) Unlike
MoLA-△, another assumption is that using more
experts for token-level information may create re-
dundancy in processing. As higher layers learn
more abstract and high-level information, and these
features are used for downstream tasks, they may
require more experts. More experts may enhance
the architecture to process complicated problems
by leveraging experts to learn fine-grained and task-
specific patterns. Based on this intuition, we design
the MoLA Inverted-Triangle (MoLA-▽) configura-
tion where lower layers are allocated fewer experts
while higher layers have more experts.

MoLA Hourglass (MoLA-▷◁) A third model as-
sumes that both lower and higher layers require
more experts as they focus on processing basic fea-
tures and abstract features. The middle layers play
a role in aggregating the basic features and mapping
them to a high-dimensional space for abstract rea-
soning, requiring fewer fine-grained features. Our
MoLA Hourglass (MoLA-▷◁) architecture uses this

assumption to allocate experts in an “hourglass"
shape, where lower and higher layers have more
experts than the middle layers.

MoLA Diamond (MoLA-3) Unlike MoLA-▷◁,
research in representation learning suggests that
acquiring low-level features and using extracted
abstract representation for downstream tasks is
relatively more sensitive than learning an effec-
tive and expressive representation in middle lay-
ers (Long et al., 2018; Bengio et al., 2013). More-
over, a superior representation is crucial for en-
hancing the model’s abstract ability, e.g., reason-
ing. Consequently, the newly designed MoLA Dia-
mond (MoLA-3) architecture features a ’Diamond’
shape, where the middle layers are equipped with
more experts.

MoLA Rectangle (MoLA-□) The last configu-
ration is the original design of MoE, where each
Transformer layer has the same number of experts.
Most of the recent studies adopt this expert alloca-
tion design. We call this MoLA Rectangle (MoLA-
□) and use it as a baseline.

5 Experiments

5.1 Experimental Settings

We examined the performance of our MoLA
approach via direct fine-tuning on downstream
tasks. Furthermore, We show the transferrability
of MoLA by performing instruction tuning first
and then fine-tuning for downstream tasks in Ap-
pendix B. The abilities of MoLA in continuous
learning settings are demonstrated in Appendix C.
To make the comparisons straightforward and
clear, we designed five allocation configurations of
MoLA for the large language model as described
in Section 4.2. We take LLaMA-2-7B (Touvron
et al., 2023) and Mistral-7B (Jiang et al., 2023),
which contain 32 layers, as our base models. Ad-
ditionally, experiments with Gemma (Team et al.,
2024) are shown in Appendix E. For MoLA-△,
we allocate 8 experts to each layer for the first 8
layers, 6 experts to each layer for the next 8 lay-
ers, 4 experts to each layer for 17-24 layers, and 2
experts to each layer for the last 8 layers, which is
denoted as 8642. Following the same notation, we
allocate MoLA Inverted Triangle as 2468. The allo-
cations for Hourglass, MoLA Diamond, and MoLA
Rectangle are 8228, 2882, and 5555 separately. No-
tably, to make the comparison fair, we make the
total number of experts the same for all the variants,
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resulting in the same number of trainable parame-
ters. The trainable parameter number of LLaMA-2
is 105,635,840, which is a 1.5% trainable param-
eter number of the pre-trained base model. We
also adopt auxiliary loss for balancing the top-k
selection of routing following Switch Transform-
ers (Fedus et al., 2022).

5.2 Task and Data

MoLA can be used to fine-tune LLMs on down-
stream tasks and/or fine-tune instructions. To
show its effectiveness, we study both natural lan-
guage processing (NLP) tasks and commonsense
reasoning (CR) tasks. For NLP tasks, we evalu-
ate three popular datasets, including Microsoft’s
Research Paraphrase Corpus (Dolan and Brock-
ett, 2005), Recognizing Textual Entailment (RTE)
dataset (Wang et al., 2019), and Corpus of Lin-
guistic Acceptability (COLA) (Wang et al., 2019).
For commonsense reasoning tasks, we evaluate
three recent question-answering benchmarks, in-
cluding ScienceQA (Lu et al., 2022), Common-
senseQA (Talmor et al., 2019), and OpenbookQA
(Mihaylov et al., 2018). We follow the task-specific
fine-tuning framework to evaluate their effective-
ness. The details of the datasets are introduced in
Appendix A.

5.3 Recent Competitive Baselines

We compare MoLA with three parameter-efficient
tuning approaches, prompt tuning (Lester et al.,
2021), LLaMA-Adapter (Zhang et al., 2023b), and
LoRA(Hu et al., 2022). We also compare against
full-parameter fine-tuning. Prompt tuning presents
soft prompting concatenated to the embedding
layer of the Transformer model. Soft prompts are
a set of virtual tokens pre-appended to the textual
prompt and passed to the LLM. During fine-tuning,
the LLM is frozen and only the virtual tokens
are optimized, providing a lightweight tuning ap-
proach. LLaMA-Adapter is an adaption method for
LLaMA instruction tuning and has a set of learn-
able adaption prompts that are pre-appended to the
word tokens at higher transformer layers. A zero-
initialized attention mechanism with zero gating is
used to inject new instructional cues into LLaMA.
LoRA was briefly described in Section 4. The rank
of LoRA is set to 64. In our evaluation, LLMs
are fine-tuned on the downstream training dataset
via different parameter-efficient tuning approaches.
Based on the availability of test set labels, we eval-
uated COLA, RTE, and CommonsenseQA on their

validation set and others on the test set.

5.4 Implementation
We use LLAMA2-7B (Touvron et al., 2023) and
Mistral-7B (Jiang et al., 2023) as our base language
models across all the experiments. We do a grid
search on the number of training epochs, including
10, 15, and 20 epochs for downstream task fine-
tuning. We use AdamW (Loshchilov and Hutter,
2017) as the optimizer with a learning rate of 3e-4.
The cutoff length is set to 256 following Sanh et
al.(Sanh et al., 2022), and the batch size is 128.
The random seed is set to 10. The rank of each
LoRA expert is 8 and we adopt top-2 for the router.
LoRA alpha is set to 16 and LoRA dropout is 0.05,
following the default LoRA settings. We applied
LoRA to four weight matrices in the self-attention
module (Wq , Wk, Wv , Wo) and three weight
matrices in the MLP module (Wgate, Wdown, Wup).
All experiments were conducted on the servers with
eight A100-40G GPUs and three A6000 GPUs. It
takes around 4 hours to train on the COLA dataset.

5.5 Results
Comparison with Baselines Table 1 shows the
results for the direct fine-tuning setting using
LLAMA-2 where each number is the accuracy
(%) for each dataset. From the table, LoRA-based
approaches (LoRA and MoLA) significantly out-
perform prompt-tuning-based baselines (Prompt
Tuning and LLaMA-Adapter). For LoRA-based
methods, the original LoRA with rank 64 is used as
our baseline. We first evaluate the MoLA-□ with
eight experts at each layer, annotated as MoLA-
□(8888), where the number of parameters is the
same as the LoRA baseline. We then reduce the
sum of the configuration number from 32 (8× 4)
to 20 in total, with only 62.5% of the parameters,
and evaluate the five different configurations as de-
scribed in Section 5.1. MoLA variants outperform
the LoRA baseline on all the benchmarks. Specif-
ically, MoLA-▽ beats LoRA on all six datasets
— the performance improvements of MoLA-▽ are
larger on the commonsense QA tasks compared
to the NLP tasks. It even outperforms the MoLA-
□(8888) on three benchmarks with nearly 40%
fewer parameters. The results demonstrate the ef-
fectiveness and scalability of MoLA.

Tables 1 and 4 show that MoLA-△ and -▷◁
perform worse than MoLA-□ and MoLA-▽, es-
pecially in the QA task. Of all MoLA variants,
MoLA-▽ generally achieves the best performance,
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Table 1: Comparison with different methods using LLaMA-2. MoLA-▽ outperforms other variants or baselines and
even achieves competitive or superior performance with MoLA-□ (8888), with nearly 40% fewer parameters. The
ratio of trainable parameters

Models (# of Experts) MRPC COLA RTE ScienceQA CommonsenseQA OpenbookQA Trainable Parameters

Full-Parameter 87.13% 86.29% 87.73% 93.12% 77.48% 80.4% 6,738,415,616

Prompt Tuning 49.91% 59.25% 54.17% 36.78% 37.76% 46.2% 163,840
LLaMA-Adapter 71.94% 47.56% 72.93% 73.33% 73.55% 71.8% 5,242,912
LoRA 83.13% 86.29% 85.92% 91.01% 75.51% 77.0% 159,907,840
MoLA-□ (8888) 84.70% 85.81% 88.45% 91.91% 77.89% 82.8% 169,017,344

MoLA-□ (5555) 84.23% 86.28% 85.20% 92.04% 78.13% 80.0% 105,635,840
MoLA-△ (8642) 84.64% 85.43% 84.84% 91.90% 77.23% 77.6% 105,635,840
MoLA-▷◁ (8228) 83.48% 86.00% 86.28% 91.41% 76.25% 78.8% 105,635,840
MoLA-▽ (2468) 83.48% 86.87% 86.28% 92.36% 78.95% 79.6% 105,635,840
MoLA-3 (2882) 83.01% 86.19% 89.17% 92.00% 77.81% 82.6% 105,635,840

MoLA-□ (4444) 82.90% 85.62% 86.28% 91.73% 77.40% 80.8% 84,508,672
MoLA-△ (6532) 83.54% 85.43% 85.20% 92.00% 77.64% 80.2% 84,508,672
MoLA-▷◁ (6226) 83.42% 85.71% 84.48% 92.00% 76.58% 80.0% 84,508,672
MoLA-▽ (2356) 81.97% 85.91% 87.37% 92.18% 77.97% 81.2% 84,508,672
MoLA-3 (2662) 82.96% 85.62% 87.37% 92.27% 77.48% 79.8% 84,508,672

outperforming all other variants on five bench-
marks. The confidence intervals are demonstrated
in Appendix. F. We conducted a Friedman test to re-
ject the null hypothesis that all algorithms perform
equally. Following this, we applied the Wilcoxon
signed-rank test to perform pairwise comparisons
between the algorithms (Prompt Tuning, LLaMA-
Adapter, LoRA, and MoLA-▽) across six bench-
marks, identifying significant differences in their
performance. We applied an FDR correction to ad-
just the p-values to address multiple comparisons.
The results confirm that the superior performance
of MoLA-▽ over the other baselines is statistically
significant, with all adjusted p-values below the
standard threshold of 0.05.

6 Model Analysis and Ablation Studies

6.1 Analysis of Layer-wise Experts
Importance

To investigate which configuration is better further,
we analyze the layer-wise expert’s importance by
showing the performance with different base mod-
els, including Mistral in Table. 2 and Gemma in
the Appendix. E. We also compare the results with
different total configuration numbers (20 and 16)
in both Table. 1 and Table. 2.

From Table. 1 and Table. 2, we find that MoLA-
▽ and MoLA-3 perform better than other config-
urations with different base models and configura-
tion numbers. These experiments show that allo-
cating more experts to the middle layers is more
effective than other strategies. Notably, we want
to point out that with a relatively smaller total con-
figuration numbers (16), the MoLA’s potential may

not be fully released, making the superiority of
MoLA-▽ and MoLA-3 less stable. Furthermore,
the choice between MoLA-▽ and MoLA-3 is re-
lated to the base model, which will be discussed in
the next section and Appendix. H.

6.2 Analysis of Layer-wise Experts
Redundancy

In the previous section, we observed that allocating
more LoRA experts to middle layers provides more
performance gains. We also find MoLA-▽ is the
best choice for LLaMA-2 and Gemma, but MoLA-
3 is more suitable for Mistral. To explain the differ-
ence between models, we present the results of the
extreme configurations of MoLA, including (10 2 2
2, 2 10 2 2, 2 2 10 2, 2 2 2 10) in Table. 3. We find
that all base models’ lower layers exhibit more re-
dundancies with lower average performance on all
tasks, e.g., layers 1-4 for LLaMA and layers 1-8 for
Mistral. Furthermore, the redundancies for specific
layers are different for different base models. This
property can lead to different configuration choices,
MoLA-▽ or MoLA-3 for different models.

To better analyze the models, we formally define
the layer-wise expert redundancy as follows:
Definition 6.1. Expert Redundancy measures the
layer-wise difference between expert modules in
MoE architecture for Transformer models.

When two selected experts are similar, they may
overlap and create some redundancy. To quantita-
tively examine the Expert Redundancy of Trans-
former layer j, we calculate the average value
of the Frobenius Norm between any two differ-
ent LoRA experts’ weight matrices in each self-
attention module from layer j. Figure 3 presents
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Table 2: Comparison with different configurations of MoLA using Mistral.

Models (# of Experts) MRPC COLA RTE ScienceQA CommonsenseQA OpenbookQA

LoRA 86.02% 87.05% 89.53% 94.20% 81.40% 88.8%

MoLA-□ (5555) 86.55% 87.34% 90.91% 94.74% 83.21% 88.8%
MoLA-△ (8642) 86.15% 87.63% 90.61% 95.05% 82.80% 89.6%
MoLA-▷◁ (8228) 86.43% 87.63% 90.61% 95.01% 81.90% 90.0%
MoLA-▽ (2468) 86.15% 87.34% 91.70% 95.28% 83.21% 90.0%
MoLA-3 (2882) 86.67% 88.78% 90.98% 94.78% 83.62% 90.6%

MoLA-□ (4444) 86.02% 87.92% 90.61% 94.69% 83.37% 89.2%
MoLA-△ (6532) 86.20% 87.25% 88.81% 94.74% 82.06% 89.4%
MoLA-▷◁ (6226) 86.84% 87.92% 89.90% 94.60% 82.88% 88.8%
MoLA-▽ (2356) 86.44% 87.15% 90.25% 95.32% 82.47% 89.8%
MoLA-3 (2662) 86.67% 88.02% 89.53% 94.43% 82.64% 88.2%

Table 3: Comparison with different extreme configurations of MoLA. The top block shows the results using
LLaMA-2 and the bottom block shows the results using Mistral.

LLaMA-2 MRPC COLA RTE S-QA C-QA O-QA AVG.

MoLA (10 2 2 2) 83.94% 84.47% 84.48% 92.36% 75.76% 77.2% 83.03%
MoLA (2 10 2 2) 82.90% 86.48% 87.73% 91.46% 77.97% 80.8% 84.56%
MoLA (2 2 10 2) 82.67% 85.71% 85.20% 91.28% 76.74% 81.0% 83.77%
MoLA (2 2 2 10) 82.96% 85.81% 85.92% 92.18% 76.90% 81.60% 84.23%

Mistral MRPC COLA RTE S-QA C-QA O-QA AVG.

MoLA (10 2 2 2) 86.49% 86.86% 91.33% 95.00% 81.49% 88.2% 88.50%
MoLA (2 10 2 2) 86.15% 87.25% 90.61% 94.51% 81.41% 88.6% 88.26%
MoLA (2 2 10 2) 86.73% 88.21% 90.98% 95.23% 82.97% 89.6% 89.10%
MoLA (2 2 2 10) 86.67% 87.92% 91.34% 95.01% 82.88% 89.2% 89.02%

the layer-wise average values of MoLA-□(8888)
for LLaMA-2 and Mistral, where both models are
trained via the sampled instruction-tuning dataset.
In the figure, the average value of the Frobenius
Norm per layer increases from lower layers to
higher layers, showing that experts in lower lay-
ers are more similar than those in higher layers.
We also find a similar pattern from other MoLA
configurations, as demonstrated in Appendix. D.
This observation supports our assumption that ex-
perts in lower layers of the Transformer model
suffer more expert redundancy. Therefore, within a
certain number of experts in total, allocating more
experts in higher layers is more effective in improv-
ing the model performance.

These experiments show that lower layers have
more redundancy. More experts with fine-grained
processing on token-level information may intro-
duce redundancy. In contrast, the middle and
higher layers require more experts because they
learn more abstract and high-level information.
More experts can enhance the architecture to learn
fine-grained and task-specific patterns for compli-
cated downstream problems. We therefore argue
that the number of experts at the middle and top

Figure 3: Average number of the Frobenius Norm be-
tween two different experts’ weight matrices for each
self-attention module from each layer. The left and right
figures are for the MoLA-□(8888) using LLaMA-2 and
Mistral, correspondingly. Both models are trained via
instruction tuning.

layers is important. In other words, if we would
like to prune the MoLAs, it is better to reduce the
number of experts at lower layers to reduce the
trainable parameters.

6.3 Analysis of Average Fusion Weights and
Selected Times of Experts

We also calculate the average fusion weights pro-
vided by the router and average times for experts
when they are selected, as shown in Figure 4. The
experiment is for MoLA-□(8888) MoLA using
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LLAMA-2. In Figure 4 (a), we find that most
fusion weights are around 0.5, which means the im-
portance of selected experts is similar most of the
time. Furthermore, in Figure 4 (b), although there
are several experts are not often selected, most of
the experts are selected frequently and utilized suf-
ficiently. With similar selected weights and times,
lower layers have more expert redundancy due to
more similar experts, again supporting our state-
ment.

Figure 4: (a) The average fusion weights for each expert.
(b) The average times for each expert when it is selected.

7 Conclusion

We introduce MoLA, a novel parameter-efficient
tuning approach that leverages layer-wise expert al-
location in the MoE and combines it with the LoRA
technique. We propose five layer-wise expert con-
figurations based on different assumptions. Our
comprehensive experiments on six popular bench-
marks, NLP and commonsense question-answering
tasks, and 3 language models demonstrate that
MoLA significantly outperforms other baselines.
Specifically, MoLA-▽ and MoLA-3 achieve the
best performance across all configurations, support-
ing our assumption that middle layers benefit from
more experts, while lower layers are more redun-
dant.. We conduct extensive analysis to explore

the layer-wise expert redundancy, observing that
lower layers of the Transformer model suffer higher
expert redundancy with MoLA tuning.

8 Limitations

Although MoLA-▽ and MoLA-3 demonstrate su-
perior performance by allocating more experts to
the middle layers, no single configuration can guar-
antee optimal performance across all tasks and
models within a specific budget. Due to compu-
tational resource constraints, it is impractical to
test every possible configuration, model, and bud-
get. Therefore, future research should focus on
developing automated methods to identify the most
effective configurations that achieve the best re-
sults across various tasks, using specific founda-
tional models and predetermined budgets. Addi-
tionally, the theoretical explanation for why middle
layers might require more experts and why there
may be more redundancies in the lower layers of
many large language models remains unexplored.
More in-depth theoretical analysis could illuminate
strategies for identifying the best configurations
and optimizing resource allocation.

9 Broader Impacts

This paper contributes to the advancement of
parameter-efficient tuning within the field of ma-
chine learning. To the best of our knowledge, it
does not directly raise any specific ethical concerns.
However, it is important to note that our research re-
lies on pre-trained large language models that may
exhibit preferential biases (Tang et al., 2023). Users
of these models should be cognizant of these bi-
ases and consider their potential implications. Our
approach is a plug-and-play parameter-efficient tun-
ing method and can be used for diverse tasks. We
push the performance limits of PEFT methods and
provide decent performance on LLM fine-tuning
while dramatically reducing training costs. We
believe that this research direction will benefit en-
ergy saving and advance the decarbonization of AI.
Also, efficient training efficiency and promising
performance promote wider groups of people to
leverage our approach on more practical problems.

Ethics Statement

As far as we are aware, there are no ethical consid-
erations related to our proposed method.
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A Datasets

In this section, we detail all the datasets in the
experiments. For NLP tasks, we evaluate three pop-
ular datasets, including Microsoft’s Research Para-
phrase Corpus (Dolan and Brockett, 2005), Recog-
nizing Textual Entailment (RTE) dataset (Wang
et al., 2019), and Corpus of Linguistic Accept-
ability (COLA) (Wang et al., 2019). For com-
monsense reasoning tasks, we evaluate three re-
cent question-answering benchmarks, including
ScienceQA (Lu et al., 2022), CommonsenseQA
(Talmor et al., 2019), and OpenbookQA (Mihaylov
et al., 2018). The details of the datasets are the
following:

Microsoft’s Research Paraphrase Corpus
(MRPC) consists of 5,801 sentence pairs collected
from newswire articles. Each pair is labeled by
whether it is a paraphrase or not, and the task is
to classify whether sentence pairs are paraphrases.
The dataset is divided into a training set with 4,076
sentence pairs and a testing set with 1,725 pairs.

The Recognizing Textual Entailment (RTE)
dataset comes from a series of annual textual entail-
ment challenges, including RTE1, RET2, RTE3,
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and RTE5. Sentence examples are constructed
based on news and Wikipedia text. This dataset is
a two-class classification, entailment or not entail-
ment, containing 2,490 training and 277 validation
samples.

The Corpus of Linguistic Acceptability (COLA)
consists of English acceptability judgments drawn
from books and journal articles on linguistic theory.
Each example is a sequence of words annotated
with whether it is a grammatical English sentence.
This corpus has 8,551 training samples and 1,043
validation samples for checking grammar.

ScienceQA is a commonsense question-
answering dataset collected from elementary and
high school science curricula containing 21,208
multimodal multiple-choice sentence questions.
Because this paper focuses on textual inputs,
we gathered all text-only samples and created a
training and test set of 6508 and 2224 samples,
respectively. ScienceQA has a rich diversity of
three subjects: natural science, language science,
and social science. To answer these questions,
models need to align with correct commonsense
knowledge.

CommonsenseQA is a commonsense reasoning
question-answering dataset that requires different
types of commonsense knowledge to predict the
correct answers. The dataset was generated by
Amazon Mechanical Turk workers and contains
9,740 training samples and 1,221 validation sam-
ples.

OpenbookQA is a commonsense question-
answering dataset for assessing human understand-
ing of a subject. It consists of 5,957 multiple-
choice elementary-level science questions with
4,957 training, 500 validation, and 500 test sam-
ples. To answer a question, models must probe
the understanding of a small “book" of 1,326 core
science facts and the application of these facts to
novel situations.

Besides all the evaluation benchmarks, we
also use an instruction-tuning corpus for training.
We randomly sampled 50,000 samples from the
OpenOrca (Lian et al., 2023) corpus. OpenOrca
is an instruction-tuning dataset consisting of aug-
mented FLAN data aligned with the distributions
demonstrated in ORCA (Mukherjee et al., 2023)
and it has 2.91M data samples across diverse tasks
or instructions.

B Transfer Learning

We present the superior performance of our MoLA
in transfer learning setting in this section. We per-
form instruction tuning (Wei et al., 2021; Sanh
et al., 2022; Mishra et al., 2022) with PEFT meth-
ods on an instruction-tuning dataset with cross-
entropy loss. We also adopt auxiliary loss for
balancing the top-k selection of routing following
Switch Transformers (Fedus et al., 2022). We then
fine-tune the pre-trained PEFT models on down-
stream tasks. We take LLaMA-2 (Touvron et al.,
2023), which contains 32 layers as our base model.
We make the total number of experts the same for
all the variants, i.e., the same number of trainable
parameters. The trainable parameter number is
105,635,840, which is a 1.5% trainable parameter
number of the pre-trained base model.

We trained the PEFT model on a sampled
instruction-tuning dataset for 3 epochs. Then we do
a grid search on the number of training epochs, in-
cluding 10, 15, and 20 epochs for downstream task
fine-tuning. The details of the implementation are
shown in Section 5.4. All experiments were con-
ducted on the servers with eight A100-40G GPUs.

Table. 4 presents the results, in accuracy(%), for
the instruction-tuning→fine-tuning setting. The
language model is first tuned via each PEFT ap-
proach on our instruction-tuning set. The model
is then fine-tuned on all downstream tasks. This
setting evaluates the transfer learning capability of
each PEFT approach. We only compare the LoRA-
based methods due to their superior transfer learn-
ing capabilities (vs. prompt-tuning-based methods).
Our results show that MoLA variants significantly
outperform LoRA on all the datasets. We observe
that instruction tuning provides more performance
gains using MoLA than LoRA. For example, our
MoLA-▽ outperforms LoRA by 0.3 on MRPC in
the direct fine-tuning setting, and this improvement
increases to 1.04 in this setting. With instruction
tuning, MoLA-▽ achieves either equal or better
performance compared with MoLA-□(8888) on all
the datasets even with much fewer parameters.

C Continuous Learning

MoE-based architectures leverage the sparse sub-
modules to process information, and thus, only
selected modules are optimized for different input
types. This feature may also provide more stable
performance for continuous learning. Here, we
explore the domain continuous learning ability of
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Table 4: Comparison with different methods on instruction-tuning & downstream fine-tuning. MoLA-▽ outperforms
other variants and shows promising transfer learning capability.

Models (# of Experts) MRPC COLA RTE ScienceQA CommonsenseQA OpenbookQA

LoRA 84.41% 84.95% 84.48% 91.01% 74.61% 76.6%
MoLA-□ (8888) 84.23% 85.72% 87.36% 92.13% 77.15% 78.4%

MoLA-□ (5555) 84.93% 84.56% 88.81% 91.73% 75.92% 77.6%
MoLA-△ (8642) 84.46% 85.23% 89.17% 91.41% 76.33% 78.8%
MoLA-▷◁ (8228) 84.35% 84.85% 87.72% 91.41% 75.02% 77.4%
MoLA-▽ (2468) 85.45% 86.19% 89.17% 92.36% 77.15% 78.4%

our MoLAs and perform experiments on the Sci-
enceQA dataset. We choose the 5 topics with the
most training samples including biology, physics,
chemistry, economics, and earth science. We con-
tinuously fine-tune MoLAs on new domains and
study the performance drop on previous domains.
Following Chaudhry et al. (2018), we calculate the
overall performance (OP):

OP =
1

t

t∑

i=1

Rt,i, (5)

where t is the number of domain and Rt,i denotes
the model’s accuracy on domain i after continu-
ously trained on domain t. We also propose a
performance drop score to measure the domain
forgetting by calculating the performance drop in
the continuous learning process, as illustrated in
the following equation:

PD =
1

t(t− 1)/2

t∑

k=2

k−1∑

i=1

(Rk,i −Rk−1,i), (6)

As shown in Table 5, MoLAs can achieve bet-

Table 5: Comparison with various MoLA in a continu-
ous setting.

Models OP ↑ PD ↑
LoRA 78.67% -2.17%
MoLA-□ (5555) 88.80% -0.6%
MoLA-▷◁ (8228) 83.82% -3.92%
MoLA-△ (8642) 88.84% -2.10%
MoLA-▽ (2468) 89.82% -0.47%

ter overall performance than LoRA. Specifically,
MoLA-▽ shows the superior ability to avoid do-
main knowledge forgetting by having a -0.47 per-
formance drop score, which aligns with our insights
that the higher layers have less expert redundancy.
LLAMA-2 is used in these experiments. The train-
ing epochs are 20, and we use the same hyper-
parameters as we used for direct fine-tuning. The

detailed results are shown in Table. 6, where the
score of Bio-Phy denotes the result when the model
is trained on the biology domain and tested on the
physics domain.

D Frobenius Norms of Different Experts
Allocation

We show the Frobenius Norms for various MoLA
using LLAMA-2 in Figure. 6. In the figure, the
top sub-figure is for the MoLA-▽ with configu-
ration as 2468; the middle sub-figure is for the
MoLA-△ with configuration as 8642; and the bot-
tom sub-figure is for MoLA-▷◁ with configuration
8228 after instruction tuning. Furthermore, the
Frobnenius Norms of MoLA-□(8888), and MoLA-
□ (5555) are illustrated in Figure. 5. All various
MoLAs follow the same pattern, and the differ-
ence between the weight matrices of the experts
becomes larger as the layer becomes higher. This
observation aligns with the insight that lower layers
are more redundant.

E Experiments with Gemma

As shown in Table. 7, we examined the direct fine-
tuning performance of our proposed MoLA ap-
proach with designed 5 allocation configurations of
MoLA for the Gemma (Team et al., 2024) which
contain 28 layers. For MoLA-△, we allocate 8
experts to each layer for the first 7 layers, 6 experts
to each layer for the next 8 layers, 4 experts to
each layer for 15-21 layers, and 2 experts to each
layer for the last 7 layers, which is denoted as 8642.
The batch size is 18, and other hyperparameters are
the same as other base models’ hyperparameters.
From the table, we can find our MoLA is better
than LoRA, and MoLA-▽ is the best choice, which
supports our arguments that middle layers are more
important and lower layers are more redundant.
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Table 6: The results in the continuous learning setting. Bio-Phy denotes that the model trained on the biology
domain is tested on the physics domain.

LoRA MoLA-△ (5555) MoLA-▷◁ (8228) MoLA-▽ (8642) MoLA-▽ (2468)

Bio-Bio 92.19% 94.71% 95.97% 95.97% 94.96%
Bio-Phy 61.46% 60.94% 64.06% 64.58% 66.67%
Bio-Chem 55.46% 63.87% 55.46% 57.98% 61.34%
Bio-Econ 60.71% 72.62% 66.67% 70.24% 66.67%
Bio-Earth 52.31% 63.08% 55.38% 52.31% 61.54%

Phy-Bio 88.16% 91.44% 91.44% 92.44% 91.69%
Phy-Phy 89.58% 89.06% 92.19% 90.10% 88.54%
Phy-Chem 55.46% 36.13% 51.26% 57.14% 52.10%
Phy-Econ 72.62% 79.76% 78.57% 80.95% 77.38%
Phy-Earth 61.54% 58.46% 76.92% 66.15% 63.08%

Chem-Bio 85.14% 90.43% 82.62% 89.67% 87.91%
Chem-Phy 81.77% 81.25% 85.42% 85.42% 91.15%
Chem-Chem 93.28% 94.96% 94.96% 95.80% 94.12%
Chem-Econ 59.52% 61.90% 58.33% 48.81% 72.62%
Chem-Earth 58.46% 60.00% 60.00% 52.31% 66.15%

Econ-Bio 78.84% 89.67% 83.12% 88.66% 87.15%
Econ-Phy 78.13% 88.02% 83.85% 87.50% 86.98%
Econ-Chem 70.59% 92.44% 92.44% 96.64% 94.12%
Econ-Econ 73.81% 82.14% 94.05% 94.05% 86.90%
Econ-Earth 38.46% 56.92% 60.00% 47.69% 61.54%

Earth-Bio 84.13% 88.66% 83.38% 86.15% 88.16%
Earth-Phy 77.08% 85.94% 81.77% 85.42% 91.67%
Earth-Chem 87.39% 93.28% 89.08% 94.12% 90.76%
Earth-Econ 78.57% 86.90% 83.33% 89.29% 89.29%
Earth-Earth 66.15% 89.23% 81.54% 89.23% 89.23%

Table 7: Comparison with different configurations of MoLA using Gemma.

Models (# of Experts) MRPC COLA RTE ScienceQA CommonsenseQA OpenbookQA

LoRA 85.73% 86.48% 90.97% 95.45% 81.98% 88.4%

MoLA-□ (5555) 85.85% 87.72% 90.25% 95.59% 82.47% 88.6%
MoLA-△ (8642) 86.43% 86.96% 91.33% 94.60% 82.55% 88.4%
MoLA-▷◁ (8228) 85.74% 87.63% 90.97% 95.68% 81.81% 88.6%
MoLA-▽ (2468) 86.96% 88.40% 92.05% 95.68% 82.72% 88.2%
MoLA-3 (2882) 86.38% 86.77% 89.53% 94.96% 82.48% 89.0%

F Confidence Intervals

We conducted experiments using three random
seeds (0, 1, and 2) on LLAMA-2 and calculated the
confidence intervals. For a 95% confidence level,
we used a z-score of 1.96. The results are presented
in Table 8.

G MoLA with different PEFT Methods

We combined our approach withPissa. Specifically,
we initialized each LoRA expert with Pissa on
LLaMA2, setting the rank to 8. We followed the
same hyperparameter settings and tested various
MoLA configurations as outlined in our main ex-
periments. We also conducted experiments using

the original Pissa baseline with a rank of 64, which
includes a higher number of trainable parameters.
The results are presented in Table. 9. We observe
that our MOLA is better than the Pissa baseline,
and the performance of all Pissa + MOLA configu-
rations improves with Pissa initialization. Notably,
Pissa + MoLA 2468 consistently achieves the best
performance, which is consistent with our previous
findings.

H Different Preferences for Different
Base Models

We attribute the phenomenon of different prefer-
ences for different base models to differences in
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Table 8: Confidence intervals of different configurations of MoLA using LLAMA-2.

Models (# of Experts) MRPC COLA RTE ScienceQA CommonsenseQA OpenbookQA

LoRA [82.37%, 83.12%] [85.66%, 86.28%] [85.21%, 86.15%] [90.16%, 91.01%] [75.45%, 76.66%] [77.01%, 78.06%]
MoLA-□ (8888) [83.49%, 85.01%] [85.43%, 86.58%] [86.75%, 88.46%] [91.90%, 92.94%] [76.76%, 79.07%] [79.88%, 82.79%]

MoLA-□ (5555) [84.00%, 84.35%] [85.15%, 86.65%] [85.13%, 87.19%] [91.54%, 92.51%] [76.02%, 78.11%] [79.95%, 80.85%]
MoLA-△ (8642) [82.68%, 84.78%] [85.39%, 85.72%] [84.86%, 87.22%] [91.41%, 92.16%] [76.32%, 77.38%] [77.45%, 79.49%]
MoLA-▷◁ (8228) [82.83%, 84.28%] [85.50%, 85.99%] [86.30%, 88.66%] [91.03%, 92.30%] [75.65%, 78.11%] [78.81%, 80.79%]
MoLA-▽ (2468) [83.06%, 83.74%] [85.19%, 87.07%] [86.28%, 86.76%] [91.52%, 92.39%] [76.88%, 79.27%] [79.55%, 82.32%]
MoLA-3 (2882) [82.93%, 83.99%] [86.08%, 86.30%] [87.63%, 89.26%] [91.61%, 92.02%] [76.50%, 78.40%] [79.63%, 82.64%]

Table 9: LoRA expert with Pissa on LLaMA2

Models (# of Experts) MRPC COLA RTE ScienceQA CommonsenseQA OpenbookQA

Pissa 83.01% 84.56% 86.28% 91.1% 75.59% 77.6%

Pissa + MoLA-□ (5555) 84.45% 86.56% 86.88% 92.14% 78.19% 80.6%
Pissa + MoLA-△ (8642) 83.96% 85.81% 86.37% 91.97% 77.49% 78.8%
Pissa + MoLA-▷◁ (8228) 83.70% 86.74% 87.29% 91.74% 77.34% 79.6%
Pissa + MoLA-▽ (2468) 84.71% 87.54% 88.76% 92.40% 78.97% 82.8%
Pissa + MoLA-3 (2882) 84.31% 86.19% 89.87% 92.07% 78.48% 82.6%

Figure 5: Average number of the Frobenius Norm be-
tween two different experts’ weight matrices for each
self-attention module from each layer. The top figure
is for the MoLA-□(8888), and the bottom figure is for
MoLA-□ (5555). Both models are trained via instruc-
tion tuning.

model architectures, pre-training strategies, and
the number of tokens used during the pre-training
phase. These factors impact the training quality
of individual layers, leading to differences in ex-
pert allocation preferences. To assess the train-
ing quality of each layer, we utilize the Heavy-
Tailed Self-Regularization (HT-SR) Theory (Ma-

Figure 6: The average number of the Frobenius Norm
among three different experts’ weight matrices at the
same layer for each self-attention module. The top
figure is for the MoLA-▽ with configuration as 2468;
the middle figure is for the MoLA-△ with configuration
as 8642; and the bottom figure is for MoLA-▷◁ with
configuration 8228 after instruction tuning.

honey and Martin, 2019), which examines heavy-
tailed (HT) structures in the Empirical Spectral
Density of weight matrices. This theory has been
effectively applied to model selection and layer-
wise adaptive training (Zhou et al., 2024), making
it a suitable framework for evaluating layer qual-
ity. Specifically, we measure the training quality
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of each layer based on the HT characteristics of its
ESDs, quantified by the HT metric PL Alpha Hill.
The following scores represent the layer-wise PL
Alpha Hill values for the LLAMA2 and Mixtral
models: LLAMA2 Scores: 2.14, 2.74, 3.03, 3.12,
3.2, 3.15, 3.01, 3.04, 2.79, 2.85, 2.75, 2.72, 2.96,
2.97, 3.03, 3.15, 3.45, 3.72, 4.02, 3.77, 4.37, 4.55,
4.32, 4.18, 4.25, 4.2, 3.74, 4.25, 4.22, 4.13, 4.42,
3.44. Mixtral Scores: 2.14, 3.14, 3.73, 3.49, 3.7,
3.83, 3.53, 3.58, 3.08, 3.31, 2.96, 2.75, 2.85, 2.96,
3.17, 3.62, 4.83, 3.52, 4.45, 4.34, 4.28, 4.26, 4.32,
4.23, 4.78, 4.45, 4.12, 4.72, 3.99, 4.26, 3.38, 2.99.
Higher scores indicate that a layer is under-trained,
having captured fewer features. Such layers may
require more LoRA experts to learn additional fea-
tures during fine-tuning. From the scores, it is
evident that the training quality varies across layers
for different base models. To further investigate,
we computed the Pearson correlation coefficient
between the training quality scores and the average
Frobenius Norm differences between the weight
matrices of different experts for each self-attention
module across layers: (1) For the LLAMA2 model,
the Pearson correlation coefficient is 0.91 with a
p-value of 1.19e-12. (2) For the Mixtral model,
the Pearson correlation coefficient is 0.74 with a p-
value of 1.62e-06. The strong positive correlation
indicates that preferences for expert allocation are
closely linked to the training quality of individual
layers. Thus, differences in the layer-wise training
quality across base models may result in varying
expert allocation preferences.
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