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Abstract

Meta-evaluation of automatic evaluation
metrics—assessing evaluation metrics
themselves—is crucial for accurately bench-
marking natural language processing systems
and has implications for scientific inquiry,
production model development, and policy
enforcement. While existing approaches
to metric meta-evaluation focus on general
statements about the absolute and relative
quality of metrics across arbitrary system
outputs, in practice, metrics are applied in
highly contextual settings, often measuring
the performance for a highly constrained set
of system outputs. For example, we may
only be interested in evaluating a specific
model or class of models. We introduce a
method for contextual metric meta-evaluation
by comparing the local metric accuracy of
evaluation metrics. Across translation, speech
recognition, and ranking tasks, we demonstrate
that the local metric accuracies vary both in
absolute value and relative effectiveness as we
shift across evaluation contexts. This observed
variation highlights the importance of adopting
context-specific metric evaluations over global
ones.

1 Introduction

Meta-evaluation of automatic evaluation metrics—
assessing evaluation metrics themselves—is cru-
cial for accurately benchmarking natural language
processing systems (Zhou et al., 2022). Because
metrics are central to scientific inquiry, the develop-
ment of production models, and policy enforcement
(Kocmi et al., 2021), there is a constant need for
new approaches to rigorously evaluate these met-
rics to ensure they remain reliable and contextually
appropriate, supporting their effective use across
diverse NLP tasks and evolving systems (Novikova
et al., 2017).

Although current methods for metric meta-
evaluation commonly take a global perspective,

context
metric X Y Z global

A 0.9 0.9 0.3 0.7
B 0.7 0.7 0.7 0.7
C 0.3 0.3 0.9 0.5

Table 1: Contextual metric meta-evaluation. The values
in the table are the metric accuracies, which represents
how often a metric correctly estimates the true ordering
of a pair of systems. When comparing metrics A, B,
and C, traditional meta-evaluation focuses on global
accuracy across arbitrary inputs. Local metric accuracy
can vary by evaluation contexts X, Y, and Z.

reporting the performance of a metric across ar-
bitrary system outputs, coming from any system
(Stanojević et al., 2015; Przybocki et al., 2009), in
practice, evaluation is highly contextual, measur-
ing the performance for a highly constrained set
of system outputs. The evaluation context refers
to any meaningful subset of evaluation data, with
the constrained set of system outputs being one
specific type of context (e.g., outputs from partic-
ular models or specific levels of output quality).
For example, we may only be interested in evalu-
ating a specific model or class of models. From
a model development perspective, a metric that is
sensitive to model outputs coming from partially
trained models at the beginning of the development
cycle (when the outputs are far from the target
distribution or close to random) may struggle to
differentiate between outputs from fully trained or
more effective models. For example, Fomicheva
and Specia (2019) show that the performance of a
metric changes as the translation quality changes.
Thus, using the same metric across various contexts
will have inconsistent reliability and can result in
inaccurate model selection.

To illustrate the difference between global and
contextual metric meta-evaluation, we constructed
a toy meta-evaluation for three metrics across three
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contexts (Table 1). The values in the table repre-
sent the accuracy of three metrics (A, B, and C)
under three different contexts (X, Y, and Z). By
looking at the average, we might think that A and
B are equally accurate. However, when inspect-
ing accuracy within individual contexts, we can
see that selecting the most appropriate metric is far
less straightforward than simply choosing based on
the highest global accuracy, as it fails to capture
the metric’s variability and effectiveness in specific
contexts. For example, if we want a metric that
best generalizes across different contexts, we want
to choose B over A for its robustness, even though
their global accuracies are equal. However, if we
want to specifically measure outputs in context Z,
then we would want to pick C as it is especially
sensitive to system outputs in that context despite
it having the lowest global accuracy.

Although prior research has focused mainly on
global metric evaluations, we explicitly analyze
how metric accuracy varies across different evalua-
tion contexts by measuring their local metric accu-
racies. By evaluating metrics across three different
machine learning tasks—machine translation, auto-
matic speech recognition, and ranking—we show
that metric accuracy, which measures the ability
of a metric to accurately assign the true preference
between a pair of system decisions, changes as
evaluation context changes. Specifically, we show
that the metric accuracy changes both in absolute
value and relative ordering across the different con-
texts. In contrast with existing work on metric
meta-evaluation, which relies heavily on costly and
time-consuming explicit human feedback (Fabbri
et al., 2021; Liu et al., 2016), our method uses
output perturbations (Sai et al., 2021; He et al.,
2023) to obtain the true ordering between a pair
of system outputs without the need for human su-
pervision. Overall, we show that measuring local
metric accuracies is a straightforward methodology
to provide a more contextual understanding of eval-
uation metrics which complements existing global
metric meta-evaluation methods.

2 Related work

Our work is situated in the broader literature on
meta-evaluation. For example, the Conference on
Machine Translation (WMT) has focused on evalu-
ating the utility of metrics in machine translation
since 2008, where participants submit automatic
metrics for validation against human feedback

(Callison-Burch et al., 2008). Xiao et al. (2023)
propose a meta-evaluation framework rooted in
measurement theory for NLG metrics, highlighting
issues in human evaluation that include a lack of
validation, standardization, and consistency.

Our use of output perturbations is inspired by
prior work in testing metric robustness. Chen and
Eger (2023) proposed a preference-based adversar-
ial attack framework using targeted perturbations
to evaluate the robustness of NLI-based and BERT-
based metrics, finding that NLI-based metrics are
more robust in summarization but not in machine
translation. Sai et al. (2021) extends perturbation-
based robustness testing by creating templates that
target specific criteria such as jumbled word order
to test fluency. He et al. (2023) utilized perturba-
tions to design synthetic stress tests to evaluate the
robustness of various text generation metrics. Fur-
thermore, Valcarce et al. (2018) evaluated the ro-
bustness of the ranking metrics against incomplete-
ness by purposefully removing system outputs to
introduce sparsity. While these works have demon-
strated the utility of perturbations for evaluating
metric robustness, our paper introduces a novel
method for contextual metric meta-evaluation that
leverages perturbations as a methodological tool to
obtain reliable preferences between system outputs
without requiring costly and time-intensive human
annotations.

Although metric meta-evaluation is often done
on a global level, previous work indicates that the
reliability of a metric changes from the system-
level to the decision-level (Reiter and Belz, 2009;
Stent et al., 2005). Though some research has in-
vestigated metric performance for different con-
texts based on output sources (i.e., models) or out-
put qualities (Mathur et al., 2020; Novikova et al.,
2017), our work addresses the lack of a systematic
review of contextual meta-evaluation and how to
conduct it. Recent studies have further motivated
the need for contextual metric meta-evaluation
by highlighting the lack of robustness of metrics
across varying conditions. For instance, Falcão
et al. (2024) showed that COMET’s performance
varies differently as we move from high-resource
to low-resource languages. Zouhar et al. (2024)
also showed that the performance of fine-tuned
metrics substantially drops in unseen domains. Ad-
ditionally, Zouhar and Bojar (2024) showed that the
number of higher-quality references significantly
impacts the reliability of a metric. These findings
highlight the importance of context-specific evalu-
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ations, as metrics that perform well globally may
fail in specific settings, such as low-resource lan-
guages or unseen domains. Challenge sets like the
one introduced by Amrhein et al. (2023) further
emphasize the need for context-aware evaluation
metrics, as their findings show that no single metric
consistently won across all error categories. These
works highlight the critical gap our contextual meta-
evaluation method aims to address, providing a
systematic way to better understand metric perfor-
mance across diverse evaluation scenarios.

3 Local accuracy

To formalize local metric accuracy, we introduce
the following notation. Let X be the set of all possi-
ble system inputs (e.g., for MT, all possible strings
from the source language) and Y the set of all possi-
ble system outputs (e.g., for MT, all possible strings
from the target language). We define X ⊂ X to be
the subset of system inputs observed in a specific
context (e.g., for MT, a sample of source sentences
from a specific university). Similarly, Yx ⊂ Y
is the subset of system decisions for x ∈ X ob-
served for X in a specific context (e.g., for MT, a
set of translations generated by a set of candidate
systems). In addition, we have access to several
perturbation functions that, with high probability,
degrade the utility of a decision y (e.g., dropping
a random word from a translated input). Let Qx

be the set of pairs decisions conditioned on an in-
put x and their corresponding degraded version:
Qx = {⟨y, y′⟩}y∈Yx .

An evaluation metric µ : X×Y → ℜ generates a
scalar number reflecting the performance according
to some system property that we want to measure
(e.g., correctness of translation). Each metric is an
approximation of µ∗, the unobserved ideal evalua-
tion metric (i.e., the true utility of an output). Given
two pairs of system outputs, µ∗ will always be able
to determine the true ordering of the two outputs,
including instances where it has no preference. In
cases where we intentionally perturb y to obtain y′,
we have that µ∗(x, y) > µ∗(x, y′). We can assume
that the system outputs that we are evaluating are at
least better than random such that we can assume
that µ∗(x, y) > µ∗(x, y′) with high probability.
Under the assumption that µ approximates µ∗, we
want to compute how often µ(x, y) > µ(x, y′). As
suggested by Kocmi et al. (2021), we focus on
the ability of µ to reproduce the ordering of deci-
sions rather than the magnitude of the difference

between µ(x, y) and µ(x, y′). From this, we define
the pointwise local metric accuracy, conditioned
on an input x, to be:

ACCµ(Qx) =
1

|Qx|
∑

⟨y,y′⟩∈Qx

1
[
µ(x, y) > µ(x, y′)

]
(1)

This measures the ability of a metric to repro-
duce the true ordering of perturbations for a specific
input x. We define the local metric accuracy across
all inputs X by averaging over |X|, as follows:

ACCµ(Q) =
1

|X|
∑

x∈X
ACCµ(Qx) (2)

where Q = ∪x∈XQx. This measures the local
metric accuracy across a sample of system inputs,
as we may have in a standard evaluation set. The
main difference with global metric accuracy is that
the accuracy is only computed over all pairs of
⟨y, y′⟩ belonging to a specific context (and not over
all the observed outputs).

We are interested in testing two hypotheses with
respect to local metric accuracy.

H1: The absolute local metric accuracy, ACCµ(Q),
of a metric µ changes as the context changes.

Evidence supporting this hypothesis suggests that
existing evaluation methods focusing on global
metric accuracy obscure how metric accuracy
varies across different contexts.

H2: The relative local metric accuracy of a metric
µ changes as the context changes.

In other words, the total ordering of all metrics by
local metric accuracy within a context changes as
the context changes. Evidence supporting this hy-
pothesis suggests that choosing an appropriate met-
ric to benchmark compare system outputs largely
depends on the context.

4 Methods and Materials

4.1 Tasks, dataset, and metrics
We performed our evaluation on three different
tasks: machine translation (MT), automatic speech
recognition (ASR), and ranking. We detail the
dataset, metrics, and their corresponding imple-
mentations in Appendix A.1.

We can divide the outputs for each task into dif-
ferent subsets, such as the SYSTEM that produced
it. We report results on the subset with the highest
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number of contexts for each task. The abundance
of contexts allowed us to identify trends in metric
behavior across a broader range of items and helped
us identify supporting evidence for or against our
hypotheses. We have included the results for each
of the available subsets for each task in Appendix
A.3.

4.2 Perturbation techniques
To test our hypotheses, we apply perturbation func-
tions that degrade the utility of a system output
y to obtain its corresponding degraded version y′,
simulating the output of a degraded system. This
methodology is widely used to automatically gen-
erate pairs of outputs with their corresponding true
ordering for meta-evaluation, such as in work done
by He et al. (2023) and Sai et al. (2021). By apply-
ing perturbations, we know that the quality of y′

under a specific task is worse than y with high prob-
ability. We highlight a subset of the perturbations
applied to the system outputs from their correspond-
ing tasks in Table 4. The full list of perturbations
can be found in Appendix A.2.1. We selected this
set of perturbations because it represents a large
enough breadth yet still mimics realistic system
errors in their corresponding tasks. It is important
to note that not all perturbations apply to all out-
puts. For example, some outputs do not contain
named entities, so we cannot apply the perturbation
method involving a named entity substitution.

Certain perturbations may confound the results,
i.e., they may inherently favor (or disfavor) spe-
cific metrics due to their design. For example, if
we apply the swapping perturbation function, this
might disproportionately penalize ROUGE-1 as it
is designed only to measure lexical overlap and is
agnostic to position; therefore, it will consistently
achieve an accuracy of 0 across all contexts. How-
ever, we likely do not observe this behavior from
ROUGE-1 under different perturbations, such as
removal or insertion. Thus, if a perturbation con-
founds a metric, the local metric accuracies will
exhibit high variance when we change the pertur-
bation method.

Finding a single perturbation method that does
not confound all the metrics we evaluate is chal-
lenging. To mitigate the impact of potential con-
founders, we generate four different y′s for each
y in machine translation and automatic speech
recognition, corresponding to the result of apply-
ing four randomly selected perturbations to y. Let
{f1, f2, f3, f4} be the randomly selected perturba-

tions corresponding to any of the perturbation meth-
ods for a specific task. Now, instead of having a
single pair ⟨y, y′⟩ in Qx, we will have four pairs for
each y, namely ⟨y, f1(y)⟩, ⟨y, f2(y)⟩, ⟨y, f3(y)⟩,
and ⟨y, f4(y)⟩. Since the different perturbation
methods are independent, increasing the number
of samples for y′ by applying different perturba-
tions reduces the variance in local metric accuracies
across various combinations of perturbations. This,
in turn, minimizes the effect of confounders. We il-
lustrate this further in our experiments in Appendix
A.2.3.

Given the inherent structure of ranked lists, our
approach involves applying a single perturbation
method for the system outputs in the ranking task,
as there are limited meaningful ways to modify a
ranked list to simulate realistic system errors. To
address this limitation, we swap multiple items
within the list when applying the swapping pertur-
bation to ranked outputs. In contrast, for machine
translation and automatic speech recognition, we
apply four different perturbation methods to a sin-
gle output y to get four distinct pairs of ⟨y, y′⟩, but
we apply each method only once (e.g., when apply-
ing the swapping perturbation, we only swap a pair
of words instead of swapping multiple pairs).

4.3 Hypothesis Testing
We plotted the metric accuracies ACCµ(Q) for each
task across different contexts within the selected
context subset Q as a line graph, such that we can
visualize how the metric’s capability of differen-
tiating between y and y′ changes as the context
changes by observing the slopes and overlaps be-
tween the lines. To test H1 and to further inves-
tigate the association between the context Q and
the metric accuracy ACCµ(Q), we used the χ2 test
of independence of variables (Pearson, 1900) in a
contingency table (Pearson, 1904). We compared
the resulting p-values to the significance level of
α = 0.05 to understand whether the changes in
metric accuracy ACCµ(Q) across the different con-
texts Q are statistically significant.

To test H2, we computed Kendall’s-τAP

(Kendall, 1938) between two rankings of metrics
according to local metric accuracy under two con-
texts. The Kendall’s-τAP values help us quan-
tify how the metrics’ total ordering changes as
the context changes. To emphasize the metric se-
lection task, we adopt a widely-used variant of
Kendall’s-τAP known as τAP proposed by Yilmaz
et al. (2008), such that changes higher on the ranked
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Task Perturbation Description

MT

Removal Drop a random word from the string, e.g. “John said he did not like the cake baked.”

Swapping Switch the position of a random pair of words from the string, e.g.“John he said did not
like the cake she baked.”

LLM Prompt an LLM to perturb the string, e.g. “John mentioned he didn’t enjoy the cake

she made .”

ASR
Phonetic sub. Replace a random letter (or a letter group) with phonetically similar ones, e.g. “John sed

he did not like the cake she bakked .”

LLM Prompt an LLM to perturb the string, e.g. “John sed he did not like cake she baked.”

Ranking Swapping Switch the position of an item with another item within the ranked list, e.g. Original ranking:
[Cake, Pie, Cookie] Perturbed: [Cookie, Pie, Cake]

Table 2: A subset of perturbations for MT, ASR, and Ranking tasks. The original unperturbed sentence for the MT
and ASR examples is “John said he did not like the cake she baked.” We show the full table of perturbations in
Appendix A.2.1 and outline how each perturbation method is implemented in Appendix A.2.2.

list are weighted more than the ones that are much
lower in the list. We will also compare the rank-
ings of metrics according to local metric accuracy
within one context and the rankings of metrics ac-
cording to their global metric accuracy.

5 Results

5.1 Machine Translation

We visualize the metric accuracies for the machine
translation metrics under the different SYSTEM

contexts, as shown in Figure 1a. We observe that
the line for each metric changes as we change the
context, as indicated by the varying slopes of the
lines. The results of the χ2 test in Appendix A.4
show that each metric has a p-value less than 0.05,
indicating that the difference in the metric accu-
racies across the different contexts is statistically
significant, supporting H1 for MT.

Figure 1a also contains intersections between
lines corresponding to different metrics, indicating
that there is a change in the relative position of each
metric in the different contexts, which also shows
a change in the total ordering of metrics by local
accuracy across contexts, supporting H2. This is
further reinforced in Figure 1b, where the τAP val-
ues show that the correspondence between the pairs
of metric accuracy rankings varies considerably for
each pair of SYSTEMs.

We also visualize the metric accuracies for En-
glish to German (EN-DE) translation pairs under
the different MQM SCORE contexts based on their
translation quality (Freitag et al., 2021) in Figure
4. We provide further details on the scores in Ap-
pendix A.5. We observe that the metric accura-
cies exhibit an almost linear trend across differ-

ent translation quality contexts: they are low for
poor-quality translations and increase as translation
quality improves. This pattern suggests that current
machine translation metrics struggle to effectively
distinguish between very low translation qualities.
This aligns with the findings of Fomicheva and
Specia (2019). While metrics are often used to
compare state-of-the-art systems with high-quality
translations, their ability to differentiate between
low-quality outputs is still important. For example,
when working with smaller or older models, out-
puts may be generally of poor quality, yet reliable
metrics are still needed to identify promising can-
didates. We observe similar trends in the graphs
for English to Russian (EN-RU) and Chinese to
English (ZH-EN) translation pairs, which we show
in Figures 10 and 11 in Appendix A.5, respectively.

5.2 Automatic Speech Recognition

For ASR, we report the local metric accuracy under
different SPEAKER IDs which come from different
dataset QUALITY contexts (CLEAN/RAW). We plot
the local metric accuracy for contexts associated
with different contexts shown in Figure 2a. We
observe that the lines corresponding to each metric
are not straight, which indicates that the absolute lo-
cal accuracy for each metric changes with context,
supporting H1. Our χ2 test results in Appendix A.4
show that each metric has consistent p-values less
than 0.05, confirming that the difference in local
metric accuracies in the different contexts is statis-
tically significant, providing evidence supporting
H1 for ASR.

Interestingly, we do not observe the same level
of overlaps between the lines corresponding to the
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Figure 1: Machine Translation. Metric accuracy for machine translation metrics across the different systems.
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Figure 2: Automatic Speech Recognition. Metric accuracy for automatic speech recognition metrics across the
different Speaker IDs. (a) Speaker IDs to the left of the gray line come from the QUALITY=CLEAN LibriSpeech-100
dataset, while the Speaker IDs to the right come from the QUALITY=OTHER LibriSpeech-100 dataset.
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Figure 3: Ranking. Metric accuracy for ranking metrics across the different systems.
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Figure 4: Local metric accuracy across the different
MQM scores for English to German (EN-DE) transla-
tion pairs

different metrics as we did for MT. This, along
with the consistently high values of τAP for the
majority of SPEAKERs in Figure 2b, indicates that
there is no evidence to support H2 for ASR. We
will discuss this observation in more detail in 6.2.

5.3 Ranking

Putting the metric accuracies for the ranking met-
rics for the different ALGORITHMs in Figure 3a,
we can first observe that none of the lines corre-
sponding to the different metrics are straight lines,
which supports H1. The large fluctuations within
each line suggest that the changes in the absolute lo-
cal accuracies for each metric are rather significant.
The χ2 test in Appendix A.4 shows that each met-
ric has a consistent p-value less than 0.05, which
means a statistically significant change, providing
evidence to support H1.

Furthermore, we can see that overlaps exist be-
tween the different lines corresponding to the dif-
ferent metrics, similar to the observation we made
in the MT case. This indicates that the total or-
dering of metric accuracies changes as the context
changes, supporting H2. The τAP results (Figure
3b) show clustering by algorithm, as with MT.

6 Discussion

6.1 H1: Absolute Local Accuracies

The results in Section 5 generally provide evidence
supporting H1, as our experiments consistently
show that the local metric accuracy changes as the
context changes.

Our perturbation method catastrophically de-
grades good outputs, and bad outputs are already
poor and difficult to make demonstrably worse. In

Figure 3a, we can observe that the local metric ac-
curacy for a context is related to the average quality
of outputs in that context. For example, in the rank-
ing setting, the most effective system according to
MAP is BPRMF, which is also the context whose
perturbed outputs are easiest to distinguish. In con-
trast, perturbed outputs in the random ranker are
more difficult for all metrics to distinguish. We will
return to this in Section 6.3.

The results corresponding to how the local met-
ric accuracy changes as the context changes suggest
that evaluators may be interested in the stability of
local metric accuracy when selecting a metric. A
more stable metric is more predictable when de-
ployed in a new context, and the probability of se-
lecting the wrong system remains consistent. This
is especially important if we consider a new evalua-
tion context where poor local metric accuracy puts
users—or a vulnerable subgroup of users—at risk.
Work in robust machine learning provides existing
methods for designing metrics stable across context
changes (Yuan et al., 2024).

In addition to stability, we can organize metrics
according to systematic behavior in the local metric
accuracy. For example, in Figure 1a, more com-
plex embedding-based and model-based evaluation
metrics generally perform better than the simpler
lexical-based metrics (Zhang et al., 2019; Freitag
et al., 2022). More complex metrics cluster at the
top of the figure, while simpler metrics occupy the
bottom regions; any overlap occurs mostly within a
specific subset. Such an analysis allows evaluators
to understand the empirical relationships between
metric ensembles. Although picking the best met-
ric might involve selecting a metric that occupies
the top of the figure, there may be contexts in which
local metric accuracies are close enough to allow
flexibility in selecting metrics with lower local met-
ric accuracy.

More generally, we can consider multi-objective
metric development. For example, since
embedding- and model-based methods are more
time-intensive and computationally costly com-
pared to the lexical-based methods, adopting sim-
pler and cheaper metrics when local metric accura-
cies are comparable (e.g., early in model develop-
ment) would result in cost savings and faster itera-
tion. Beyond cost and local metric accuracy, one
can imagine local versions of metric interpretabil-
ity, metric engineering overhead, metric optimiz-
ability, and other criteria when conducting contex-
tual meta-evaluation.
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6.2 H2: Relative Local Accuracies

Although the observations in Section 5 err toward
accepting H2, the evidence from our experiments
on the ASR task in Section 5.2 suggests that it de-
pends on the task and their corresponding metrics.
In ASR, the ambiguity of the correct answers is
low, unlike in MT or ranking, where two outputs
(e.g., translations or permutations, respectively) can
be equally valid (Wieting et al., 2019). ASR out-
puts are typically direct transcriptions of spoken
language into text, and there is often a single ‘cor-
rect’ or ‘expected’ output for a given input. The
main evaluation objective is to check whether the
transcription accurately matches the spoken words
without considering other criteria such as grammat-
ical structure or fluency. Furthermore, ASR tasks
rely on phonetic accuracy, and the primary goal
is to replicate spoken words as text as accurately
as possible. Although there may be challenges
that make the task difficult–such as the presence
of accents, homophones, and background noise–
evaluating the task itself does not require deep se-
mantic understanding beyond recognizing the cor-
rect phonetic and lexical forms, unlike machine
translation. Hence, the metrics commonly used to
benchmark ASR systems only slightly vary in the
characteristics they are trying to measure, and they
are all operationalized following similar statistical
methods.

Figures 1b and 3b indicate that there are groups
of contexts where the relative reliability of the met-
rics is similar (i.e., the relative ranking of metrics
in these groups of contexts does not change signifi-
cantly). When contexts can be structured according
to metric accuracy, one can adopt a fixed evaluation
metric. This has practical implications in terms of
engineering and development overhead or, in the
case of model-based metrics, model development
cost. Predicting the similarity in local metric accu-
racy ordering (i.e., cells in Figures 1b and 3b) is an
important task because it allows evaluators to confi-
dently adopt an evaluation metric without conduct-
ing contextual meta-evaluation. Predictive features
include any metadata we have about the contexts.
For example, in ranking, Valcarce et al. (2018) cate-
gorize ALGORITHMs into different families of tech-
niques: matrix factorization (SVD, PURESVD,
BPRMF, WRMF), neighborhood-based (CHI2,
KLD, RSV, ROCCHIO’S WEIGHTS).

Additionally, the top rows on Figures 1b and
3b show that the ranking of the metrics in differ-

ent contexts varies considerably from the ranking
of the metrics based on the global accuracy. This
observation aligns with the scenario illustrated by
the toy example in Table 1, where we show that
selecting the most appropriate metric may not be
as straightforward as selecting the metric with the
highest global precision and further motivates the
need to shift towards context-specific metric evalu-
ations.

6.3 Methodology
Although our results demonstrate that local metric
accuracy analysis can provide insight into metric
behavior, there are several opportunities to improve
the methodology. First, our perturbations, while
reliable in generating output degradations, may re-
sult in outputs that are easily detected by metrics,
especially for highly effective systems. Moreover,
perturbed outputs may be sufficiently different as
to be unlikely to occur in a specific context. For
example, if we are evaluating in the context of
highly effective MT systems, a translation with a
missing word is very unlikely by any highly effec-
tive MT system, even though we know that it is of
lower quality. In order to address this, developing
perturbation methods that reliably degrade perfor-
mance and are likely to occur within a context will
be important for future local metric accuracy de-
velopment. This is related to synthesizing hard
negative examples in the contrastive learning liter-
ature (Kalantidis et al., 2020). Alternatively, we
can consider non-perturbation data, perhaps from
human annotators, although this compromises the
cost-effectiveness of output perturbation.

Finally, in order to help with clarity, we focused
on contexts that were interpretable and which con-
texts were relevant depending on the broader model
evaluation environment. Focusing on models, as
we did for MT and ranking, emphasizes contexts
that reflect iterative model development and refine-
ment within a narrow set of constraints (i.e., the
particular model being evaluated). If we bench-
mark a diverse set of systems, we are interested in
comparing a broader set of possible outputs than
those from a single system. In cases where we
are designing a metric agnostic to a particular con-
text, we may be interested in robust performance
across arbitrary contexts. Although this is similar
to global analysis, a more rigorous and formal ap-
proach to context selection, such as found in the
distributionally robust machine learning literature
(Duchi et al., 2018), may be more appropriate.
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6.4 Practical guidelines

Our method serves as a diagnostic tool for met-
ric meta-evaluation, similar to how practitioners
use ablation studies for error analysis. Our find-
ings from H1 on varying absolute accuracy suggest
that evaluators should examine how consistently
metrics perform within their context rather than
relying on global measures. For example, when
developing early-stage models, focus on metrics
that show stable performance with low-quality out-
puts. Our findings from H2 on varying relative
ordering indicate that metric selection should be
context-dependent, which means that a metric that
performs well for comparing high-quality models
might not be optimal for comparing early-stage
models.

Consider a scenario where a team is developing
a machine translation model for a low-resource lan-
guage pair. Early in the development cycle, the
model produces outputs that are far from the target
distribution, often containing grammatical errors
and incorrect translations. The team applies our
methodology to evaluate metrics in the context of
outputs with varying quality. They find that sim-
pler lexical-based metrics, such as BLEU, show
more stable performance in distinguishing between
poor translations, while more complex metrics like
COMET struggle to differentiate between outputs
of similarly low quality but can differentiate be-
tween outputs of similarly high quality. Based on
this insight, the team selects BLEU for early-stage
evaluation, ensuring they can reliably track incre-
mental improvements. As the model develops and
outputs improve, the team would adapt and switch
to more sophisticated metrics like COMET to evalu-
ate high-quality translations. This example demon-
strates how our method can guide metric selection
at different stages of model development, ensur-
ing that the chosen metrics align with the specific
evaluation context.

To summarize, when using our approach, evalu-
ators can follow these steps:

1. Identify the specific context: define the evalu-
ation context, such as the type of system (e.g.,
early-stage vs. late-stage models), data do-
main (e.g., medical vs. legal text), etc.

2. Measure local metric accuracies: use our ex-
isting results or apply our method to measure
how well different metrics distinguish quality
differences within that context.

3. Select metrics based on stability and context:
choose metrics that demonstrate stable accu-
racies for the specific use case. For example,
if the context involves low-quality outputs,
prioritize metrics that reliably differentiate be-
tween poor results. If the context involves
high-quality outputs, select metrics that are
sensitive to more subtle or fine-grained differ-
ences.

4. Monitor and adapt metrics: as the evaluation
setting changes (e.g., the model is iteratively
trained), regularly reassess the performance
of the selected metrics to ensure they are still
appropriate. For example, transition from sim-
pler lexical-based metrics for early-stage mod-
els to more sophisticated embedding-based
metrics for late-stage models.

By following these steps, practitioners can make
informed decisions about metric selection, ensur-
ing that their evaluations are contextually appropri-
ate. This approach not only improves the reliability
of model benchmarking but also reduces the risk
of selecting suboptimal metrics that may lead to
incorrect conclusions about system performance.

7 Conclusion

We introduce the notion of local metric accuracy
and demonstrate how to use it to conduct contextual
metric meta-evaluation. Our results show that both
the absolute and relative local accuracy of a metric
varies across evaluation contexts, although the ex-
tent of variation depends on the task. Our findings
highlight the importance of moving beyond global
metric meta-evaluation to better understand met-
ric performance. This will allow practitioners to
make more informed decisions, leading to more re-
liable evaluations and reducing the risk of selecting
suboptimal metrics.

8 Limitations

As mentioned in Section 4.2 and Appendix A.2.2,
our experiments adopt relatively simple rule-based
and LLM-based perturbation methods to cover sev-
eral tasks. However, given the wide range of system
output qualities in our dataset, it is rather difficult
to guarantee that applying a perturbation function
to y will always produce a y′ that is worse in utility.

We also compute local accuracy by uniformly
weighting all output-perturbation pairs, which may
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not reflect the true distribution of outputs in a spe-
cific context. In reality, different outputs have dif-
ferent probabilities of occurring in a specific con-
text. These probabilities should be incorporated
into the accuracy calculation to provide a more reli-
able estimate of local metric accuracy. Estimating
the distribution over outputs for a specific context
itself is a difficult research question that we plan to
address in future work.
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A Appendix

A.1 Details for Tasks, Datasets, and Metrics

Table 3 shows the dataset and metrics that we used
in our experiments. For each task, we used readily
available system outputs to improve reproducibility.
For each metric, we employ its respective official
implementations or, when unavailable, the most
widely used implementation with default parame-
ters. For any neural metric computation, we used
an NVIDIA RTX A6000 GPU. For BLEU, we
used sentencebleu implementation from nltk2.
We also used nltk’s implementation for METEOR.
For ROUGE3 and BERTSCORE4, we have used
the implementation released by their respective
authors. For BLEURT5, COMET6, CHRF7 and
UNITE8, we have used their official implementa-
tions via the evaluate library on HuggingFace.
We have used the default9 model for COMET. We
used the jiwer10 Python package to compute the
ASR metrics. We used the trec_eval11 to calcu-
late the ranking metrics.

A.2 Perturbations

A.2.1 List of perturbations
The complete list of perturbations used in our ex-
periments and their descriptions are in Table 4.

A.2.2 Implementation of perturbations
For the system output corresponding to machine
translation and automatic speech recognition tasks,
we first preprocess the target output by performing

2https://www.nltk.org/index.html
3https://github.com/google-research/

google-research/tree/master/rouge
4https://github.com/Tiiiger/bert_score
5https://github.com/google-research/bleurt#

readme
6https://unbabel.github.io/COMET/html/models.

html
7https://github.com/mjpost/sacreBLEU#

chrf--chrf
8https://huggingface.co/Unbabel/unite-mup
9https://huggingface.co/Unbabel/

wmt22-comet-da
10https://github.com/jitsi/jiwer
11https://github.com/usnistgov/trec_eval

tokenization, part-of-speech tagging, named entity
recognition, negation detection, etc. Additionally,
the WMT dataset (Freitag et al., 2022) contains
target outputs in three different languages–English,
Russian, and German–we were careful to use li-
braries that are tailored to each language. We then
use simple string manipulation functions to per-
form rule-based insertion, deletion, substation, and
more. To introduce an additional layer of complex-
ity, we also prompted an instruction-tuned LLM to
perturb the system and generate a degraded output.

We employ simple rule-based perturbation tech-
niques with the addition of an LLM-based perturba-
tion. We noted that not all perturbation techniques
are applicable to each task, and they are also not
applicable to each system output in each task. The
applicability here is defined by whether or not ap-
plying the perturbation function f(·) to y will pro-
duce a y′ that is worse with high probability.

Swapping. We apply this perturbation method
to the outputs of all three tasks. We tok-
enize lowercased sentences for machine transla-
tion and automatic speech recognition using nltk’s
word_tokenzize function. We apply this prepro-
cessing method to all the rule-based perturbation
functions. Then, we randomly pick a pair of words
and swap their positions. Similarly, for ranking, we
pick a pair of items within the ranked list and swap
them. To offset the fact that we have a limited num-
ber of perturbations for ranking, we swap several
items within the list, while in machine translation
and automatic speech recognition, we only switch
the position of a pair of words.

Removal. We apply this perturbation method
to outputs from machine translation and automatic
speech recognition. After preprocessing the output,
we randomly select a word from the sentence and
remove it.

Insertion. We apply this perturbation method
to outputs from machine translation and automatic
speech recognition. After preprocessing the output,
we insert a randomly selected word from a list of
words corresponding to the language of the system
output. To reduce computation time, we store a
corpus of English, Russian, and German words
from the dataset and randomly select one from the
list.

Synonym substitution. We apply this pertur-
bation method to the output of machine transla-
tion. We have to take a language-specific approach
to obtain synonyms: for English, we used nltk
wordnet’s synsets; for Russian, we used synsets
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Task Dataset Metrics

MT Over 150,000 system outputs and reference translation
from 62 different MT systems submitted to the WMT
metrics task from the year 2022 and prior (Freitag et al.,
2022) with MQM annotations (Freitag et al., 2021)
for the source-target language pairs English-Russian
(EN-RU), English-German (EN-DE), Chinese-English
(ZH-EN). The subsets that are available are YEAR,
DOMAIN, SYSTEM, and MQM SCORE. The dataset is
available on HuggingFace1.

BLEU, ROUGE-1, ROUGE-2, ROUGE-L, ME-
TEOR, BERTSCOREP, BERTSCORER, BERTSCOREF1,
COMET, BLEURT, CHRF, UNITESRC, UNITEREF,
UNITEUNIFIED

ASR Over 33,000 system outputs from six different ASR
models on ESPnet (Watanabe et al., 2018) on the Lib-
riSpeech 100 dataset (Panayotov et al., 2015). The
subsets that are available are SYSTEM, SPEAKER ID,
and QUALITY.

Word Error Rate (WER), Match Error Rate (MER),
Word Information Lost (WIL), Word Information Pre-
served (WIP), Character Error Rate (CER)

Ranking Ranked list of top-100 items retrieved by 21 recom-
mender algorithms provided by Valcarce et al. (2018)
on the MovieLens1M dataset (Harper and Konstan,
2015) submitted to TREC (Buckley and Voorhees,
2004). We were able to segment the outputs by ALGO-
RITHM.

Mean Average Precision (MAP), Precision@R, where
R is the number of relevant documents (RPREC), Re-
ciprocal Rank (RECIP_RANK), Interpolated Precision
at Recall Level X (for X = {0.0, 0.1, 0.2, 0.3, 0.4})
(IPREC_AT_RECALL_X), Precision@K
(P_K), Recall@K (RECALL_K), nDCG@K
(NDCG_CUT_K) (where K = 5, 10, 15, 20, 30)

Table 3: Datasets and metrics used for different tasks

from RuWordNet12; for German, we performed
an API call using the PyMultiDictionary13 li-
brary. Not every word has a synonym, so we iterate
through the sentence and substitute the first word
with a synonym.

Pronoun substitution. We apply this perturba-
tion method to the output of machine translation.
We adopted a strictly rule-based approach, defin-
ing a set of pronouns for each language (English,
Russian, and German). We loop through the words
in the sentence, look at all available pronouns, and
replace one with a random pronoun from the pre-
defined list.

Named entity substitution. We apply this per-
turbation method to the output of machine transla-
tion. Similar to pronoun substitution, we adopted
a strictly rule-based approach, where for each lan-
guage, we collect a list of named entities by per-
forming named entity recognition on all the sen-
tences using spacy14. Then, for each sentence
from the system output, we look for named entities
using the same approach and replace them with
a randomly named entity from our cached list of
named entities corresponding to the language.

Negation. We apply this perturbation method to
the output of machine translation. For English out-

12https://www.ruwordnet.ru/ru
13https://github.com/ppizarror/

PyMultiDictionary
14https://spacy.io/

puts, we perform POS tagging using nltk. When-
ever we see a verb, adjective, or auxiliary verb, we
insert a ‘not’ in the appropriate position (before
the word in the first two cases and after the word
in the latter). For German, instead of performing
POS tagging, we defined a list of common auxil-
iary verbs, adjectives, and verbs and then added a
‘nicht’ in the appropriate position. We do the same
thing for the Russian outputs.

Negation removal. We apply this perturbation
method to the output of machine translation. Se-
mantically speaking, negating a sentence is the
same as removing a negation (for example, remov-
ing the word ‘not’ from a sentence results from
adding a double negation to a sentence). However,
we operationalize this differently in the implemen-
tation. We adopt a strictly rule-based approach
where, for each language, we look for instances of
negation like “not”, “didn’t”, “never”, and replace
them with their negated counterpart (or for the case
of words like “never”, just removed them entirely).

Phonetic substitution. We apply this pertur-
bation method to outputs from automatic speech
recognition. Like several methods described above,
we adopted a rule-based method to replace conso-
nants and vowels (or consonant and vowel groups)
with something phonetically similar. For example,
we can perform a t -> d substitution to water ->
wader. We do this using regex.

LLM-based perturbation. We apply this per-

4933

https://www.ruwordnet.ru/ru
https://github.com/ppizarror/PyMultiDictionary
https://github.com/ppizarror/PyMultiDictionary
https://spacy.io/


turbation method to outputs from machine trans-
lation and automatic speech recognition. We em-
ploy a Llama-3-8B-instruct model (AI@Meta,
2024) to perturb a system output. We use the
following hyperparameters: temperature=0.3,
max_response_tokens=200, and top_p=1.0. We
run inference on a single NVIDIA A6000 GPU.
Below is an example prompt that we use to perturb
a machine translation system output:

“I have the following source text
(SOURCE_ENGLISH), reference
translation (REFERENCE_GERMAN),
and machine translation system output
(MT_OUTPUT_GERMAN). Your task
is to make MT_OUTPUT_GERMAN
slightly worse by introducing minor
machine translation errors while keeping
the output generally understandable.

SOURCE_ENGLISH: “Fiddes also ad-
dressed allegations of child sexual abuse
against Jackson by Wade Robson and
James Safechuck, which were aired in
the controversial, Emmy Award-winning
documentary Leaving Neverland.”

REFERENCE_GERMAN: “Fiddes hat
auch die Anschuldigungen des sexuellen
Kindermissbrauchs von Wade Robson
und James Safechuck durch Jackson
angesprochen, die in der kontrover-
sen Dokumentation „Leaving Neverland”
die auch einen Emmy gewonnen hat,
dargelegt wurden.”

MT_OUTPUT_GERMAN: “Fiddes be-
fasste sich auch mit Vorwürfen des
sexuellen Missbrauchs von Kindern
gegen Jackson durch Wade Robson und
James Safechuck, die in dem umstritte-
nen, Emmy-prämierten Dokumentarfilm
Leaving Neverland ausgestrahlt wur-
den.”

Please modify
MT_OUTPUT_GERMAN to introduce
minor typical machine translation errors,
making the output only slightly worse.
Do not include any explanations or
additional text. Only return the perturbed
output.”

The prompt above yields the following output:

“Fiddes befasste sich auch mit Vorwürfen
des sexuellen Missbrauchs von Kindern
gegen Jackson von Wade Robson und
James Safechuck, die in dem umstritte-
nen, Emmy-premierten Dokumentarfilm
Leaving Neverland ausgestrahlt wur-
den.”

Similarly, we present an example prompt that
we use to perturb an automatic speech recognition
system output:

I have the following reference
text (ASR_REFERENCE_TEXT)
and an ASR system output
(ASR_SYSTEM_OUTPUT). Your task
is to make ASR_SYSTEM_OUTPUT
slightly worse by introducing minor
ASR errors.

ASR_REFERENCE_TEXT: “concord
returned to its place amidst the tents”
ASR_SYSTEM_OUTPUT: “concord re-
turned to its place amidst the tents”

Please modify
ASR_SYSTEM_OUTPUT to in-
troduce minor typical ASR errors,
making the output only slightly worse.
Do not include any explanations or
additional text. Only return the perturbed
output.

The prompt above yields the following output:

“concord reterned to its pace amids the
tents”

We use the same prompt template for all sys-
tem outputs used for the meta-evaluation. In both
cases, we do not guide the model by using exam-
ples such as “perturb the model by dropping some
words” or other detailed instructions. This will al-
low the LLM to ‘explore’ different ways to perturb
an output beyond our rule-based methods.

4934



Task Perturbation Description

MT

Removal Drop a random word from the string, e.g. “John said he did not like the cake baked.”

Insertion Add a random word to the string at a random position, e.g. “John said he did not really
like the cake she baked.”

Swapping Switch the position of a random pair of words from the string, e.g.“John he said did not
like the cake she baked.”

Synonym sub. Substitute a random word with its synonym, e.g. “John said he did not enjoy the cake she
baked.”

Pronoun sub. Substitute a random pronoun in the string with another random pronoun, e.g. “John said
she did not like the cake she baked”

Named entity sub. Substitute a random named entity in the string with another named entity, e.g. “ Mike said
he did not like the cake she baked.”

Negation Negate a random word in the string, e.g. “John said he did not like the cake she did not
baked.”

Negation removal Remove instances of negation from the string, e.g. “John said he liked the cake she baked.”

LLM Prompt an LLM to perturb the string, e.g. “John mentioned he didn’t enjoy the cake

she made .”

ASR

Removal Drop a random word from the string, e.g. “John said he did not like cake she baked.”

Insertion Add a random word to the string at a random position, e.g. “John said he did not like the
cake that she baked.”

Swapping Switch the position of a random pair of words from the string, e.g. “John said he did like
not the cake she baked.”

Phonetic sub. Replace a random letter (or a letter group) with phonetically similar ones, e.g. “John sed
he did not like the cake she bakked .”

LLM Prompt an LLM to perturb the string, e.g. “John sed he did not like cake she baked.”

Ranking Swapping Switch the position of an item with another item within the ranked list, e.g. Original ranking:
[Cake, Pie, Cookie] Perturbed: [Cookie, Pie, Cake]

Table 4: Full list of perturbations for MT, ASR, and Ranking tasks. The original unperturbed sentence for the MT
and ASR examples is “John said he did not like the cake she baked.” We outline how each perturbation method is
implemented in Appendix A.2.2.
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A.2.3 The effect of adding more perturbations

In this section, we will discuss how we can reduce
the effects of potential confounding between the
choice of perturbation and the different metrics
being evaluated. We can detect whether a metric
confounds with a specific perturbation method by
observing its variance across the different pertur-
bation methods, as initially highlighted in Section
4.2.

We can think about how an adversarial metric
can take advantage of such confounders and how
introducing more perturbations would help. Let us
say we only adopt the removal perturbation func-
tion in our framework. Let µadv be the adversarial
metric that assigns a score based on the length of
the system output y, such that µadv(x, y) = len(y).
Given that y′ will always be shorter than y due to
the perturbation function that we chose, it is always
true that µadv(x, y

′) is always lower than µadv(x, y),
hence we will have ACCµ(Qx) = 1 for µadv re-
gardless of the context. It is likely that µadv is not
correlated with µ∗ in measuring the true utility of
the output.

Now, let us say we include two other versions
of y′ obtained by applying the insertion and swap-
ping perturbation function. In this case, len(y) ≤
len(y′) will always be true; therefore, the value
of µadv(x, y) will always be less than µadv(x, y

′).
Hence, the adversarial metric will always achieve
ACCµ(Qx) = 0. If we aggregate the values
from the different perturbations, we will get a
ACCµ(Qx) = 0.33.

We can observe this phenomenon from empirical
examples of perturbing machine translation outputs
using nine different techniques in Figure 6. As dis-
cussed in Section 4.2, the swapping perturbation
function penalizes disproportionately ROUGE-1, as
the metric measures the position-agnostic lexical
alignment between two outputs. Consequently, we
can see that in Figure 6b, the metric accuracy values
for ROUGE-1 are consistently 0. However, when
we observe its metric accuracy values under the
other perturbation functions, they fluctuate at val-
ues above 0. If we compare this with other metrics,
such as the family of UNITE metrics, their metric
accuracy values have a smaller variance between
the different perturbation functions.

From the examples above, we can observe that
if a metric confounds with specific perturbation
methods, its local metric accuracy scores across
different contexts would have a high variance when

we change the perturbation method. This follows
from the definition of variance: when a variable
(in our case, the local metric accuracy under dif-
ferent perturbations) has a high variance, it means
that its values are spread out over a wide range,
indicating that under some perturbations the local
metric accuracy is high, while it is low in others,
instead of being close to the average value. Given
that we keep the contexts the same when measuring
the variances, we can also say that if the local met-
ric accuracy of a particular metric across different
contexts shows a high variance when changing the
perturbation method, then it is likely caused by the
presence of confounding between the perturbation
and the metric design.

We will show empirically that this variance will
be reduced if we combine different perturbation
methods for machine translation. First, we obtain
all the possible combinations of perturbations: each
k = [1, 2, 3, 4, 5, 6, 7, 8] denoting the number of
perturbations in each combination would have

(
9
k

)

instances each. We omit k = 9 because we would
just have one combination of 9 different perturba-
tions. For example, a combination of one perturba-
tion method would be

(
9
1

)
= 9 different single per-

turbations, while a combination of two perturbation
methods would be

(
9
2

)
= 36 different pairs, where

each y would have two different y′s, and so on. Let
us denote the different groups of combinations ck,
where each ck contains all the possible perturba-
tion combinations of size k. We randomly chose
min(

(
9
k

)
, 10) for each ck to speed up the calcula-

tion. For each combination in c(k,i), we compute
the means of the local metric accuracies across the
different machine translation systems. For each
metric µ, we compute how it varies with the local
metric accuracies of the other possible perturbation
combinations of size k.

We show the above result in Figure 5. We
can interpret it as follows: the variance be-
tween groups of two perturbation combina-
tions (for example, between

〈
fremoval, fswap

〉

and ⟨fremoval, finsertion⟩) is higher than between
groups of three perturbation combinations (for
example, between

〈
fremoval, fswap, finsertion

〉
and〈

fremoval, fLLM, fnegation
〉
) for metrics such as

BLEURT and ROUGE-1. Therefore, we can see
that by increasing the number of perturbations for
a single instance of y, we will see reduced effects
on confounders.
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Figure 5: Local metric accuracy variance between the
different number of perturbation combinations.
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(a) Removal
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(b) Swapping
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(c) Synonym substitution
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(d) Insertion
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(e) Named entity substitution
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(g) Negation removal
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(h) Pronoun substitution

M
iS

S
IIE

-M
T

DI
DI

-N
LP

re
f-B

SM
U

To
ho

ku
-A

IP
-N

TT
.8

90
Bo

rd
er

lin
e

Fa
ce

bo
ok

-A
I

TH
UN

LP
.1

49
8

Vo
lcT

ra
ns

-G
LA

T
W

eC
ha

t_
AI

.1
52

5
Hu

os
ha

n_
Tr

an
sla

te
.9

19
Te

nc
en

t_
Tr

an
sla

tio
n.

15
20

Te
nc

en
t_

Tr
an

sla
tio

n.
12

49
Op

en
NM

T
Di

Di
_N

LP
.4

01
m

et
ric

sy
st

em
2

OP
PO

.1
53

5
JD

Ex
pl

or
eA

ca
de

m
y

De
ep

M
in

d.
38

1
Hu

os
ha

n_
Tr

an
sla

te
.8

32
Vo

lcT
ra

ns
-A

T
m

et
ric

sy
st

em
1

eT
ra

ns
la

tio
n.

73
7

bl
eu

_b
es

tm
br

Ni
uT

ra
ns

On
lin

e-
W

OP
PO

.1
42

2
On

lin
e-

G
m

et
ric

sy
st

em
4

On
lin

e-
B.

15
90

bl
eu

rt_
be

st
m

br
UE

di
n

re
fB

On
lin

e-
B

On
lin

e-
B.

16
05

co
m

et
_b

es
tm

br
m

et
ric

sy
st

em
3

Ne
m

o
m

et
ric

sy
st

em
5

La
n-

Br
id

ge
re

f-C
Hu

aw
ei

TS
C

On
lin

e-
Y

La
ng

ua
ge

X
PR

OM
T

eT
ra

ns
la

tio
n

On
lin

e-
A

On
lin

e-
A.

15
74

SR
PO

L
AI

SP
-S

JT
U

Hu
m

an
-A

.0
M

an
ifo

ld
re

f-D
Hu

m
an

-B
.0

QU
AR

TZ
_T

un
eR

er
an

ki
ng

re
f-A

M
2M

10
0_

1.
2B

-B
4

re
f.A re
fA

re
f.B

Hu
m

an
-P.

0

system

0.3

0.4

0.5

0.6

0.7

M
et

ric
 a

cc
ur

ac
y

mt_llm: 148643/150343

bleu
chrf
r1
r2
rl
meteor
bertscore_P
bertscore_R
bertscore_F1
comet
bleurt
UniteSRC
UniteREF
UniteUNIFIED

(i) LLM-based perturbation

Figure 6: Metric accuracy graphs from using a single perturbation technique on each instance.
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A.3 Metric accuracy graphs
A.3.1 Machine translation
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Figure 7: Metric accuracy for machine translation met-
rics across the different DOMAINs.
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Figure 8: Metric accuracy for machine translation met-
rics across the different YEARs.

A.3.2 Automatic speech recognition

co
nf

or
m

er
-tr

an
sd

uc
er

co
nf

or
m

er

eb
ra

nc
hf

or
m

er
-tr

an
sd

uc
er

co
nf

or
m

er
-c

tc

eb
ra

nc
hf

or
m

er
-c

tc

eb
ra

nc
hf

or
m

er

Model

0.92

0.94

0.96

0.98

M
et

ric
 a

cc
ur

ac
y

WER
MER
WIL
WIP
CER

Figure 9: Metric accuracy for automatic speech recog-
nition metrics across the different SYSTEMs.

A.4 Statistical Significance Testing results
The statistical significance test results referred to
for machine translation (Section 5.1), automatic
speech recognition (Section 5.2), and ranking (Sec-
tion 5.3), are shown in Tables 5, 6, 7, respectively.

Metric χ2 stat p-value D.O.F.
bleu 3528.549 0.0 61
chrf 2821.829 0.0 61
r1 1918.071 0.0 61
r2 5709.353 0.0 61
rl 3475.848 0.0 61
meteor 2328.442 0.0 61
bertscore_P 4587.739 0.0 61
bertscore_R 9192.163 0.0 61
bertscore_F1 5485.387 0.0 61
comet 702.717 7.264963e-110 61
bleurt 19874.815 0.0 61
UniteSRC 699.907 2.631570e-109 61
UniteREF 2527.075 0.0 61
UniteUNIFIED 834.976 2.211392e-136 61

Table 5: χ2 Contingency Test Results for machine trans-
lation metrics

Metric χ2 stat p-value D.O.F.
WER 677.508 2.884115e-99 72
MER 561.242 7.168449e-77 72
WIL 1328.151 2.412446e-230 72
WIP 3956.386 0.0 72
CER 1085.986 8.197217e-181 72

Table 6: χ2 Contingency Test Results for automatic
speech recognition Metrics

Metric χ2 stat p-value D.O.F.
map 154124.458 0.0 20
Rprec 105742.720 0.0 20
recip_rank 47484.273 0.0 20
iprec_at_recall_0.00 57663.527 0.0 20
iprec_at_recall_0.10 178593.017 0.0 20
iprec_at_recall_0.20 237843.573 0.0 20
iprec_at_recall_0.30 234700.982 0.0 20
iprec_at_recall_0.40 179188.961 0.0 20
P_5 122190.649 0.0 20
P_10 143434.121 0.0 20
P_15 147076.902 0.0 20
P_20 146921.819 0.0 20
P_30 140459.426 0.0 20
recall_5 122190.649 0.0 20
recall_10 143434.121 0.0 20
recall_15 147076.902 0.0 20
recall_20 146921.819 0.0 20
recall_30 140459.426 0.0 20
ndcg_cut_5 148042.996 0.0 20
ndcg_cut_10 173763.267 0.0 20
ndcg_cut_15 179134.760 0.0 20
ndcg_cut_20 179938.561 0.0 20
ndcg_cut_30 175786.549 0.0 20

Table 7: χ2 Contingency Test Results for ranking met-
rics
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A.5 Metric accuracies for different
translation qualities

For the machine translation metrics, we can divide
the data into different translation quality contexts as
the WMT 2022 dataset (Freitag et al., 2022) comes
with MQM scores (Freitag et al., 2021), which re-
flect the human judgment of the system outputs.
The MQM scores for the English to German (EN-
DE) and Chinese to English (ZH-EN) translation
pairs were mostly annotated by Google and ranges
from -25 to 0, where 0 is a perfect translation, and
-25 is the worst possible score. On the other hand,
the MQM scores for the English to Russian (EN-
RU) translation pairs were annotated by Unbabel
and ranges from -inf to 100, where 100 is a perfect
translation and something below 0 is a bad trans-
lation. We have used the data made available on
Huggingface15.

Because MQM scores are continuous, we dis-
cretized the scores into 250 buckets of equal fre-
quency. We did this instead of discretizing the
scores into equal ranges, as some ranges of MQM
scores had no data points in them.

In Section 5.1, we show the metric accuracies for
English to German (EN-DE) translation pairs. We
show similar results for English to Russian (EN-
RU) and Chinese to English (ZH-EN) translation
pairs in Figures 10 and 11, respectively.

15https://huggingface.co/datasets/RicardoRei/
wmt-mqm-human-evaluation
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Figure 10: Local metric accuracy across the different
MQM scores for English to Russian (EN-RU) transla-
tion pairs
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Figure 11: Local metric accuracy across the different
MQM scores for Chinese to English (ZH-EN) transla-
tion pairs
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